The Fundamental Neutron Physics Beamline at the Spallation Neutron Source

Update

Geoffrey Greene University of Tennessee/Oak Ridge National Laboratory

SNS-03671-2005

The Spallation Neutron Source at ORNL www.sns.gov

Drift Tube Linac

• System includes 210 drift tubes, transverse focusing via PM quads, 24 dipole correctors, and associated beam diagnostics

Coupled-Cavity Linac

• System consists of 48 accelerating segments, 48 quadrupoles, 32 steering magnets and diagnostics

Superconducting Linac

- 11 Medium β cryomodules
- 12 High β cryomodules
- Cavities exceed gradient specifications

Target, Reflectors, and Moderators

Proton beam power on target	1.4 MW
Proton beam kinetic energy on target	1.0 GeV
Average beam current on target	1.4 mA
Pulse repetition rate	60 Hz
Protons per pulse on target	1.5x10 ¹⁴ protons
harge per pulse on target	24 µC
Energy per pulse on target	24 kJ
roton pulse length on target	695 ns
on type (Front end, Linac, HEBT)	H minus
verage linac macropulse H- current	26 mA
inac beam macropulse duty factor	6 %
Front end length	7.5 m
nac length	331 m
EBT length	170 m
ing circumference	248 m
TBT length	150 m
n type (Ring, RTBT, Target)	proton
ing filling time	1.0 ms
ing revolution frequency	1.058 MHz
umber of injected turns	1060
ing filling fraction	68 %
ing extraction beam gap	250 ns
aximum uncontrolled beam loss	1 W/m
irget material	Hg
umber of ambient / cold moderators	1/3
umber of neutron beam shutters	18
nitial number of instruments	5

Spallation Neutron Source Primary Parameters

Originally Projected SNS Operational Ramp-Up

Source: SNS Project

First SNS beam on target - April 2006

Originally Projected SNS Operational Ramp-Up

Source: SNS Project

SNS ran at ≥500kW during 2nd half of FY2008

SNS is the Highest Power Pulsed Neutron Source in the World.

One Beamline has been allocated for Nuclear Physics

Brief FNPB Project History

1989-2002		Three successive NSAC Long Range Plans identify research
		with Cold and Ultracold Neutrons as important opportunities.
Nov	1999	DOE begins construction of SNS
April	2002	Proposal for a nuclear physics beamline submitted to SNS.
April	2002	Proposal for funding submitted to DOE NP.
Oct	2002	SNS Science Advisory Subcommittee (Peoples) Review
March	2003	Formal Allocation of Beamline by SNS for FNPB.
April	2003	NSAC Sub-Committee (Tribble)
May	2003	NSAC Sub-Committee recommends construction of
-		Fundamental Neutron Physics beamline at the SNS.
Aug	2003	DOE Issues Critical Decision 0 (Mission Need)
Nov	2003	DOE NP project review
Dec	2003	DOE Issues Critical Decision 1 (Cost Range)
May	2004	Preliminary Design Review
Jun/Jul	2004	External Independent Review (EIR)
Aug	2004	DOE Issues Critical Decision 2 (Performance Baseline).
Aug	2004	DOE Issues Critical Decision 3a (Long lead Procurement).
Feb	2004-8	Annual DOE Project Review
April	2006	Completion of SNS Construction Project.
Dec	2007	NSAC Long Range Plan reiterates interest in Fundamental Symmetries
Sept	2008	Completion of "Cold Beamline" (projected)
June	2010	Completion of "UCN Beamline" (baseline)

Red indicates substantive review

<u>The DOE-NP Investment in the FNPB</u> <u>is "Heavily Leveraged"</u>

The FNPB M.I.E. is a \$9.2M DOE construction project.

DOE Basic Energy Sciences invested \$1.4G for the construction of the SNS.

DOE Basic Energy Sciences pays for the operation of the accelerator and the neutron production target ~\$120M/y

Averaged over a period of 10-15 years and over 15-20 beamlines, this represents an investment of >\$100M (2\$10M/y) by BES for nuclear physics at the SNS.

FNPB Project includes only the Neutron Beam Facility

The Fundamental Neutron Physics Beam M.I.E. includes only the construction of the neutron beams and the infrastructure that allows the installation of experiments.

Funding for experiments is done independently of the Beamline Construction Project.

Individual experiments are selected by a proposal driven, peer review process operated by ORNL Physics Division under the auspices of the SNS.

The FNPB has its own Proposal Review and Advisory Committee* to advise Physics Division and SNS Management on programmatic issues.

*B. Filippone, J. Nico, M. Ramsey-Musolf, A. Steyerl, R. Tribble (chair), F. Wietfeldt

SNS Fundamental Neutron Physics Program

1. Accurate measurement of parameters that describe the beta decay of the free neutron (i.e. Lifetime, Decay Correlations)

- Universality of the Weak Interaction (Unitarity of CKM Matrix)
- Extensions to the Standard Model (RH currents, new couplings,..)
- Big Bang Nucleosynthesis and Cosmic Elemental Abundances
- Stellar Astrophysics
- ...
- 2. Precision measurement of parity violation in the interaction low energy neutrons with "simple" nuclear systems (i.e. n-p, n-d, n-α)
 - Quark-Quark Weak Interaction
 - QCD in the strongly interacting limit

3. Search for a non-zero permanent neutron electric dipole moment

- Origin of CP and T violation
- Cosmic Baryon Asymmetry
-

Two Classes of Fundamental Experiments

1. Cold Neutron, Broad Band (beta decay, hadronic weak studies) Optimal Beam:

> Large X-section (10x12 cm²), Large Divergence (> m=3 supermirror) Broad Wavelength Band (short flight path ~15m)

2. Monochromatic Beam at 8.9Å for Ultra Cold Neutrons (EDM) Optimal Beam:

> Large X-section (~10x12 cm²), Large Divergence (> m=3 supermirror) Long Flight Path (~40m) Low Background Experimental Area

The FNPB has two independent neutron beamlines

FNPB Cold Beam experimental Area

FNPB Ultra Cold Beam External Building

Beamline 2 external building

Ten proposals have been received and reviewed

FNPB Beamline Characterization and Commissioning (SNS, ORNL, LANL, IUCF, NCSU,...)

Determination of τ_n Lifetime Using Magnetically Trapped UCN (Harvard, NIST, NC State)

Measurement of "a" & "b" Correlations in Neutron Beta Decay (U of Va., ORNL, LANL, Indiana, UNH, Tennessee...)

Measurement of "a, b, B, A" Correlations in Neutron Beta Decay (LANL, Indiana, Michigan, NIST, ORNL, UNH, Tennessee...) Measurement of "A+B" Correlation in Neutron Beta Decay (Michigan, Indiana, NIST, ORNL, UNH,...)

Measurement of Parity Violation in n-p Capture (LANL, Indiana, Manitoba, ORNL, Kentucky, Tennessee...)
Measurement of Parity Violation in n-d Capture (LANL, Indiana, Manitoba, NIST, Berkeley, ORNL,...)
Precise Measurement of Neutron Spin Rotation in H₂ and He (Indiana, Washington, NIST, NC State, Indiana, ORNL,...)
Proton Asymmetry in n+3He capture (Indiana, Washington, NIST, NC State, Indiana, ORNL,...)

New Search for an Electric Dipole Moment (LANL, Caltech, Berkeley, ORNL, NC State, Illinois, MIT, BU...)

Ten proposals have been received and reviewed

FNPB Beamline Characterization and Commissioning (SNS, ORNL, LANL, IUCF, NCSU,...)

Determination of τ_n Lifetime Using Magnetically Trapped UCN (Harvard, NIST, NC State)

Measurement of "a" & "b" Correlations in Neutron Beta Decay (U of Va., ORNL, LANL, Indiana, UNH, Tennessee...)

Measurement of "a, b, B, A" Correlations in Neutron Beta Decay

(LANL, Indiana, Michigan, NIST, ORNL, UNH, Tennessee...)

Measurement of "A

(Michigan, Indian >100 Distinct Participants

Measurement of Par >30 Different Institutions

(LANL, Indiana, Maniroba, ORINE, Kenrucky, Tennessee...) Measurement of Parity Violation in n-d Capture (LANL, Indiana, Manitoba, NIST, Berkeley, ORNL,...) Precise Measurement of Neutron Spin Rotation in H₂ and He (Indiana, Washington, NIST, NC State, Indiana, ORNL,...) Proton Asymmetry in n+3He capture

(Indiana, Washington, NIST, NC State, Indiana, ORNL,...)

New Search for an Electric Dipole Moment

(LANL, Caltech, Berkeley, ORNL, NC State, Illinois, MIT, BU...)

Ten proposals have been received and reviewed

FNPB Beamline Characterization and Commissioning (SNS, ORNL, LANL, IUCF, NCSU,)	Approved	
Determination of T _n Lifetime Using Magnetically Trapped UCN (Harvard, NIST, NC State)	Approved	
Measurement of "a" & "b" Correlations in Neutron Beta Decay (U of Va., ORNL, LANL, Indiana, UNH, Tennessee)	Approved	
Measurement of "a, b, B, A" Correlations in Neutron Beta Decay (LANL, Indiana, Michigan, NIST, ORNL, UNH, Tennessee)	Deferred	
Measurement of "A+B" Correlation in Neutron Beta Decay (Michigan, Indiana, NIST, ORNL, UNH,)	Deferred	
Measurement of Parity Violation in n-p Capture (LANL, Indiana, Manitoba, ORNL, Kentucky, Tennessee)	Beam Allocated	
Measurement of Parity Violation in n-d Capture (LANL, Indiana, Manitoba, NIST, Berkeley, ORNL,)	Deferred	
Precise Measurement of Neutron Spin Rotation in H ₂ and He (Indiana, Washington, NIST, NC State, Indiana, ORNL,)	Deferred	
Proton Asymmetry in n+ ³ He capture (Indiana, Washington, NIST, NC State, Indiana, ORNL,)	Approved	
New Search for an Electric Dipole Moment	Approved UCN Beam	

(LANL, Caltech, Berkeley, ORNL, NC State, Illinois, MIT, BU...)

The NPDGamma Experiment

The $n+p \rightarrow d+\gamma$ completed data collection at LANSCE in 2006.

Polarizer, Field Coils, Spin Flipper, & Detector

H₂ Safety System

Liquid H₂ Target

H₂ Vent Stack

The NPDGamma Experiment

The NPDGamma Experiment – Vent System

The NPDGamma Experiment – Shield Roof and Mezzanine

The NPDGamma Experiment – Vent Line Routing

FNPB Construction

SNS Target "Monolith"

FNPB Neutron Guide (Shutter)

Insertion of Upstream Neutron Guide

SNS Experimental Hall

FNPB Chopper Housing #1

Shielding Seismic Tie-Downs

FNPB 1st Level Shielding

FNPB 2nd Level Shielding

FNPB Cold and Ultra Cold Beam Line Installed

FNPB Cold Neutron Beamline

Photo – Feb 2007

FNPB 3rd Level Shielding Installation

Chopper Installation

Shield Walls

Roof Panels

Excavation of Magnet Pit

Magnet Pit Non-Magnetic Rebar

FNPB Magnet Pit

Anticipated Schedule

Commissioning of FNPB Cold Guide	Sept	2008
1st beam to npdgamma	Spring	2009
Cold Beam Operation with LH2	Summer	2009
UCN (EDM) Building available	Late Summer	2009

End of Presentation