DOE-NP Accelerator R&D PI Meeting

P. Adderley, D. Bullard, J. Grames, J. Hansknecht, C. Hernandez-Garcia, Md. Abdullah Mamun, <u>M. Poelker</u>, M. Stutzman, R. Suleiman, S. Zhang

Students: W. Liu, Y. Wang

DOE Headquarters, Germantown 11/14/2016

RECENTLY FUNDED PROJECTS

- 500kV DC High Voltage Inverted Gun with Load-locked CsK₂Sb Deposition Chamber - Research and Development for Next Generation Nuclear Physics Accelerator Facilities (LAB 12-632) and (LAB 14-1082)
- New Photocathode Materials for Electron Ion Colliders - Research and Development for Next Generation Nuclear Physics Accelerator Facilities (LAB 12-632) and (LAB 14-1082)
- Cryo-Pumped DC High Voltage Polarized Electron Source - Small Project, DOE Office of Nuclear Physics, (LAB 10-339)

RECENTLY FUNDED PROJECTS

- 500kV DC High Voltage Inverted Gun with Load-locked CsK₂Sb Deposition Chamber - Research and Development for Next Generation Nuclear Physics Accelerator Facilities (LAB 12-632) and (LAB 14-1082)
- New Photocathode Materials for Electron Ion Colliders - Research and Development for Next Generation Nuclear Physics Accelerator Facilities (LAB 12-632) and (LAB 14-1082)
- Cryo-Pumped DC High Voltage Polarized Electron Source - Small Project, DOE Office of Nuclear Physics, (LAB 10-339)

RECENTLY FUNDED PROJECTS

Summary of expenditures by fiscal year (FY):

\$к	FY10+FY11	FY12+FY13	FY14+FY15	FY16	Totals
a) Funds allocated		\$116.0			\$116.0
b)Actual costs to date		\$116.0			\$116.0

LAB 12-632 & LAB 14-1082 - 500kV DC High Voltage Inverted Gun with Load-Locked Csk₂sb Desposition Chamber

\$K	FY10+FY11	FY12+FY13	FY14+FY15	FY16	Totals
a) Funds allocated		\$44.0			\$44.0
b)Actual costs to date		\$44.0			\$44.0

LAB 12-632 & LAB 14-1082 - New Photocathode Materials for Electron Ion Colliders (used by W&M for plasmonic photocathode studies)

\$K	FY10+FY11	FY12+FY13	FY14+FY15	FY16	Totals
a) Funds allocated	\$362.0				\$362.0
b)Actual costs to date	\$361.6				\$361.6

LAB 10-339 - Cryo-Pumped DC High Voltage Polarized Electron Source

To extend the "inverted gun" geometry design, to operate at higher voltage, for high bunch charge and high average current EIC cooling applications

To design a photocathode test stand to measure QE and polarization of new photocathode materials that might help EIC

To improve photogun vacuum and thereby improve lifetime of polarized electron sources, particularly at mA current, i.e., eRHIC

The CEBAF - ILC Inverted Gun

- Load-locked GaAs polarized photogun
- 130 kV at CEBAF, 200 kV at Injector Test Stand
- Gun Vacuum ~ low 10⁻¹² Torr

500 KV Photogun?

Building the 500 kV Gun

• Start with "dummy" electrodes and test different insulators and cathode screening electrode

Insulators and Screening electrode

- Longer R30 insulators, conventional alumina
- Short R28 insulator, bulk resistivity, mildly conductive
- Longer R30 insulator, bulk resistivity, mildly conductive
- ZrO-coated R30 insulator, also mildly conductive
- dummy electrode with a screening electrode (shed)

BREAKDOWN AT CABLE/INSULATOR INTERFACE

• Problems at the cable junction, atmosphere side

 Note: Field emission was managed via kryptonprocessing. i.e., voltage first applied with ~10⁻⁵ Torr krypton added to gun chamber

SUMMARY OF TESTS

• Two and 1/2 configurations reached our voltage goal

Insulator type	Length (cm)	Transversa1	Dielectric	Maximum	
insulator type		resistivity	constant	voltage	Performance
		(Ohm-cm)	ϵ_1/ϵ_0	(kV)	
R30 sample 1	20	5.0x10 ¹⁵	9.1	329	Breakdown and puncture near high voltage end
R30 sample 2	20	5.0x10 ¹⁵	9.1	300	Breakdown
R30 with					370 kV with krypton 4-hr soak,
additional screening electrode	20	5.0x10 ¹⁵	9.1	375	350 kV in vacuum 4-hr soak.
					Significant field emission in both cases
R30 ZrO-coated	20	5.0x10 ¹⁵	9.1	340	Breakdown and puncture near ground end
R28 doped	13	7.4×10 ¹⁵	8.4	360	360 kV with krypton 1-hr soak, 350kV in vacuum 5-hr soak, 2 times Minimal field emission in both cases
R30 doped	20			360	Breakdown originating at high voltage end and puncture near ground end

LINEAR POTENTIAL DROP

Want a linear potential gradient along length of the insulator

• Note - POISSON does not accurately model the mildly-conductive feature of the black insulator

• Combine the two features that provided incremental success: screening electrode and doped black R30 insulator

The gap between shed and insulator

CSK₂Sb deposition Chamber

- Effusion source, compact, high capacity
- Contains both Cs and K species, co-deposition
- Photocathodes grown on stalks

Distinguishing QE Drop due to Contamination

- Systematic decrease in QE at RT in repeated cooling events
- Considerable increase in water partial pressure during brief heating was observed
- **Rejuvenation of QE** by brief heating at 170-200 °C was consistently observed in the non-baked system which can be considered as a **signature of water adsorption**

Reproducible QE - Cryocooled Photocathode

- The QE at RT did not show any decrease between repeated cooling events
- **QE at Liquid N**₂ temperature (77 K) showed **similar QE every time** it was cooled
- Initial QE rise due to stoichiometric optimization
- We did our spectral response and temperature analysis from this phocathode.

Depo Chamber at Gun Test Stand

Always something to fix: Valve between gun and depo chamber leaked, working distance between puck and chemical sources too large, no mask to limit active area

300 kV Inverted Gun and CsK₂Sb Photocathode

Learning how to use the new photocathode

500 KV Gun

500 KV Gun

Barrel-Polished Electrodes

- Gun electrodes traditionally polished using sand paper and diamond paste
- Tedious process, takes about 30 days to complete
- Now performed in 1 day using SRF barrel polishing machine

From machine shop

Work by Don Bullard

30 minutes with corncob

30 minutes with plastic cones

Slide 21

MAGNETIZED BEAM TESTS

Fixed the gun and deposition chamber, added solenoid

350 kV Gun at Injector Test Facility

Old and New inverted guns Vacuum low 10⁻¹² Torr Working on the beamline now

kV beamline at Injector Test Facility

Plan Z

- Our plan to reach 500 kV
- Combination of long doped insulator and shed, SF6 and epoxy receptacle
- And likely a different vacuum chamber

- r2 = 2.5 cm
- r3 = 9.5 cm
- 3 mm gap

Work of Yan Wang

Plan Z

- We have the big insulators
- Cables in Receptacles: very reliable
- Receptacles in SF6: very reliable
- Use cold SF6 to remove heat from photocathode

Thank You

- Will continue to work on 500 kV inverted gun, CsK₂Sb deposition chamber (and Cryopumped gun)
- Magnetized beam tests
- We can revisit high current (mA) lifetime tests with polarized beam but need support