Critical Accelerator R&D for Achieving High Performance of a Polarized Medium Energy Electron Ion Collider (MEIC / JLEIC Collaboration)

> Brahim Mustapha Physics Division, ANL

Contributors: Z. Conway, A. Plastun, P. Ostroumov

DOE-NP Accelerator R&D PI Meeting October 20th, 2017, DOE

Outline

□ Project Goal, Accomplishments & Budget

□ Highlights from Previous Years Work (FY10-14)

□ Recent Developments (FY15-17)

□ Status of the JLEIC Ion Injector Linac Design

□ ANL Supported LDRD

Proposed Future Work

B. Mustapha THE UNIVERSITY OF CHICAGO
ULA DEPARTMENT OF ULA DEPARTMENT ULA DEPARTMENT OF ULA DEPARTMENT ULA DEPAR JLEIC Ion Injector Design & Simulations

DOE-NP EIC R&D PI Meeting, Oct. 20th, 2017

Project Goal & Accomplishments

- Goal of the early work (FY10-14): Development of the Ion Accelerator Complex for MEIC/JLEIC
- □ Goal of most recent work (FY15-17): Design and Simulations of the JLEIC Ion Injector Linac
- □ Accomplishments FY10-14: Design of the Ion Complex (Baseline 2012)
 - Preliminary Linac Design
 - Pre-Booster Design
 - Beam injection and formation scheme in the ion complex
 - COSY developments for space charge and longitudinal dynamics

Accomplishments FY15-17: Injector Linac Design & Simulations
 Complete conceptual design of the ion linac – Short & full energy versions
 Start-to-end simulations in the linac and injection to the Booster (in progress)

Budget Summary & Expenditures Over the Years

	FY10+ FY11	FY12+ FY13	FY14+ FY15	FY16+FY17	Total
Funds allocated	0k+440k	100k+98k	50k+105k	100k+50k	\$943k
Actual costs to date	0k+316.8k	142.2k+115.2k	53.7k+119.1k	99.2k+5k	\$851.2k

✓ FY-17 Milestones, using FY-16 funds

	Milestones
Q1FY17	Conceptual Design of the Room-Temperature Front-End: RFQ and IH-DTL Structures
Q2FY17	LEBT and MEBT Design for the light-ion and heavy-ion RFQ injectors leading to the common IH-DTL Section.
Q3FY17	End-to-end simulations in the linac for at least one light-ion and one heavy-ion beam.
Q4FY17	Extension of the Linac to the full Baseline energy of the JLEIC Injector

JLEIC Ion Injector Design & Simulations

DOE-NP EIC R&D PI Meeting, Oct. 20th, 2017

Highlights from Previous Years (FY10-14)

JLEIC Ion Injector Design & Simulations

DOE-NP EIC R&D PI Meeting, Oct. 20th, 2017

Original Linac Design (2012) – MEIC/JLEIC Baseline

- Warm front-end up to ~ 5 MeV/u for all ions
- SC QWR section up to 13 MeV/u for Pb ions
- A stripper for heavy ions for more effective acceleration: Pb $^{28+ \rightarrow 67+}$
- SC high-energy section (QWR + HWR) up to 280 MeV for protons and 100 MeV/u for Pb ions
- Total linac length of ~ 130 m with a total pulsed power of 560 kW (2012)
- A first version of the linac design in 2011 included 3 types of cavities (QWR, HWR and DSR) with a total length of 150 m

JLEIC Ion Injector Design & Simulations

Pre-Booster Design – Original MEIC Baseline (2012)

☐ Figure-8 design to preserve beam polarization

Below transition energy: 3 GeV for protons, 670 MeV/u for Pb ions

234 m circumference with adequate space for insertions: e-cooling, RF system, injection, extraction, correction and collimation

Polarized Proton Beam Formation in the MEIC Ion Complex

		Source	Linac	Pre-booster		Large Booster	Collider Ring
		ABPIS	At exit	At Injection	After boost	After boost	After boost
Charge status		H-	H-	H^+	H^+	H^+	H^{+}
Kinetic energy	MeV/u	~0	13.2	285	3000	20000	60000
γ and β				1.3 / 0.64	4.2 / 0.97	22.3 / 1	64.9 / 1
Pulse current	mA	2	2	2			
Pulse length	ms	0.5	0.5	0.22			
Charge per pulse	μC	1	1	0.44			
Ions per pulse	10^{12}	3.05	3.05	2.75			
Pulses				1			
Efficiency				0.9			
Total stored ions	10^{12}			2.52	2.52	2.52x 5	2.52x5
Stored current	А			0.33	0.5	0.5	0.5

*δ*p/p=1.5%

 $\delta p/p = -1.5\%$ JLEIC Ion Injector Design & Simulations

Publications ...

- "Design Studies of Pre-Boosters of Different Circumference for an Electron Ion Collider at Jlab", S. Abeyratne, B. Erdelyi, S.L. Manikonda, PAC-2011, New York.
- "An accumulator/Pre-Booster for the Medium-Energy Electron Ion Collider at Jlab", B. Erdelyi, S. Abeyratne, Y.S. Derbenev, G.A. Krafft, Y. Zhang, S.L. Manikonda, P.N. Ostroumov, PAC-2011, New York.
- "Formation of Beams in the Ion Accelerator Complex of the Medium Energy Electron Ion Collider Facility at Jlab", S.L. Manikonda, P.N. Ostroumov, B. Erdelyi, IPAC-12, New Orleans.
- "An improved transfer map approach to longitudinal beam dynamics", B. Erdelyi, S. Manikonda, P.N. Ostroumov, Nuclear Instruments and Methods in Physics Research A694 (2012) 147–156.

JLEIC Ion Injector Design & Simulations

DOE-NP EIC R&D PI Meeting, Oct. 20th, 2017

Recent Developments (FY15-17)

JLEIC Ion Injector Design & Simulations

Conceptual Design for the JLEIC Ion Injector Linac

Two RFQs: One for light ions $(A/q \sim 2)$ and one for heavy ions $(A/q \sim 7)$

• Different emittances and voltages for polarized light ions and heavy ions

□Separate LEBTs and MEBTs for light and heavy ions

□RT Structure: IH-DTL with FODO Focusing Lattice

 \circ FODO focusing \rightarrow Significantly better beam dynamics

□SRF Linac made of QWR and HWR, based on recent ANL developments

Stripper section for the heavy-ions

□Pulsed Linac: up to 10 Hz repetition rate and ~ 0.5 ms pulse length

JLEIC Ion Injector Design & Simulations

Start-to-end Linac Simulations: Polarized Deuterons

No beam loss over the whole linac (10k particles) \rightarrow Avoid neutron activation

JLEIC Ion Injector Design & Simulations

DOE-NP EIC R&D PI Meeting, Oct. 20th, 2017

Extension / Upgrade to full Baseline Design Energy

Effective Voltage vs. Beta

Effective Voltage vs. Beta

> Same type of HWR still efficient \rightarrow No need for a new cavity type

JLEIC Ion Injector Design & Simulations

Publications ...

- "Pulsed SC Ion Linac as an Injector to Booster of Electron Ion Collider", P.N. Ostroumov, Z.A. Conway, B. Mustapha, B. Erdelyi, Proc. of SRF-2015, Vancouver, Canada, September 2015
- "Design and Beam Dynamics Studies of a Multi-Ion Linac Injector for the JLEIC Ion Complex", P. Ostroumov et al, Proceedings of Hadron Beams 2016 Workshop (HB-2016), Malmo, Sweden, July 3-8, 2016.
- "Design of the Room-Temperature Front-End for a Multi-Ion Linac Injector", A. Plastun, B. Mustapha, Z. Conway and P. Ostroumov, Proceedings of NAPAC-2016, October 9-14, Chicago, Illinois.

Status of the JLEIC Ion Injector Linac

JLEIC Ion Injector Design & Simulations

Status of the JLEIC Ion Injector Linac Design

□ We have developed designs for all sections of the linac

- $_{\odot}$ Two RFQs: One for light ions (A/q ~ 2) one for heavy ions (A/q ~ 7)
- $_{\odot}$ Separate LEBTs and MEBTs for light and heavy ions
- IH-DTL with FODO Focusing Lattice
- SRF Linac made of QWR and HWR
- Stripper section for the heavy-ions (in progress)

Brief overview of the different linac sections ...

B. Mustapha THE UNIVERSITY OF CHICAGO
US. DEPARTMENT OF Senters of the University JLEIC Ion Injector Design & Simulations

Ion Sources

Polarized Light Ions: Desired vs. Available H-/D- beams (A. Sy & V. Dudnikov)

	(units)	Desired value	ABPIS ⁺	OPPIS*
Charge state		H-/D-	H-/D-	H-/D-
Pulse current	mA	2	3.8	4 (0.7)
Pulse length	ms	0.5	0.17	(0.3)
Polarization	%	100	91	85

□ Heavy ions: ECR + Chopper or pulsed EBIS may be used

lons	A / Q	Source	Current, mA	Emittance, π∙mm∙mrad
²⁰⁸ Pb ³⁰⁺	~ 7	ECR	0.5	0.5

LEBTs Design: Light and Heavy ions LEBT

THE UNIVERSITY OF Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC. CHICAGO

18

RFQs: Light and Heavy ions

- ✓ Light-Ion RFQ is designed for polarized beams with 2π mm mrad normalized transverse emittance
- Heavy-Ion RFQ is designed for ion with A/q \leq 7 with **0.5** π mm mrad normalized transverse emittance

Light ion Heavy ion Parameter Units MHz 100 Frequency 15 - 500 Energy range 10 - 500 keV/u 2 Highest - A/Q 7 Length 5.6 2.0 m Average radius 3.7 7.0 mm Voltage 70 103 kV Transmission 99 99 % Quality factor 6600 7200 RF power consumption 210 kW 120 (structure with windows) Output longitudinal 4.5 π keV/u ns 4.9 emittance (Norm., 90%)

JLEIC Ion Injector Design & Simulations

Choice of RFQ Structure

4-Rod

RIKEN RFQ

4-Vane window coupled

Flexible design

ATLAS RFQ

4-Vane

SPIRAL-2 RFQ

Large diameter

High power consumption

> 4-vane bolted or brazed structure (windows or not ...)

B. Mustapha THE UNIVERSITY OF CHICAGO JLEIC Ion Injector Design & Simulations

Choice of IH Structure

- Most efficient
- Small acceptance
- Largest acceptance
- Less efficient

- Large acceptance
- Good efficiency

> IH-DTL with FODO: Larger acceptance for polarized light ions

B. Mustapha THE UNIVERSITY OF CHICAGO
US. Department of Migonie National Laboratory is a US. Department of Energy Biography Chicago Approve. LLC JLEIC Ion Injector Design & Simulations

IH – DTL with FODO Focusing

✓ 3 Tanks – 20 Quadrupoles in FODO arrangements

- ✓ Energy gain: 0.5 4.9 MeV/u = 30.5 MeV
- ✓ Total length: 4.3 + 3.5 + 3.4 m = 11.2 m
- ✓ Real-estate accelerating gradient: 2.72 MV/m
- ✓ RF Power losses: 280 + 400 + 620 = 1.3 MW

B. Mustapha THE UNIVERSITY OF CHICAGO CHICAGO JLEIC Ion Injector Design & Simulations

DOE-NP EIC R&D PI Meeting, Oct. 20th, 2017

SRF Section: QWR, HWR, Stripper for heavy ions

B. Mustapha THE UNIVERSITY OF CHICAGO
U.S. DEFARTMENT OF LS. Department of Energy laboratory is a U.S. Department of Energy laboratory S. Department of Energy laboratory Magnone. LABORATORIAN CONTRACTORING Magnone. LABORATORIAN CONTRACTORIAN CONTRACTORISTICS AND CONTRACTORISTS AND CONTRACTO JLEIC Ion Injector Design & Simulations

High-Performance QWRs Developed at ANL for ATLAS

CW mode: A 72 MHz β=0.07 QWR can deliver 4 MV voltage (E_{peak}~64 MV/m, B_{peak}~90 mT)
 JLEIC: Pulsed operation of 100 MHz β=0.15 QWRs @ 4.7 MV per cavity (5.5 MV possible)

B. Mustapha The UNIVERSITY OF CHICAGO JLEIC Ion Injector Design & Simulations

DOE-NP EIC R&D PI Meeting, Oct. 20th, 2017

Argonne 🕰

High-Performance HWRs Developed at ANL for PXIE

FNAL - 162 MHz HWR

SC section will operate at 4.5K in pulsed mode

CW mode: A 162 MHz β =0.11 HWR can deliver 3 MV voltage (E_{peak}~68 MV/m, B_{peak}~72 mT) JLEIC: Pulsed operation of 200 MHz β =0.3 HWRs @ 4.7 MV per cavity (6.6 MV possible)

B. Mustapha E UNIVERSITY OF Argonne National Laboratory is a U.S. Department of Energy laborator managed by UChicago Argonne, LLC CHICAGO

JLEIC Ion Injector Design & Simulations

ANL Supported LDRD

Alternative Design Approach for JLEIC Ion Complex

- The Electron Storage Ring and Ion Collider Ring are stacked vertically
- Ion injection from the booster (e-ring) to the ion collider ring is a vertical bend

B. Mustapha THE UNIVERSITY OF CHICAGO
CHICAGO
Actional Laboratory is a CHICAGO
CHICAGO JLEIC Ion Injector Design & Simulations

A More Compact Booster Ring

N. of Quads 95 40 Total N. of Magnets 64 131 **Total Length** 234 120

At 3 GeV, figure-8 is not required, spin correction with Siberian snakes

Design Parameters

Parameter	Octagonal
Circumference, m	120
Arc length, m	6.7
Straight section length, m	8.3
Maximum β _x	15.3
Maximum β _v	21.0
Maximum dispersion	4.2
β_x at injection	6.0
Normalized dispersion at	1.71
injection: D/√β _x	
Tune in X	3.01
Tune in Y	1.18
Gamma transition	4.7
Gamma at extraction (3 GeV)	4.22
Momentum compaction factor	0.045
Number of quadrupoles	40
Quadrupole length, m	0.4
Quadrupole half aperture, cm	5
Maximum quadrupole field, T	1.5
Number of dipoles	24
Dipole bend radius, m	8
Dipole angle, deg	15
Dipole full gap, cm	5
Maximum dipole field	1.6

JLEIC Ion Injector Design & Simulations

E-Ring As Large Booster for the lons -Added Accelerating / RF Sections for lons

Ion RF sections were inserted in the straight sections, across from electron RF
 Proton beam optics studied at the injection energy of 3 GeV

B. Mustapha THE UNIVERSITY OF CHICAGO CHICAGO CHICAGO **JLEIC** Ion Injector Design & Simulations

Characterization of Pulsed Operation of QWRs & HWRs

QWRs & HWRs

- $\circ~$ Needed for the ion injector linac for acceleration in the range of β from 0.1 to 0.5
- Currently produced QWRs and HWRs are operating in continuous wave (cw) mode

Operation in pulsed mode

- Required for JLEIC
- Reduces cryogenic refrigeration requirements
- Increases resonator operating gradient
- Issue: dynamic mechanical deformation leading to detuning

Needs to be tested/characterized ...

B. Mustapha THE UNIVERSITY OF CHICAGO CHICAGO CHICAGO CHICAGO CHICAGO

Publications ...

- "A More Compact Design for the JLEIC Ion Pre-Booster Ring", B. Mustapha, P.N. Ostroumov and B. Erdelyi, Proceedings of NAPAC-2016, October 9-14, 2016, Chicago, Illinois.
- "An Alternative Approach for the JLEIC Ion Accelerator Complex", B. Mustapha, P. Ostroumov, A. Plastun, Z. Conway, V. Morozov, Y. Derbenev, F. Lin and Y. Zhang, Proceedings of NAPAC-2016, October 9-14, 2016, Chicago, IL.
- "Adapting the JLEIC Electron Ring for Ion Acceleration", B. Mustapha, J. Martinez Marin, Z. Conway, P. Ostroumov, F. Lin, V. Morozov, Y. Derbenev and Y. Zhang, Proceedings of IPAC-2017, May 14-19, 2017, Copenhagen, Denmark.

Proposed Future Work

JLEIC Ion Injector Design & Simulations

Future Work: Beam Simulation & Benchmarking

- Use and build upon the recent simulation features added to the COSY and TRACK code specifically developed for application to the EIC
- These tools differ from the software being used at both JLab and BNL and could be effectively used for independent code-code and code-data benchmarking
- These tools include
 - Longitudinal beam dynamics for beam formation schemes
 - Space charge effects and nonlinear beam dynamics
 - Spin tracking for electrons and light ions (built-in in COSY)
- The developed beam simulation tools could be used for either the JLEIC or eRHIC concepts, for either electron or ion beams. (priority rows # 4, 12 & 37 in Jones Report)

Summary

We have completed the conceptual design for the JLEIC multi-ion injector linac

- ☐ The design is optimized in terms of both performance and costefficiency – It includes a RT front-end followed by a SRF linac
- Optimization of beam dynamics and fine tuning of the linac parameters with the rest of the accelerating chain is underway ...
- □ Stripping for heavy ions & spin tracking for light ions is next ...
- Future work will focus on beam simulations and benchmarking, taking advantage of already existing tools and new developments

These tools will be instrumental for code-code and code-data benchmarking …

JLEIC Ion Injector Design & Simulations

