NSAC Subcommittee Isotopes Charge 1

Ani Aprahamian University of Notre Dame and Don Geesaman Argonne National Laboratory

Science Goals in Nuclear Physics

- Quark Structure of Nucleon
- Quark gluon plasma

Nuclear Astrophysics

Nuclear Structure

NP Science

NP Implications

Fundamental Studies Nuclear Physics Applications Nuclear Data, Isotopes.....

ESSAY

Accelerating production of medical isotopes

The global problem of a safe and reliable supply of radioactive isotopes for use in critical hospital procedures can be solved with accelerators, not nuclear reactors, says **Thomas Ruth**.

February 17, 2009 Mo-99 production resumes at troubled European isotope reactor

DiagnosticImaging.com

NSAC Subcommittee on Isotopes FY 2009 Budget Request

The Fiscal Year (FY) 2009 President's Request Budget proposes to transfer the Isotope Production Program from the Department of Energy (DOE) Office of Nuclear Energy to the Office of Science's Office of Nuclear Physics and rename it the Isotope Production and Applications Program. In preparation for this transfer, NSAC was requested to establish a standing committee, the NSAC Isotope (NSACI) sub-committee, to advise the DOE Office of Nuclear Physics on specific questions concerning the National Isotope Production and Applications (NIPA) Program.

NSACI constituted for a period of two years as a subcommittee of NSAC. It will report to the DOE through NSAC who will consider its recommendations for approval and transmittal to the DOE.

The Subcommittee is asked to establish the priority of research isotope production and development, and to form of a strategic plan for the NIPA Program.

Workshop in August

DOE/8C-0107

Questions Asked

Who uses isotopes and Why?

Who produces them and Where?

What are the needs today and in the future?

What is the status of the supply/what is missing?

What options for increasing availability /technical hurdles?

Workshop in August Findings

DOE/8C-0107

A reliable program in isotope production at DOE is crucial for the long term health of developments in medicine, basic physical and biological sciences, national security and industry.

Many of isotopes in domestic use are produced only by foreign suppliers

Affordability

The production capability of the NIPA program relies on facilities that are operated by DOE for other primary missions.

There is a pressing need for more training and education programs in nuclear science and radiochemistry to provide the highly skilled work force for isotope application.

NP resources...

Charge 1:

As part of the NIPA Program, the FY 2009 President's Request includes \$3,090,000 for the technical development and production of critical isotopes needed by the broad U.S. community for research purposes.

NSACI is requested to consider broad community input regarding how research isotopes are used and to identify compelling research opportunities using isotopes.

The subcommittee's response to this charge should include the identification and prioritization of the research opportunities; identification of the stable and radioactive isotopes that are needed to realize these opportunities, including estimated quantity and purity; technical options for producing each isotope; and the research and development efforts associated with the production of the isotope. Timely recommendations from NSACI will be important in order to initiate this program in FY 2009; for this reason an interim report is requested by January 31, 2009, and a final report by April 1, 2009.

NSACI Subcommittee

Ercan Alp Ph.D. Argonne National Laboratory

Ani Aprahamian Ph.D. (co-chair) University of Notre Dame

Robert W. Atcher Ph.D. Los Alamos National Laboratory

Kelly J. Beierschmitt Ph.D. Oak Ridge National Laboratory

Dennis Bier M.D. Baylor College of Medicine

Roy W. Brown Council on Radionuclides and Radiopharmaceuticals, Inc

Daniel Decman Lawerence Livermore National Laboratory

Jack Faught Spectra Gas Inc.

Donald F. Geesaman Ph.D.(co-chair) Argonne National Laboratory

Kenny Jordan Association of Energy Service Companies Thomas H. Jourdan Ph.D. University of Central Oklahoma

Steven M. Larson M.D. Memorial Sloan-Kettering Cancer Center

Richard G. Milner Ph.D. Massachusetts Institute of Technology

Jeffrey P. Norenberg Pharm.D. University of New Mexico

Eugene J. Peterson Ph.D. Los Alamos National Laboratory

Lee L. Riedinger Ph.D. University of Tennessee

Thomas J. Ruth Ph.D. TRIUMF

Robert Tribble Ph.D. (ex-officio) Texas A&M University Susan Seestrom Ph.D. (ex-officio) LANL

Roberto M. Uribe Ph.D. Kent State University

Nov. 13-14, 2008	Organizational meeting				
	Publicize our charges, seek community input				
Dec. 15-16, 2008	Get input from government agencies				
Jan. 13-15, 2008	Input from customers,				
	Ideas for production research R&D				
	Research priorities recommendations				
Jan. 31, 2009	First interim report due				
Feb. 10-12, 2009	2- day Meeting to hear plans for facility and infrastructure improvements				
Mar. 25-27, 2009	3 day meeting				
	Finalize report for 1 st charge				
	Decide on recommendations for Long Range Plan				
April 1, 2009	Final report for first charge submitted by NSACI				
April 2009	Write report on second charge				
June 2009	Meeting to finalize 2 nd report				
July 31, 2009	Final report for second charge submitted by NSACI				

Federal Agencies Contacted

Air Force Office of Scientific Research, Armed Forces Radiobiology Research Institute, Department of Agriculture, Department of Defense, Department of Energy - Fusion Energy Sciences, Department of Energy-National Nuclear Security Administration - Nuclear Non-proliferation, Department of Energy-Basic Energy Sciences, Department of Energy-**Biological and Environmental Research, Department of Energy-Nuclear** Physics, Department of Homeland Security, Environmental Protection Agency, Federal Bureau of Investigation, National Cancer Institute, National Institute of Allergy and Infectious Disease, National Institute of Biomedical Imaging and Bioengineering, National Institute of Drug Abuse, National Institute of Environmental Health Science, National Institute of General Medical Science, National Institute of Standards and Technology, National Science Foundation - Directorate for Engineering, National Science Foundation - Directorate for Mathematical and Physical Sciences, National Science Foundation-Directorate for Biological Sciences, Office of Naval Research, State Department, U. S. Geologic Survey

DOE-NIH Working Group

Professional Societies Contacted

Academy of Molecular Imaging, Academy of Radiology Imaging, Academy of Radiology Research, Amercan Association of Physicists in Medicine, American Association of Cancer Research, American Chemical Society, American Chemical Society - Division of Nuclear Chemistry and Technology, American College of Nuclear Physicians, American College of Radiology, American Medical Association, American Nuclear Society, American Nuclear Society - Division of Isotopes and Radiation, American Pharmacists Association - Academy of Pharmaceutical Research and Science (APhA-APRS), American Physical Society, American Physical Society - Division of Biological Physics, American Physical Society - Division of Material Physics, American Physical Society - Division of Nuclear Physics, American Society of Clinical Oncology, American Society of Hematology, American Society of Nuclear Cardiology, American Society of Therapeutic Radiation and Oncology, Council on Ionizing Radiation and Standards, Health Physics Society, National Organization of Test, Research and Training Reactors, Radiation Research Society, Radiation Therapy Oncology Group, Radiochemistry Society, Radiological Society of North America, Society of Molecular Imaging, Society of Nuclear Medicine

Trade Groups contacted

- **Association of Energy Service Companies**
- **Council on Radionuclides and Radiopharmaceuticals**
- Gamma Industry Processing Alliance
- **International Source Suppliers and Producers Association**
- **Nuclear Energy Institute**

Report Outline

- 1. General Introduction on the broad use of isotopes
- 2. Landscape of production Common issues to all areas.... stables/radioactives, nat/int.
- 3. Medicine, Pharmaceutical and Biology Research in Biology/Pharma Diagnostic and Therapeutic
- 4. Basic Physical Science/Engineering Research
- 5. Security Applications of Nuclear Science DHS, NNSA, AFCI, GNEP
- 6. Summary and Recommendation

Chapter 1: Introduction

Introduction to the use of isotopes

(vital to health of US science & Technology)

Basic Nuclear Science Medicine (imagine/therapeutic) Energy Security Forensics Nuclear Science in Europe

8 88 20

Nuclear Physics Applications

Energy

- Nuclear Forensics
- ADS systemsHomeland SecurityFusion confinementRisk AssessmentsNuclear WasteNuclear TraffickingNuclear DataProliferation

Life Science

Material Analysis

- Medical Diagnostics
 Medical Therapy
 Radiobiology
 Biomedical tracers
 In Implantation
 Material Structure
 Geology & Climate
 Environment
 Art & Archaeology
- Nuclear Defense

Weapon Analysis
 Functionality Simulation
 Long-Term Storage

Chapter 2: Production Landscape

Landscape of Isotope Production at DOE

Reactors Accelerators Private sector production: distillation, chemical exchange, thermal diffusion.... How do we define Research?

má

Office Building

Chapter 3: Biology, Medicine, Pharma

Science and Application

Therapeutic Imaging RadioPharma

Nuclear Imaging

Blood flow with radiopharmaceuticals

Imaging software and analysis

Gamma Camer
SPEC & PEP

Tumor mapping & visualization by radioactive isotope accumulation.

Imaging system development

Brachytherapy
 Gamma therapy
 Neutron therapy
 Heavy ion therapy

Treatment plan with 2 heavy ion fields

Treatment plan with 9 photon fields IMRT

Chapter 3: Biology, Medicine, Pharma

Science opportunities

Research activity	Isotope	Issue/Action	
Alpha therapy	²²⁵ Ac ²¹¹ At ²¹² Pb	extraction of ²²⁹ Th from ²³³ U cyclotrons capable of ⁴ He acceleration	
Diagnostic dosimetry	⁶⁴ Cu ⁸⁶ γ ¹²⁴ Ι ²⁰³ Ρb	⁶⁷ Cu therapy ⁹⁰ Y therapy ¹³¹ I therapy ²¹² Pb therapy	
Diagnostic tracer	⁸⁹ Zr	stem cell trafficking	
Therapeutic	⁶⁷ Cu	high energy production (enriched target)	

Chapter 4: Basic Physical Sciences/Engineering Nuclear Science-Structure -Fund. Symmetries/Physics Beyond Standard Model Energy Chemistry Environmental Materials

Material Treatment and Analysis of Artifacts

Implantation and irradiation from silicon chips to solar

sails

Dating real and false mummies

Neutrino Physics – Particle and Nuclear Physics

Last decade opened new era of nuclear physics, the study of low energy neutrinos from sun and supernova and in laboratory decay

Fundamental Symmetries

Standard Model Initiative

What are the neutrino masses? Tritium decay measurements with KATRIN

Are neutrinos their own antiparticles?

Neutrino less double beta decay measurements In background free underground environments (Gran Sasso, SNO, WIPP, ...)

Violation of CP symmetry (matter antimatter balance) by neutrino oscillation and neutron EDM measurements (ultra-cold neutrons at Los Alamos, SNS, PSI ...

Neutrino Physics Underground

designed for experiments that require extremely low cosmogenic backgrounds: in particular, the search for neutrino-less double beta decay and relic dark matter.

International Situation

OECD Report: Roadmap for existing and planned underground laboratories with the size of the box corresponding to the relative space for experiments at each depth. These facilities are typically shared or primarily funded by other disciplines such as particle astrophysics.

Accelerators

Underground Laboratories

Goals far off Stability

- Nuclear Masses & decay properties
 Neutron halos
- Disappearance of shell structure
- Emergence of new shapes
- New collective modes of excitation
- Mapping the driplines
- Islands of stability

Science Opportunities

Order	Isotope	Use	Supplier	Status	Amount
1	²⁵² Cf (2.6 yr)	Fission source for CARIBU at ANL	HFIR/ORNL	Possibly available in required form	~1 Ci/3yrs ~\$0.5M/Ci
2	²²⁵ Ra (15 d)	EDM expt at ANL	ORNL; ²³³ U/ ²²⁹ Th decay	Needs to be extracted and processed	~5 mCi/2 months Need 10mCi/2 mos.
3	Various actinides	Targets for searches for super heavy elements	HFIR/ORNL	Some are available; ²⁴¹ Am, ²⁴⁹ Bk, ²⁵⁴ Es not available	10 - 100 mg on a regular basis; purity is important
4	²⁸ Si	Avogadro project - worldwide weight standard based on pure ²⁸ Si crystal balls	DOE Russia	Concern about future supply and cost	kilograms
5	²³⁶ Np, ^{236,244} Pu, ²⁴³ Am, ²²⁹ Th	Isotope dilution mass spectrometers	ORNL; Russia?	Most available; high purity ²³⁶ Np is not	10 - 100 mg on a regular basis; purity is important
6	⁷⁶ Ge	Double beta decay expt	Russia	US cannot produce quantity needed	~ 1000 kg
7	^{202,203,205} Pb, ²⁰⁶ Bi, ²¹⁰ Po	Spikes for mass spectrometers	ORNL Russia	^{202,205} Pb difficult to get in high purity	Grams
8	³ He	Neutron detectors, EDM, etc	Savannah River Russia	Total demand exceeds that available	
9	¹⁴⁷ Pm	Radioisotope micropower	Not available	Fission product	

Chapter 5: Security and other applications

Detection (³He...) Forensics Standards

Nuclear Forensics

Trafficking of nuclear materials & material loss assessments

Border control & radiation exposure (instrumentation)

Provenance of radioactive material by isotope composition or material structure analysis

Signature identification,
 Detector array development

Sensitivity analysis

Compelling Research Opportunities Using Isotopes

There are compelling research opportunities using alpha-emitters in medicine. Development and testing of therapies using alpha emitters are very promising for the medical field. NSACI is aware of the research opportunities and the timeliness of the issue since the downbleeding of ²³³U.

1.Invest in new production approaches of alpha-emitters, ex: ²²⁵Ac. Extraction of the thorium parent from ²³³U is an interim solution that needs to be seriously considered for the short term until other production capacity can become available.

Compelling Research Opportunities Using Isotopes

A unified conclusion of the NSACI panel was to maximize the production and availability of domestic isotopes in the US through investments in research and coordination activities between existing accelerators. The panel felt that such a network could benefit all areas of basic research and applications from security to industry.

2. We recommend investment in coordination of production capabilities and supporting research to facilitate networking among existing accelerators.

This should include R&D to standardize efficient production target technology and chemistry procedures.

Compelling Research Opportunities Using Isotopes

The basic physical sciences and engineering group prioritized the availability of californium, radium and other trans-uranic isotopes as particularly important for research.

3. We recommend the creation of a plan and investment in production to meet these research needs for heavy elements.

Compelling Research Opportunities Using Isotopes

Experts in the nuclear security and applications areas strongly feel the vulnerability of supply from foreign sources. Additionally, the projected demand for ³He by national security agencies far outstrips the supply. This would likely endanger supply for many other areas of basic research. While it is beyond our charge, it would be prudent for DOE and DHS to seriously consider alternative materials or technologies for their neutron detectors to prepare if substantial increases in ³He production capacity cannot be realized.

4. We recommend a focused study and R&D to address new or increased production of ³He

Compelling Research Opportunities Using Isotopes

While no single stable isotope except ²⁸Si (³He is stable but obtained from the beta-decay of ³H, not by isotope separation) reached the level of the highest research priority, the broad needs for a wide range of stable isotopes and the prospect of **no domestic supply** raised this issue in priority for the subcommittee. NSACI feels that the unavailability of a domestic supply poses a danger to national security. The subcommittee also recommends:

5. Research and Development should be addressed to preparing to re-establish a domestic source of stable research isotopes.

Compelling Research Opportunities Using Isotopes

Vital to the success of all scientific endeavors is the availability of trained workforce. While the scientific opportunities have expanded far beyond the disciplines of radiochemistry and nuclear chemistry, the availability of trained personnel remains critical to the success of research in all frontiers of basic science, homeland security, medicine, and industry.

6. We therefore recommend that a robust investment be made into the education and training of personnel with expertise to develop new methods in the production, purification and use of stable and radio-active isotopes.

Skilled workforce in areas of National Need