

... for a brighter future

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

News from ATLAS: the <u>Argonne Tandem Linear</u> <u>Accelerator System</u>

Robert V. F. Janssens

Scientific Director of the ATLAS Facility Director Physics Division

NSAC Meeting February 26, 2010

ATLAS Operations:

Operations statistics

	FY2009
Activity	Total Hours
Research Hours	4642
Beam Studies Hours	214
Setup/Tuning hours	632
Total Delivered Operating Hours	5488
Failure & Unscheduled Shutdown Hours	234
Total Scheduled Operating Hours	5722
Scheduled Maintenance Hours	667
Reliability	.959

Performance measures:

(a) effective beam usage: 92.4% as

determined by Users

- (b) 5488 delivered operating hours, above 5200 hours baseline
- Delivered more hours than anticipated in 7days/week mode → addresses high Users demand
- Reliability still at > 95%

- Trends persist, i.e.,
 - high number of proposalsoversubscription by ~ 2
- Continue to operate with priority I & II
 modes to optimize efficiency of program
- Small backlog as requested by Users
- Next PAC April 2-3

ATLAS Operations

User Program

Institutions N	Number		
U.S. University	165	42%	
Foreign University	91	23%	
U.S. National Lab.	112	29%	
Foreign Laboratories	22	6%	
Total	390		
ATLAS Users 1-Oc	t-08 to 3	0-Sep-	09
🗖 U.S. University	У		
Foreign Unive	ersity		
🗆 U.S. National I	Lab.		
Foreign Labor	ratories		
-			

Research Program

- Continues to address major scientific questions of the field
- Takes advantage of all the instrumentation available at ATLAS
- Continues to develop new techniques and instruments

- FY09 390 Users (69 Students/ 10 Theses) 77 pubs in refereed journals (18 letters)
 - FY08 387 Users (71 Students / 9 Theses) 63 pubs in refereed journals (13 letters)
- FY07 330 Users (62 Students / 9 Theses) 57 pubs in refereed journals (15 letters)

•

First results from HELIOS

U. Western Michigan, Manchester, ANL collaboration

Low-Energy Research: Highlights

Highlight: First data from HELIOS with an exotic beam: ¹²B(d,p)¹³B

•Performance of HELIOS with in-flight RIB demonstrated •Superior performance above conventional Si detection confirmed

•New I^{[™] information on ¹³B states obtained}

•Data show inadequacy of shell model calculations → associated with melting of N=8 shell closure??

B.B. Back et al., PRL submitted

Low-Energy Research: Highlights

Highlight : First evidence for fusion hindrance in system with positive Q value

²⁷AI + ⁴³Sc: Q=9.63 MeV

- First system with Q>0 measured down to where hindrance can be observed → confirms general nature of phenomenon
- Important impact on astrophysics: rate of C and O burning in massive late-type stars → C ignition shifted to higher temperatures, general reduction in rates, impact on abundance of key elements (²⁶AI, ⁵⁶Ni,..)
- C.L. Jiang et al., PRC Rapid Comm. In press

ATLAS Projects: ATLAS Energy Upgrade

ATLAS Energy Upgrade: A complete success

• A new cryomodule containing 7 β =0.15 quarter-wave cavities has been added to the ATLAS heavy ion linac, increasing beam energy by 30-40%.

• This represents the first successful demonstration of separate cavity and insulating vacuum for a low- β cryomodule.

- Operational since June 2009
- Used in ½ runs since installation no deterioration in performance
- Cryomodule: represents a factor 3 gain in cavity performance
 - represents the first implementation of new surface preparation (particle- free) techniques for low-β cavities
 - a new world record for low- β cavities
- The design is suitable as a basis for the next generation of ion linacs
- Further developments to maximize the potential of state-of-the-art QWRs:
 - Optimized EM/mechanical design
 - Fast piezoelectric or magnetostrictive tuners for low intensity beams
 - High power RF couplers for high current beams
 - Very high voltages (4 MV per cavity) are realistic even for lower beta ~0.075

Californium Rare Ion Breeder Upgrade

Physics Division, Argonne National Laboratory NSAC Meeting, 26 February 2010

9

ATLAS Projects: CARIBU

Status:

- Gas catcher installed & operational; beam properties measured with stable beams
- Shield cask ready for 2 mCi source
- Transport to isobar separator ready
- First magnet of isobar separator installed and characterization of magnet completed, characterization of second magnet on-going
- Authorization to start commissioning with 2mCi source received

Project has experienced delays due mainly to issues with manufacturer of isobar separator (late delivery & quality control issues). There were burn-in problems with the gas catcher as well.

ATLAS Projects: CARIBU

Status:

Present situation:

- great progress on charge breeding:
 9.7% achieved for ⁸⁵Rb → world record (CARIBU goal was 5%)
- extensive beam studies at ATLAS in preparation for ¹⁴³Ba acceleration
- CPT moved to CARIBU

Plan:

- March install 2 mCi source (as soon as stable beam studies of isobar separator are complete)
- March April: establish charge breeding efficiency for ¹⁴³Ba and accelerate through ATLAS
- May September: Install 80 mCi source, establish baseline intensities for representative fragments, accelerate first beams for demonstration experiments at HELIOS, Gammasphere etc., start stopped beam program
- Fall Winter: Install 1 Ci source & start experimental program

ATLAS Operations 2010

- **5900** h of operation (7 days/week mode)
- PAC meeting: April 2-3 (proposals due 3/1) requests for proposals with stable beams only

Equipment Initiatives: Complete HELIOS Spectrometer, develop laser program, digitize Gammasphere and upgrade FMA

ATLAS Efficiency & Intensity Upgrade:

Phase 1:

ARRA Funding + AIP

- Build an RFQ to deliver 250 keV/u ion beams with $q/A \ge 1/7$.
- Modify low-energy beamlines to provide beam matching upstream and downstream of the RFQ.
- Develop a new β_G =0.077 quarter-wave SC resonator optimized for high-intensity beams.
- Build a cryomodule with 7 of the new SC cavities (β_G =0.077) to replace 3 Booster cryomodules.
- Upgrade the ATLAS liquid helium distribution system.
- Modify the first cryomodule of the PII to increase both the transverse and longitudinal acceptance.
- Re-locate the best β =0.1 split-ring cavities into 3 cryostats instead of the 4 cryostats they occupy now.

One order of magnitude gain in intensity for stable beams and in-flight RIB beams Double intensity for CARIBU re-accelerated beam intensities

ATLAS Efficiency & Intensity Upgrade: The Science

(1) Nuclear Structure:

- Neutron-rich nuclei:
 - This is where the field is moving & where we expect changes
 - Single particle structure ...more detailed/further out (HELIOS with more nrich RIBs, deep inelastic reactions with stable beams & Gammasphere)
 - Collective properties (Coulex at Gammasphere/FMA, Gretina)
 - Ground-state properties (decay station, CPT, laser)
- Neutron-deficient nuclei:
 - Many challenges remain
 - Spectroscopy around ¹⁰⁰Sn (FMA+Digital DSSD, Digital Gammasphere)
 - Beta decay studies around N=Z line (FMA+Digital DSSD)
 - Exotic collective phenomena (Digital Gammasphere, FMA+)
 - Gamma spectroscopy after secondary reactions (Intense In-flight RIBs)
- Superheavy nuclei:
 - Shell evolution and fission barrier moving up from Z~100 to Z~103-108 (Gas-Filled Spectrometer)
 - More n-rich isotopes (requires ISOL facility)

Higher intensity beams, somewhat higher beam energy, improved instrumentation

ATLAS Efficiency & Intensity Upgrade: The Science

(2) Nuclear Astrophysics:

r-process

- Masses, spins, lifetimes, beta-delayed neutrons on r-process path, or as close to it as possible (decay station, CPT)
- Particle transfer reaction, similar goals to nuclear structure and ncapture, on very n-rich (HELIOS with more n-rich RIBs)
- rp-, αp-, νp-, CNO, …
 - reactions with HELIOS on more exotic and higher intensity RIBs (mostly close to N=Z)
 - Mass measurements past N=Z line (CPT+)
 - very high intensity, low energy, light stable beams for ¹²C + ¹²C etc.

Higher intensity beams, somewhat higher beam energy, improved instrumentation

ATLAS Efficiency & Intensity Upgrade: The Science

- (3) Fundamental symmetries:
 - EDM
 - EDM in octupole deformed nuclei
 - Need a stronger source of ²²⁵Ra and similar nuclei (>10⁸/s)

Intensity upgrade or FRIB w/o ISOL are of no help here, need a high power ISOL facility to significantly improve over sources

- Search for currents beyond V-A
 - Angular correlation in beta decay in optical traps (⁶He, ¹⁸Ne, ...)
 - Angular correlation in beta decay in ion traps (light nuclei)

Higher intensity beams, somewhat higher energy range, improved instrumentation

ATLAS Efficiency & Intensity Upgrade: Phase 2

Context :

Argon

TIONAL LABORATOR

 → Annual ATLAS Users Workshop: held on August 8 – 9 2009 more than 100 participants topics covered: science drivers for ATLAS upgrade upgrade of facility (accelerator & instrumentation) 			
•	drafted by ATLAS users executive committee and ANL management available on the web since 11/2009		
Physics Division Argonne National Laboratory Argonne, IL	ATLAS Efficiency and Intensity Upgrade: Phase II		
November 2009	Response to the May 2009 Science & Technology Review of the Argonne Tandem Linac Accelerator System (ATLAS)		
http://www.phy.anl.gov/atlas/workshop09/Reports_on_Workshop.pdf			

Physics Division, Argonne National Laboratory NSAC Meeting, 26 February 2010

Response to S&T Review, dialog with DOE on-going

ATLAS Efficiency & Intensity Upgrade: Phase 2

Phase 2:

Replace CARIBU ECR by EBIS \rightarrow increase charge breeding by a factor of ~ 5 \rightarrow further reach for n-rich nuclei, faster experiments, new types of experiments Remove Tandem \rightarrow full low-energy program $\rightarrow \beta$ decay, moments, masses,...

1 new cryostat + reconfiguration of ATLAS \rightarrow higher intensities & higher energies (20 MeV/A for A~20, 12 MeV/A for A~238) \rightarrow small σ , new in-flight RIBs, n-rich nuclei with deep inelastic (access to n-rich nuclei near Z=82, N=126)

New ECR source \rightarrow higher intensities & improved reliability \rightarrow small σ , new in-flight RIBs, nrich nuclei with deep inelastic (access to n-rich nuclei near Z=82, N=126), isotope production Recoil separator for in-flight RIBs \rightarrow higher purity & transport efficiency, access to more experimental stations \rightarrow in-flight rib program for structure & nuclear astrophysics

ATLAS Efficiency & Intensity Upgrade

On the Horizon of 2015-2020, with the completed Upgrade ATLAS will be

- a state-of-the-art stable beam facility
- with RIB capabilities for specific areas (complementary to ISOL facilities & relieving pressure on FRIB for special cases)

ATLAS and the FY2011 President's Budget

- Accelerator Operations: + 3.6%
- Experimental Support: + 4.8%
- Low Energy Research: + 3.5%

→ Operations can continue at FY2010 level

- Accelerator Capital Equipment: 30.8%
- Experimental Support Capital Equipment: -15.4%
- Accelerator Improvement Projects: -13.1 %

This still represents CE budgets larger than those available before FY2009.

→ Priority will be given to Phase 1 of the Upgrade Replacement/Upgrade of Accelerator components delayed New Detector Initiatives will be reduced in scope or delayed

We shall continue to work with DOE/ONP & ATLAS user community to optimize choices

