

The nEDM Project

Martin Cooper Co-spokesperson, CPM Los Alamos National Laboratory

NSAC Meeting

Crystal City, VA

August 21, 2008

nEDM Collaboration

Ann Rev 8/20/08 #2

R. Alarcon, S. Balascuta, L. Baron-Palos Arizona State University, Tempe, AZ, USA D. Budker, A. Park University of California at Berkeley, Berkeley, CA 94720, USA G Seidel Brown University, Providence, RI 02912, USA A. Kokarkar, V. Logashenko, J. Miller, L. Roberts Boston University, Boston, MA 02215, USA J. Boissevain, R. Carr, B. Filippone, R. McKeown, M. Mendenhall, R. Schmid California Institute of Technology, Pasadena, CA 91125, USA M. Ahmed, W. Chen, H. Gao, X. Qian, Q. Ye, W.Z. Zheng, X. F. Zhu, X. Zong Duke University, Durham NC 27708, USA F. Mezei Hahn-Meitner Institut, D-14109 Berlin, Germany C.-Y. Liu, J. Long, H.-O. Meyer, M. Snow Indiana University, Bloomington, IN 47405, USA L. Bartoszek, D. Beck, P., Chu, A. Esler, J.-C. Peng, S. Williamson, J. Yoder University of Illinois, Urbana-Champaign, IL 61801, USA C. Crawford, T. Gorringe, W. Korsch, B. Plaster University of Kentucky, Lexington KY 40506, USA

B. Bourque, S. Clavton, M. Cooper, M. Espy, R. Hennings-Yeoman, T. Ito, A. Matlachov, C. Mauger, E. Olivas, J. Ramsey, I. Savukov, W. Sondheim, S. Stanislaus, S. Tajima, J. Torgerson, P. Volegov Los Alamos National Laboratory, Los Alamos, NM 87545, USA E. Beise, H. Breuer University of Maryland, College Park, MD 20742, USA K. Dow, D. Hassel, E. Ihloff, J. Kelsey, R. Milner, R. Redwine, C. Vidal Massachusetts Institute of Technology, Cambridge, MA 02139, USA J. Dunne, D. Dutta Mississippi State University, Starkville, MS 39762, USA F. Dubose, R. Golub, C. Gould, D. Haase, P. Huffman, E. Korobkina, C. Swank, A. Young North Carolina State University, Raleigh, NC 27695, USA V. Cianciolo, S. Penttila Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA M. Havden Simon-Fraser University, Burnaby, BC, Canada V5A 1S6 G. Greene The University of Tennessee, Knoxville, TN 37996, USA S. Lamoreaux, D. McKinsey, A. Sushkov Yale University, New Haven, CT 06520, USA

EST.1943 -

- Introduction to nEDM
- Collaboration Foci

The Permanent EDM of the Neutron

- The current value is < 3 x 10⁻²⁶ e•cm (90% C.L.)
- We hope to obtain roughly < 2 x 10⁻²⁸ e•cm with UCN in superfluid He

Office of Nuclear Physics

Theory and Experiment '50 '68 '84 '05 '16 excluded \leftarrow 0-28 10-32 10-34 10-30 10-36 10⁻³⁸ e-cm Standard model Theory as distributions Cosmology EDM rules out theories SUSY $\Phi \sim \alpha/\pi$ SM leaves room for discovery ght symmetric Strong CP θ parameter Multi-Higgs SUSY GUT **Electro-weak Baryogenesis** An EDM could be seen Results interesting after LHC

Status of EDM Measurements (e-cm)

NSP

Fundamental Particles

n	ILL	$ \mathbf{d}_{\mathbf{n}} $	$< 1.2 \text{ x } 10^{-25}$
	PNPI	$ \mathbf{d}_{\mathbf{n}} $	$< 1.1 \text{ x } 10^{-25}$
	ILL (¹⁹⁹ Hg)	$ \mathbf{d}_{\mathbf{n}} $	$< 3.0 \ge 10^{-26}$
	ILL (No E)	$ \mathbf{d}_{\mathbf{n}} $	$<(1) \times 10^{-27}$
	PSI	$ \mathbf{d}_{\mathbf{n}} $	$<(1) \times 10^{-27}$
	SNS (³ He)	$ \mathbf{d}_{\mathbf{n}} $	$<(2) \times 10^{-28}$
р		$ \mathbf{d}_{\mathbf{p}} $	< 10 ⁻²²
Λ	$\Lambda \rightarrow p\pi^{-}$ assym.	$ \mathbf{d}_{\Lambda} $	$< 1.5 \text{ x } 10^{-16}$
e	g-2	$ \mathbf{d}_{\mathbf{e}} $	$< 4 \times 10^{-16}$
ν	reactor exp.	$ \mathbf{d}_{\mathbf{v}}\mathbf{F}_{3} $	$< 2 \times 10^{-20}$
μ	g-2	$ \mathbf{d}_{\mu} $	$< 7 \times 10^{-19}$
		$ \mathbf{d}_{\mathbf{u}} $	< 10 ⁻²⁴
τ	$\Gamma(Z \rightarrow \tau^+ \tau^-)$	$ \mathbf{d}_{\tau} $	$< 4.5 \text{ x } 10^{-18}$
d	BNL	$ \mathbf{d}_{\mathbf{d}} $	< (10 ⁻²⁷)

Paramagnetic Atoms

H	Lamb	o shift	$ \mathbf{d}_{\rm e} < 2 \mathrm{x} 10^{-13}$
Fe ⁺³	d _{3/2}		$ \mathbf{d}_{\rm e} < 2 \mathrm{x} 10^{-22}$
Rb	5s	$ \mathbf{d}_{\mathrm{a}} < 1.2 \mathrm{ x} \ 10^{-23}$	$ \mathbf{d}_{\rm e} < 5 \ {\rm x} \ 10^{-25}$
Cs	6s	$ \mathbf{d}_{\rm a} < 1.3 {\rm x} 10^{-23}$	$ \mathbf{d}_{\rm e} < 1 {\rm x} 10^{-25}$
Tl	5p _{1/2}	$ \mathbf{d}_{\mathrm{a}} < 1 \mathrm{x} \ 10^{-24}$	$ \mathbf{d}_{\rm e} < 2 \ {\rm x} \ 10^{-27}$

Diamagnetic Atoms

¹²⁹ Xe Wash. d	$ _{a} < 2 x$	10 ⁻²⁶	d _n	< 2 x	10⁻²³
¹⁹⁹ Hg Wash. d	$ _{a} < 2 x$	10⁻²⁸	d _n	< 2 x	10⁻²⁶
²²⁵ Ra ANL d	$ _{a} <$	(10 ⁻²⁶)	d _n	<	(10^{-27})
²²⁵ Ra ANL d	l _a <	(10 ⁻²⁸)	$\mathbf{d}_{\mathbf{n}}$	<	(10^{-29})

Polar Molecules

ſF	Sussex	d _e
PbO	Yale	$ \mathbf{d}_{\mathbf{e}} $
GGG	· IU	$ \mathbf{d}_{\mathbf{e}} $

d _e	$< 4x10^{-25}$	⁵ (10 ⁻²⁸)
d _e	<	(10^{-30})
d _e	<	(10^{-30})

Blue numbers are forecasts

The Need for a Co-magnetometer

Ann Rev 8/20/08 #8

³He-Dopant as an Analyzer

 ${}^{3}\overrightarrow{\text{He}} + \overrightarrow{\text{n}} \rightarrow \text{t} + \text{p}$ $\sigma(\text{parallel}) < 10^{2} \text{ b}$ $\sigma(\text{opposite}) \sim 10^{4} \text{ b}$

UCN loss rate ~ $1 - \overrightarrow{p_3} \cdot \overrightarrow{p_n} = 1 - p_3 p_n \cos(\gamma_n - \gamma_3) B_0 t$ $|\gamma_n - \gamma_3| = |\gamma_n|/10$

³He concentration must be adjusted to keep the lifetime τ reasonable for a given value of the ³He polarization.

The proper value for the fractional concentration $x = Atoms-{}^{3}He/Atoms-{}^{4}He \sim 10^{-10}$.

t + p share 764 keV of kinetic energy.

The emitted light (~3 photons/keV) is in the XUV ~ 80 nm.

A wavelength shifter (TPB) is used to change it to the blue, where it can be reflected and detected. The walls and the wavelength shifter must be made of materials that do not absorb or depolarize neutrons or 3He.

The Signal

+

Determine f_{γ} and δf_{γ} Change in f_{γ} with *E* measures the EDM δf_{γ} determines the sensitivity

Ann Rev 8/20/08 #14

Superthermal Source of UCN

 $\begin{array}{ll} U_{_{\rm W}} & = 200 \ {\rm neV} \\ U_{_{\rm LHe}} & = 20 \ {\rm neV} \end{array}$

Quasi two-level system with single phonon upscattering suppressed by a large Boltzman factor.

 $\tau_{up} \sim 100 \text{ T}^{-7}$ from 2-phonon upscattering

NATIONAL LABORATO

Neutron Guide

- Introduction to nEDM
- Collaboration Foci

- Technical Feasibility
- Preliminary Engineering
- Project Management

R&D Risks

Table 1. R&D Status Arranged by Risk on August 13, 2007			
High Risk			
³ He relaxation time	First measurements made		
Light collection	Test apparatus under construction – on schedule		
Valve material	Vespel identified as a promising candidate		
HV studies to 500 mK	Waiting on the dual-use cryostat		
⁴ He evaporative purification	Test apparatus under construction – on schedule		
³ He injection	Test apparatus under construction – on schedule		
	but will be delayed by the dual-use cryostat		
	Medium Risk		
Scintillation in an electric field	To be done with the HV studies at 500 mK		
Full valve test	Test apparatus under construction – on schedule		
Geometric phase	A follow-on measurement to the 'He relaxation		
Magnetic uniformity	Uniformity improving with each iteration		
Leakage currents on coated	Uncoated acrylic acceptable – Coated tests to be		
acrylic	done with the HV studies at 500 mK		
SQUID's observe 'He S/N	S/N very close to what is needed		
SQUID's & micro-discharges	Requires more work		
Neutron storage time	Delayed by the UCN source		
	Low Risk		
PMT Operation at 4 K	Ordinary tubes show the expected behavior –		
3	coated photocathode measurements to commence		
He tri-coil construction	Nearly ready to ship by industry		
HV studies to 1.8 K	Work complete with improved results		
Electrode material selection	Postponed as lower priority for 3 months		
Laser induced fluorescence	Abandoned as not main stream		
Slow controls	Postponed to 2008 as non-critical		

R&D Risks Updated

Ann Rev 8/20/08 #22

Table 2. R&D Status Arranged by Risk on July 18, 2008		
	High Risk	
HV studies to 500 mK	Waiting on the dual-use cryostat – New and very	
	encouraging results in a small cryostat at 1.8 K	
	Medium Risk	
³ He Transport	Simulations – advanced state – experimental	
	confirmation needed	
Light collection	Propagation test successful, data under analysis	
³ He injection	Test apparatus under construction with several	
	capabilities demonstrated – on schedule but will	
~	be delayed by the dual-use cryostat	
Scintillation in an electric field	To be done with the HV studies at 500 mK	
Leakage currents on coated	Uncoated acrylic acceptable – Coated tests to be	
acrylic	done with the HV studies at 500 mK	
SQUID's & micro-discharges	Requires more work	
Neutron storage time	300 s measured at 150 K - Work postponed	
x 1	Low Risk	
Valve material	Vespel operates for 10,000 cycles –	
	depolarization needs study	
Full valve test	Under rebuild with 1 orlon but just engineering	
Magnetic uniformity	Uniformity improving with each iteration	
He relaxation time	First measurements complete - favorable result	
He evaporative purification	Replaced by known McClintock method	
Geometric phase	Analytic solution minimizes need for	
DMT On anotion at 4 V	Ordinary types show the expected helevier	
PMT Operation at 4 K	ordinary lubes show the expected behavior –	
SOUD's observe 3 He S/N	S/N avagads spacifications by a factor of 5	
Electrode material selection	Postponed as lower priority until after CD 2	
Electione material selection	i osiponeu as lower priority until after CD-2	

.

³He-Spin Relaxation

PMT at 8 K

SQUID Signal-to-Noise

Requirement to match the statistical error from $3He(n,p)t = 26 \mu Hz$ Extrapolation to an 8 gradiometer system and 500 s = 1.2μ Hz

SQUID Gradiometer

Engineering the FnPB UCN Hall

Ann Rev 8/20/08 #27

Ð

Ann Rev 8/20/08 #28

Engineering the Central Detector

- NSP
 - Total DOE funding = \$11,795k
 - Total NSF funding = \$7,450

- Feb 2007 Conceptual Design Approved
- Feb 2009 Technical Feasibility, Preliminary Engineering, Cost and Schedule Baseline Approved
- Aug 2009 Construction Approved
- Jan 2010 Beneficial Occupancy of FnPB UCN Building
- Oct 2015 nEDM Project Completed
 - 2018 First Published Results @ few × 10⁻²⁷ e•cm
- 2020 nEDM Experiment Completed and Published
 @ few × 10⁻²⁸ e•cm

