Searching for v Oscillations with MiniBooNE

W.C. Louis, LANL

- Neutrino Oscillations & the 3 ∆m² Problem!?!
 (Sterile Neutrinos?)
- MiniBooNE: A Definitive Test of the LSND Neutrino Oscillation Signal

 Future Neutrino Experiments: BooNE & OscSNS

Evidence for Oscillations from LSND

Current State of Neutrino Oscillation Evidence

If MiniBooNE Confirms LSND: Physics Beyond the Standard Model & Connections with Astrophysics!

3+2 Sterile Neutrinos	Sorel, Conrad, & Shaevitz (PRD70(2004)073004) Explain Pulsar Kicks? Explain R-Process in Supernovae? Explain Dark Matter?		
MaVaNs & 3+1 Sterile Neutrino	Hung (hep-ph/0010126) Kaplan, Nelson, & Weiner (PRL93(2004)091801) Explain Dark Energy?		
CPT Violation & 3+1 Sterile Neutrino	Barger, Marfatia, & Whisnant (PLB576(2003)303) Explain Baryon Asymmetry in the Universe?		
Quantum Decoherence	Barenboim & Mavromatos (PRD70(2004)093015)		
Lorentz Violation	Kostelecky & Mewes (PRD70(2004)076002) Katori, Kostelecky, Tayloe (hep-ph/0606154)		
Extra Dimensions	Pas, Pakvasa, & Weiler (PRD72(2005)095017)		
Sterile Neutrino Decay	Palomares-Ruiz, Pascoli, & Schwetz (JHEP509(2005)48)		

Probability of Neutrino Oscillations

$$\mathbf{P}_{\alpha\beta} = \delta_{\alpha\beta} - 4\Sigma_{i}\Sigma_{j} \left[\mathbf{U}_{\alpha i} \mathbf{U}^{*}_{\beta i} \mathbf{U}^{*}_{\alpha j} \mathbf{U}_{\beta j} \right] \sin^{2}(1.27\Delta m_{ij}^{2} \text{L/E}_{v})$$

As N increases, the formalism gets rapidly more complicated!

Ν	$#\Delta m_{ij}^2$	$\#\Theta_{ij}$	#CP Phases
2	1	1	0/1
3	2	3	1/3
6	5	15	10/15

MiniBooNE: A Definitive Test of the LSND Evidence for Oscillations: Search for $v_{\mu} \rightarrow v_{e}$

Completely different systematic errors than LSND

Much higher energy than LSND

Blind Analysis

Alabama, Bucknell, Cincinnati, Colorado, Columbia, Embry-Riddle, Fermilab, Indiana, Los Alamos, LSU, Michigan, Princeton, St. Mary's, Western Illinois, Yale

MiniBooNE - A Definitive Test of the LSND Evidence for v Oscillations

- Booster 8 GeV proton beam (5 x 10²⁰ POT/y)
- Target 71 cm Be
- Horn 5 Hz, 170 kA, 143 μs, 2.5 kV, 10⁸ pulses/y
- Decay Pipe 50 m (adjustable to 25 m)
- Neutrino Distance ~ 0.5 km
- $\cdot < E_v > ~ 1 \text{ GeV}$
- $(v_e / v_\mu) \sim 5 \times 10^{-3}$
- Detector 40' diameter spherical tank
- Mass 800 (450) tons of mineral oil
- PMTs 1280 detector + 240 veto, 8" diameter

Inside the MiniBooNE Detector

Hamamatsu 8" PMT

R1408 (1220 from DOE/NP) R5912 (330 from NSF)

#stages = 9 (old) 10 (new)

σ_t ~ 1.7 ns (old) 1.2 ns (new)

peak/valley ~ 1.1 (old) 1.5 (new)

MiniBooNE Highlights

- MiniBooNE began taking data in September 2002 and has collected ~750K neutrino events from ~7E20 Protons on Target; Oscillation analysis will use ~600K events from ~5.7E20 POT
- Experiment is working well (99% livetime & 99% of PMT channels working well)
- Clearly reconstructing CCQE, CCPI+, NCPI0, & NCEL events
- First focussing horn was replaced during 2004 fall shutdown and set a world record of 96M pulses (previous record set at BNL with 13M pulses)
- Now taking data with Antineutrinos (since January)

MiniBooNE Neutrino Events Are Very Clean Neutrino Signal to Cosmic-Ray Background ~ 5000 to 1!

Contained Neutrino Event Visible Energy Distributon

Contained Neutrino Event Angular Distribution

MiniBooNE Neutrino Flux

HARP at CERN E910 at BNL

Extinction Rate for MiniBooNE Marcol 7 Mineral Oil

Wavelength (nm)

Expected MiniBooNE Event Rates

Use NUANCE Cross Section Package

Expectations for 5.7E20 Protons on Target

Expected MiniBooNE Sensitivity

Measurement of Oscillation Parameters

I. CCQE Events $v_{\mu}^{12}C \rightarrow \mu^{-}p^{11}C^{*}$

About 48% of the MiniBooNE events are **CCQE**

MiniBooNE now has one of the largest samples of CCQE events!

Important for v_u Disappearance & v_e Appearance Background

Selection: Single ring event, consistent with a muon

CCQE Energy Distribution

~10% energy resolution

CCQE Angular Distribution

Quasi-Elastic Energy Distribution for Muon Anti-Neutrinos

Not Well Measured at Low Energies

About 31% of the MiniBooNE events are $CC\pi^+$

MiniBooNE now has the world's largest sample of $CC\pi^+$ events!

Important for v_{μ} Disappearance & v_{e} Appearance Background

Selection: Double-ring event with 2 Michel-electrons

CCπ⁺ **Energy Distribution**

$CC\pi^+$ Angular Distribution

III. NC π^{0} Events $\nu_{\mu}^{12}C \rightarrow \nu_{\mu}\pi^{0}^{12}C^{*}$

Contributions from:

Resonance Production

Coherent Production

Selection: Double Ring Event with no Michel-electrons

MiniBooNE NC π^0 **Reconstruction**

MiniBooNE NC π^{0} **Coherent Fraction**

IV. NC Elastic Events $v_{\mu}C \rightarrow v_{\mu}NX$

V. $v_{\mu} \rightarrow v_{e}$ Oscillations $v_{e}^{12}C \rightarrow e^{-}p^{11}C^{*}$

Blind Analysis

On track for results as soon as this summer

Have obtained good agreement between data & MC

Using Boosted Decision Trees for PID

• See NIM A543 (2005) 577 (Roe, Yang, Zhu, Liu, Stancu, McGregor) & NIM A555 (2005) 370 (Yang, Roe, & Zhu) for discussions of Boosted Decision Trees, which give better performance than ANN

Boosting PID Distribution for NuMI Contained 1 Sub-Events

MiniBooNE Schedule

- Run Antineutrinos in 2006
- Complete Neutrino Oscillation Analysis (Estimate systematic errors from neutrino flux, cross sections, detector MC)
- Open "Box" and Present Results
- If MiniBooNE Confirms LSND => Physics Beyond the Standard Model!

Future Experiments: BooNE & OscSNS

What new physics is there Beyond the Standard Model?

BooNE would involve a second "MiniBooNE-like" detector (~\$8M) at a different distance; with 2 detectors, many of the systematics would cancel

OscSNS would involve building a "MiniBooNE-like" detector (~\$12M) with higher PMT coverage at a distance of ~60 m from the SNS beam stop **Signal Region Veto Region**

MiniBooNE Detector

BooNE at FNAL

Two identical detectors at different distances

Search for sterile neutrinos via NCPI0 scattering & NCEL scattering

Problem: imprecise v energy determination smears oscillations!

OscSNS at **ORNL**

SNS: ~1 GeV, ~1.4 MW

 $\overline{v}_{\mu} \rightarrow \overline{v}_{e} \quad \Delta(L/E) \sim 3\% ; \overline{v}_{e} p \rightarrow e^{+} n$

 $v_{\mu} \rightarrow v_{s} \quad \Delta(L/E) < 1\%$; Monoenergetic v_{μ} !; $v_{\mu} C \rightarrow v_{\mu} C^{*}(15.11)$

OscSNS would be capable of making precision measurements of v_{μ} appearance & v_{μ} disappearance and proving, for example, the existence of sterile neutrinos! (see Phys. Rev. D72, 092001 (2005)). Flux shapes are known perfectly and cross sections are known very well.

SNS $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ Experiment vs LSND (assuming $\Delta m^{2} < 1 \text{ eV}^{2}$)

- More Detector Mass (x5)
- Higher Intensity Neutrino Source (x2)
- Lower Duty Factor (x100) (less cosmic bkgd)
- No DIF Background (backward direction)
- Lower Neutrino Background (x4) (60 m vs 30 m)
- Better Signal/Background (x4)
- Better L/E Resolution (x2) (more scint & better PMTs)
- For LSND parameters, expect ~350 v_e oscillation events & <50 background events per year!

Search for Sterile Neutrinos with OscSNS Via Measurement of NC Reaction: v_{μ} C -> v_{μ} C*(15.11) Garvey et al., Phys. Rev. D72 (2005) 092001

Neutral Current Disappearance Pattern in a Two Detector Setup

10 m

6**0** m

KARMEN Measurement of v_{μ} C -> v_{μ} C*(15.11)

 $\sigma_{\rm NC} = (3.2 + -0.5 + -0.4) \times 10^{-42} \, {\rm cm}^2$ (B. Armbruster et al., Phys. Lett. B423 (1998) 15) $\sigma_{\rm NC} \sim 2.8 \times 10^{-42} \, {\rm cm}^2$ (Kolbe, Langanke, & Vogel, Nucl. Phys. A652 (1999) 91)

Measurement of 3+2 Model with OscSNS (Sorel et al., Phys. Rev. D70 (2004) 073004)

Conclusions

MiniBooNE will soon test the LSND Oscillation Signal

If the LSND Signal is Confirmed, then Future Oscillation Experiments Would Provide a Great Opportunity for Nuclear Physics: BooNE at FNAL & OscSNS at ORNL

Make Precision Measurements of Oscillation Parameters

Resolve 3 ∆m² Paradox & Explore Physics Beyond the Standard Model! (e.g. Sterile Neutrinos)