

KamLAND: Kamioka Liquid-Scintillator Anti-Neutrino Detector

Stuart Freedman University of California at Berkeley and Lawrence Berkeley National Laboratory

> NSAC Bethesda July 21, 2006

Essentials of Neutrino Oscillations

20 % of world nuclear power **Nuclear Power Stations in Japan** ~ 70 GW Electric Power Development Co.-ooma (Commercial plant. Aug. 1999) f Events [/year /kt] 00 00 00 00 00 00 okyo Electric Pow Kashiwazaki Kariwa Tohoku Electric Power Co.-Higashidor Hokkaido Electric Power Co. - Tomari 5 6 ○ kashiwazaki Tohoku Electric Power Co.Maki Hokuriku Electric Power Co.-Shika Cohoku Electric Power Co.-Onag 72 **1** Janan Atomic Power Co.-Tsuruga okvo Electric Power Co.-Fi 723 86 % of \overline{V} events Kanesi Electric Power Co.-Mihami from 175 ⁺35 km Kansai Electric Power Co .- Ohi Japan Atomic Power Co.-Toka Cessation of commercial operation (Mar. 1998) Kansai Electric Power Co.-Takan apan Atomic Power Co.-Tokai Dain 234 1 Chugoku Electric Power Co.amaoQ takahama Number of Kyushu Electric Power Co.shiga -6 Kyushu Electric Power Co.-Genkai Shikoku Electric Power Co.-Ikata 123 **ÓGHTa**Iga 50 fukushima umber of Unit Total Output (Million K Output scale Operating station 44.91 Ā Under construction 4 4.663 Under construct In planning stage 2 2.208 In planning stage 0.5Mille ar 1Million Over 1Million 100 onggwang shimane onagawa 50 Jugen enkai endai õmari okai2 ikata 0 200 400 600 800 1000 0 Distance from Kamioka [km]

At the time the LRP was being drafted

• The case for neutrino flavor change was compelling

• The case for neutrino oscillations was growing stronger

• Evidence of large mixing angles was mounting

3.2 ton water veto

KamLAND's first reactor result

(most cited paper in physics, 2003)

From 2002 Data Set

166 ton-years

Is the Neutrino Spectrum Distorted?

2-v oscillation: best-fit

No oscillation, flux suppression

 $\chi^2_{/8 \text{ d.o.f}} = 0.31$

Data and best oscillation fit consistent at 93% C.L.

Data and best oscillation fit consistent at 53% C.L. as determined by Monte Carlo

KamLAND's second reactor result

Phys. Rev. Lett. 94, 081801 (2005) Measurement of Neutrino Oscillation with KamLAND: Evidence of Spectral Distortion

2004 Data Set

Is the Neutrino Spectrum Distorted?

Backgrounds

- 1. Random coincidences 2.69 \pm 0.02 events
- 2. Spallation Backgrounds from neutrons and delayed beta emitters ${}^{9}Li$ and ${}^{8}He$ 4.8 ± 0.9 (dead time 9.7%)

2 *msec* + 2 sec in 6 $m\phi$ cylinder

3. ²¹⁰Po $\alpha \rightarrow {}^{13}C(\alpha,n){}^{16}O^{*}(\sim 6 MeV)$ and

 $^{13}C(\alpha,n)^{16}O \longrightarrow {}^{12}C(n,n')^{12}C^{*}(4.4 \text{ MeV}) 10.3 \pm 7.1 \text{ events}$

Total: 17.8 ± 7.3

Systematic Uncertainties

0/

E > 2.6 MeV

	70
Fiducial mass ratio	4.7
Energy threshold	2.3
Efficiency of cuts	1.6
Live time	0.06
Reactor power	2.1
Fuel composition	1.0
\overline{v}_e cross section	0.2
Total uncertainty	6.5 %

Looking for the oscillation effect

$$\left|\left\langle \psi_{v_{e}}(t) \left| \psi_{v_{e}}(0) \right\rangle \right|^{2} = 1 - \sin^{2}(2\theta) \sin^{2}(\frac{(m_{2} - m_{1})c^{2}}{2h}t)$$

$$P_{ee} = 1 - \sin^2(2\theta) \sin^2(1.27 \frac{(m_2^2 - m_1^2)L}{E})$$

$$L = c \bullet t_{lab}$$
 $t_{restframe} = \frac{t_{lab}}{\gamma} = \frac{m}{E} t_{lab}$

Observing the oscillations in the neutrino rest frame

KamLAND Correlation of Count Rate and Reactor Power

Observation of Geoneutrinos

Nature Vol 436 28 July 2005 doi:1-38/nature03980 Experimental Investigation of Geologically Produced Antineutrinos with KamLAND

Geo-Neutrino Signal

U/Th decays in the Earth produce radiogenic heat (40-60% of 40TW)

The Earth is made up of five basic regions: Core, Mantle, Oceanic crust, and Sediment

Heat flow from the earth determined from bore-hole temperature gradients.

44.2 \pm 1.0 TW or

 31 ± 1 TW (same data)

Radiogenic heat should contribute. Using the composition of chondritic meteorites expect

U/Th/K

20ppb/80ppb/240ppm

8 TW/8 TW/3 TW

Puzzle:

19 TW \neq 44.2 TW or 31 TW

Neutrino Spectrum from K and the U and Th chains

Reference Model

		U [ppm]	Th [ppm]	
Sediment	Continental	2.8	10.7	
	Oceanic	1.68	6.91	
Continental Crust	Upper	2.8	10.7	
	Middle	1.6	6.1	
	Lower	0.2	1.2	
Oceanic Crust		0.1	0.22	
Mantle		0.012	0.048	
Core		0	0	
×10 ⁶				
sedi	ment			
crus	t	/		
total				
-1/se			- 9	
1 3- 				
)		/		
2			- of tot	
Ē			©	
			20	
[
0 10 ⁰	10 ¹ 10 ²	10 ³	; <u>;</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Distance from KamLAND (km)				

Geoneutrino Signal

KamLAND is in the wrong place for geophysics, the biggest background for geo-neutrinos is reactor neutrinos KamLAND provides best limits on energetic $\overline{\mathcal{V}}_{\rho}$

High Sensitivity Search for nu-bar's from the Sun and Other Sources at KamLAND Phys. Rev. Lett. 92, 071301 (2004)

(best limits by a factor of 30)

Other applications of KamLAND

Search for the invisible decay of neutrons with KamLAND. Phys.Rev.Lett.96:101802 (2006)

$$\frac{n \rightarrow vvv:}{{}^{11}C^* \rightarrow {}^{10}C_{GS} + n}{{}^{11}C^* \rightarrow {}^{10}C^* + n} \rightarrow {}^{10}C_{GS} + n + \gamma (3.5 \text{ MeV}) \\ \tau > 5.8 \times 10^{29} \text{ yr} (90\% \text{ C.L.})$$

$$\frac{n \rightarrow vv:}{{}^{10}C^{*} \rightarrow {}^{9}C_{GS} + n}{{}^{10}C^{*} \rightarrow {}^{9}C^{*} + n \rightarrow {}^{8}B_{GS} + p + n}{\tau > 1.4 \times 10^{30} \text{ yr (90\% C.L.)}}$$

KamLAND 4π Calibration

Understanding the Detector Response

Event energy Vertex reconstruction E(r,θ,φ) R_{fit}(r,θ,φ)

Fiducial volume: R < 5.5 m $\Delta R_{FV} = 5 \text{ cm} \rightarrow \Delta V = 2.7\%$ $\Delta R_{FV} = 2 \text{ cm} \rightarrow \Delta V = 1.1\%$

KamLAND 4π Calibration System

July 10, 2006: First 4π Calibration Data

Calibration with multiple equal-distant ⁶⁰Co sources.

 \rightarrow Allows study of radial dependence of fitter bias

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

The next step for KamLAND: Solar Neutrinos

Signal and backgrounds: ⁷Be signal now ~10⁵-10⁶ below backgrounds: ⁸⁵Kr, ²¹⁰Bi β, ²¹⁰Po α

Control room for purification facility

Purification to begin in fall 2006

KamLand Collaboration