

NSF FY 2012 Budget Request

Mathematical and Physical Sciences

Edward Seidel

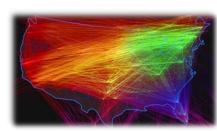
Assistant Director, MPS

March 2, 2011

NSF in the Broader Context

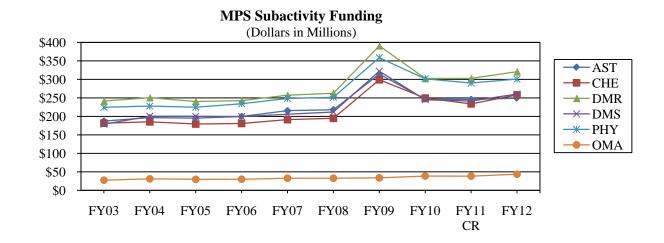
- > Strong Role in President's Strategy for U.S. Innovation
 - Building blocks of innovation; catalyzing breakthroughs; promoting competitive markets
- ➤ Total NSF request: \$7.767 billion
- OneNSF Concept
 - Support fundamental research in all disciplines
 - Address multidisciplinary challenges of national/global significance
 - Spark greater innovation and opportunity for scientific discoveries
 - Create networks and infrastructure for the nation
 - Improve organizational efficiency
 - Catalyze human capital development

MPS FY 2012 Budget Request Highlights

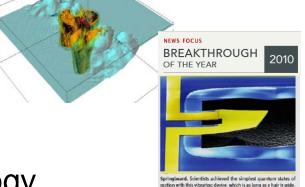

MPS Request: \$1.43B +\$80.89M (+ 6.0%)

MPS Budget Request Reflects NSF Priorities

- Support innovation in healthy core programs
- ➤ Invest in research addressing national priorities
 - OneNSF Activities: SEES, CIF21


- CAREER, postdocs, GRF, REU
- Support multidisciplinary research
 - Centers, institutes, and networks
- Invest in facilities critical for fundamental research
 - New Era of Observation; ties into CIF21

MPS FY 2012 Budget Request

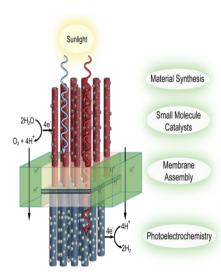

	FY 2010 Omnibus	FY 2010 ARRA	FY 2010 Enacted/ Annualized	FY 2012	Change Over FY 2010 Enacted	
	Actual	Actual	FY 2011 CR	Request	Amount	Percent
Division of Astronomical Sciences (AST)	\$246.53	-	\$245.69	\$249.12	\$3.43	1.4%
Division of Chemistry (CHE)	233.68	15.70	233.73	258.07	24.34	10.4%
Division of Materials Research (DMR)	302.57	-	302.67	320.79	18.12	6.0%
Division of Mathematical Sciences (DMS)	244.92	-	241.38	260.43	19.05	7.9%
Division of Physics (PHY)	301.66	-	290.04	300.91	10.87	3.7%
Office of Multidisciplinary Activities (OMA)	38.58	-	38.33	43.41	5.08	13.3%
Total, MPS	\$1,367.95	\$15.70	\$1,351.84	\$1,432.73	\$80.89	6.0%

MPS Core Programs: Building Blocks of Innovation

- > Support researchers to investigate
 - Structure/evolution of the universe
 - Behavior/control of molecules at nanoscale
 - New mathematical/statistical theories,
 connections to computation, experiment, and
 massive data
- Catalyze advances in science impacting innovation in medicine, industry, technology
- ➤ 2010 Chemistry Nobel Prize
 - Richard F. Heck and Ei-ichi Negishi
 - Discovery of fundamental chemical reactions which allow the construction of new bonds

Richard F. Heck

Ei-ichi Negishi

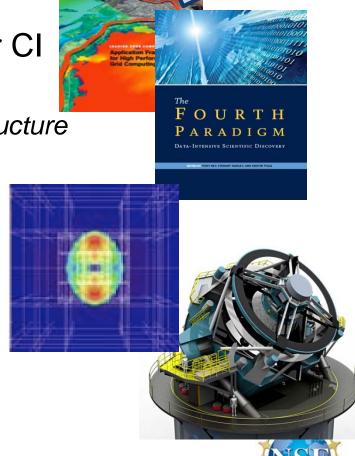


Science, Engineering, and Education for Sustainability (SEES)

MPS Request \$160M (+84%)
MPS is partnering in an NSF-wide effort to achieve an

MPS is partnering in an NSF-wide effort to achieve an environmentally and economically sustainable future

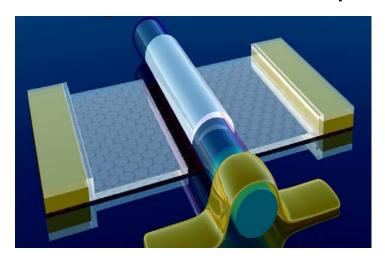
- Sustainable Energy Pathways
 - Novel earth-abundant materials for creating efficient solar cells
 - Efficient materials for converting photons into hydrogen via water electrolysis
- Sustainable Materials and Chemistry
 - Replacing rare, expensive and toxic chemicals with abundant, inexpensive, and environmentally benign alternatives
- Sustainability Research Networks

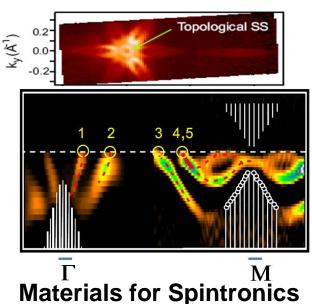

Cyberinfrastructure Framework for 21st Century NSF: \$117M; NPS CIF 21 NPS CIF 220N Request: \$20N Science and Engineering (CIF21)

Cyberinfrastructure to transform research, innovation and education

Coherent program building on other CI investments across NSF

 eXtreme Digital (XD), Software Infrastructure for Sustained Innovation(SI2)

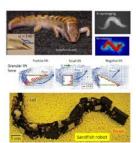

- Four major components
 - Data-enabled science
 - New computational infrastructure, including "matter-by-design"
 - Community research networks
 - Access and connections to cyberinfrastructure facilities


Science and Engineering Beyond Moore's Law (SEBML)

NSF: \$96.18M; MPS Request: \$42.18M (+125%)

- Partnering with CISE, ENG on fundamental research for economic competitiveness
- Component of NSF's National Nanotechnology Initiative
 Materials for ultrafast computing
 Quantum Information Science

Graphene Nanostructures for High Performance Electronics


BioMaPS: Biological, Mathematical, NSF: \$76M; Physical Sciences and Beyond NSF: \$76M; NS

Research at the interface between BIO, MPS, and ENG

- ➤ Renewable fuels; bio-based materials; bioimaging; supports SEES and Advanced Manufacturing activities
- ➤ Computational modeling for visualizing the geometrical structure of photosynthetic vesicles
- Improved mathematical models for blood vessel stents lead to a better stent with less chance of buckling
- Sandfish swimming in sand inform studies of motion in granular media

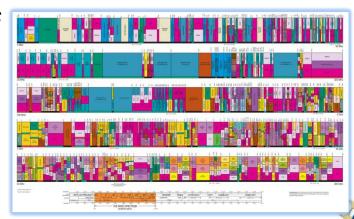
CAREER

Investing in the next generation S&T Workforce

- ➤ MPS accounts for 25% of all CAREER awards
- Important science: optical studies of quantum dots, materials for next generation electronic devices, gamma-ray bursts
- Impact in outreach and education: innovative university curricula, outreach efforts to schools and MSIs

Keivan Stassun: Physics and Astronomy, Vanderbilt

- ➤ The Bridge program: 43 students; 38 minorities; 55% female; retention rate 93%
- Fisk awards the most MA degrees in physics to African American U.S. citizens



Enhancing Access to the Radio Spectrum (EARS)

MPS partnership with ENG, CISE, and SBE

- > Cross-cutting research on efficient use of the radio spectrum
- ➤ Interdisciplinary themes: technology, economics, social science, and public policy
- Responsive to national broadband priorities established by the White House and Congress
- Wireless Innovation Fund to support spectrum-related R&D
 - \$1B over 5 years into NSF programs
 - EARS, Cyber-Physical Systems,
 Wireless Testbeds

MPS Support for Multidisciplinary Research: Institutes, Centers, and Networks

- Office of Multidisciplinary Activities (+\$5M)
- Institutes and Centers
 - Physics Frontier Centers
 - Joint Institute for Nuclear Astrophysics (JINA)
 - Materials Research Centers and Teams (MRCT)
 - The Centers of Excellence for Materials Research and Innovation (CEMRI)
 - Materials Interdisciplinary Research Teams (MIRT)
 - Mathematics Institutes Programs
 - Institute for Computational and Experimental Mathematics (ICERM)

- Networks
 - Sustainability Research Networks
 - Research Networks in the Mathematical Sciences

MPS Large Facilities in 2012

ALMA

	FY 2012	
	Request	
Adv. Tech. Solar Telescope (ATST)	2.00	
Atacama Large Millimeter Array (ALMA)	30.65	
Cornell High Energy Synchr. Source (CHESS)/		
Cornell Electron Storage Ring (CESR)	15.47	
GEMINI Observatory	20.07	
IceCube Neutrino Observatory	3.45	
Large Hadron Collider (LHC)	18.00	
Laser Interfer. Grav. Wave Observatory (LIGO)	30.40	
Nat'l Astronomy and Ionosphere Ctr. (NAIC)	5.50	
Nat'l High Magnetic Field Laborary (NHMFL)	33.30	
Nat'l Nanotechnology Infra. Network (NNIN)	2.68	
Nat'l Optical Astronomy Observatory (NOAO)	29.17	
Nat'l Radio Astronomy Observatory (NRAO)	42.89	
National Solar Observatory (NSO)	9.79	
Nat'l Superconducting Cyclotron Lab (NSCL)	21.50	
Other MPS Facilities	3.90	
	\$268.77	

- > 33 (of 66) antennas now in Chile
- Early Science with 16 antennas begins in 2011

NSCL

- Anticipate 5-year renewal for worldclass research program
- \$268.77 NSF-DOE Joint Oversight Group

handles transition to FRIB

Dollars in millions

Summary

- > \$1.43B budget requested for FY 2012 for MPS
- Sustaining basic research in fundamental science
 - AST, CHE, DMR, DMS, PHY
- Investing in national priorities
 - OneNSF programs: SEES, CIF 21
 - BioMaPS, SEBML, EARS
 - Supporting young researchers:
 REU to CAREER
- Continued investments in developing and operating facilities critical for fundamental research

LSST

Thank You

