Transfer Reactions on Unstable Nuclei for Nuclear Science Applications

D. W. Bardayan (ORNL),

- M. S. Smith(ORNL),
- J. A. Cizewski(Rutgers),

S. D. Pain(ORNL)

Motivation

- Fully realize nucleon transfer reactions for diagnosing the physics of high-temperature thermonuclear burning.
- Provide an empirical foundation for indirect determinations of neutron fluxes in extreme thermonuclear environments including
 - internal confinement fusion capsules,
 - nuclear devices,
 - nuclear reactor fuel rods,
 - and even exploding stars.
- The determination of such fluxes can give invaluable clues to the mechanisms of these extreme events that are so important for the energy independence and security of our Nation.
- Need to understand structure and reactions on radioactive neutron-rich nuclei.

Internal Confinement Fusion at NIF showing capsule of doped Be for diagnostics

Unique neutron-rich unstable beams for transfer

ORNL has capability - **unique in world** - to produce neutron-rich nuclei in or near the r-process path and measure transfer reactions with them

Project included 3 components to greatly improve ability to study single-nucleon (d,p) reactions in inverse kinematics.

(3) A beam buncher to produce pulsed (~1 ns width) beams at HRIBF.

Requirements of the Oak Ridge Rutgers University Barrel Array (ORRUBA)

Y

Oak Ridge Rutgers University

Barrel Array (ORRUBA)

- ORRUBA gives ~80% ϕ coverage over the range 47° \rightarrow 132°
- 2 rings $-\theta < 90^{\circ}$: 12 telescopes (1000 μ m R + 65 μ m NR)

 $-\theta$ > 90°: 12 detectors (500µm R)

- 324 channels total (288 front side, 36 back side)
- HI beam
- Deuterated plastic targets

ORRUBA Detector Design

Multiple Disadvantages of Charge Division

C – Uncertain energy and position calibrations – Must float detectors in space by several millimeters to match observed data kinematics

SUPER ORRUBA

National Lebanatory

Mechanical Design by Surrey Grad Student Stephen Hardy (March 2011)

12 Managed by UT-Battelle for the U.S. Department of Energy

Varianal Lebamory

ASICs (Washingon U. Collaboration)

Implemented at ORNL by T. Ahn (U. Tenn.), R. L. Varner(ORNL) and M. Matos (LSU)

14 Managed by UT-Battelle for the U.S. Department of Energy

Pational Laboratory

²H(⁸⁰Ge,p)⁸¹Ge Run – April 2011

⁸⁰Ge

Comparison of elastic scattering results

ORRUBA

SuperORRUBA

National Lebustury

²H(¹³⁰Te,p)¹³¹Te – July 2011

17 Managed by UT-Battelle for the U.S. Department of Energy

First Beam Tests done with $^{10}Be/^{10}B$ beam – July 2010

Project (3) – Nanosecond Beam Buncher

•Particle identification of detected charged particles can be determined via time of flight.

(d,p) proton – 1.8 ns
Elastically scattered protons – 5.8 ns
Elastically scattered deuterons – 8.1 ns

•Beam bunches ~ 1 ns would provide enough resolution to resolve these groups.

Simulations have been performed with sinusoidal varying fields.

Achieved bunches of 0.4 ns width with 53% efficiency at a focal length of 5 m from the buncher for a ¹³²Sn beam.

Budget

	Budgeted (3 years)	Spent (1.75 years)
Labor (S. D. Pain, D. W. Bardayan, M. S. Smith)	\$ 870 K	\$ 385 K
Postdocs	\$ 250 K	\$ 66 K
SuperORRUBA	\$ 494 K	\$ 441 K
Ionization Counter	\$ 80 K	\$ 47 K
Beam Buncher	\$ 150 K	\$ 31 K
Subcontract – Jolie Cizewski	\$ 56 K	\$ 7 K
Total	\$ 1900 K	\$ 977 K (51% spent)

Participants

- D. W. Bardayan, K. Y. Chae, B. H. Moazen,
- S. D. Pain, M. S. Smith (ORNL)
- J. C. Blackmon, L. Linhardt, M. Matos (LSU)
- A. Ayres, T. Ahn, K. Schmitt (U. Tenn.)
- J. A. Cizewski, S. Strauss (Rutgers)
- S. Hardy (U. Surrey)

