Fission In R-process Elements (FIRE)

NSAC Meeting

March, 5th 2020

Staff	H. Hayes-Sterbenz, T. Kawano, G. McLaughlin, M. Mumpower, N. Schunck (PI), A. Sonzogni, R. Surman, P. Talou
Postdocs	M. Mumpower (now at LANL), N. Vassh, M. Verriere (now at LLNL)
Students	Kelsey Lund, Evan Ney (summer), Yonglin Zhu

LLNL-PRES-805725

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Factsheet

The goal of the FIRE collaboration is to understand the formation of heavy elements in the universe

- Three main topical areas
 - Astrophysics
 - Nuclear physics (structure and reactions)
 - Nuclear data
- Budget: \$500k/year
 - 2 postdocs (ND and LANL)
 - 1 graduate student (NCSU)
 - 1 summer student (LLNL)
- 3 funding agencies
 - DOE/NP: \$100k/year
 - DOE/USNDP: \$100k/year
 - NA22: \$300k/year
- Metrics (current)
 - 14 published articles
 - 3 submitted articles
 - >29 colloquia, invited talks, seminars
 - 1 FRIB TA Topical Program

Nucleosynthesis

Elements are formed in several different networks of nuclear reactions taking place in various astrophysical environments

- Stellar processes involve reactions with light nuclei
 - Reaction rates can be measured accurately
 - Astrophysical conditions drive remaining uncertainty
- Heavy elements are formed in neutron-rich environments
 - No experimental data
 - Rely on theoretical models

in very neutron-rich environments

The R Process

- Exact conditions still under debate
- Multi-messenger observation of neutron star merger (GW170817) suggests NN mergers are definite candidates
- Supernovae, black-hole collisions, etc. still not completely ruled out

Astronomers just proved the incredible origin of nearly all gold, platinum, and silver in the universe

gold

Ingredients of r-process Simulations

Theoretical simulations require complete and precise nuclear data for all nuclei in the nuclear chart, as well as astrophysical conditions

- To calculate: relative abundances of given elements $Y_7(t)$, $Y_A(t)$, etc.
- Astrophysical inputs = Simulation of supernova explosion or NN merger
 - Provide density and temperature for Maxwell-**Boltzmann statistics**
- Nuclear physics inputs for given (Z,N)
 - Q-values for all decays
 - Decay rates: α -, β -, γ -decay, fission(s)
 - Reaction rates: n-capture, photoreactions
 - **Decay products**
- Nuclear reaction network is set of coupled differential equations giving variations of abundances as a function of nuclear rates
- Compare with stellar and solar abundances

Nucleosynthesis Codes

The FIRE collaboration uses PRISM to compute r-process abundances based on a set of nuclear and astrophysics inputs

- Code co-developed under SciDAC and JINA support
- Clear-cut separation of nuclear models and reaction network

POST Classical th0n2.0_200_80_30_.30 Trajectory

cor	ntrol_example.json ×
1	
2	"nuclear":
3	··-{"datasets": [~
- 4	<pre>{"dtype":"bin", "rtype":"rxn","path":"input/data/ncap_coh350_frdm2012.bin", "active:true, "ie:"no p"},</pre>
5	{"dtype":"bin", "rtype":"rxn","path":"input/data/ncap_coh350_ame2012.bin", "active true, "id _"nca, _ 📕 📃 🗾 📃
6	
7	<pre>("dtype":"bin", "rtype":"rev-rxn", "path":"input/data/sln_frdm2012.bin", "id":"rev-ncap", "active":true},</pre>
8	{"dtype":"bin","rtype":"rev-rxn", "path":"input/data/sln ame2012.bin","id":"rev-ncap", "active":true}.
9	
10	<pre></pre>
11	{"dtype":"bin", "rtype":"prob-decay","path":"input/data/bmd beoh350-gt-sdo frdm2012.bin", "active":true, "id":"beta"}
12	<pre>{"dtype":"bin", "rtype":"prob-decay","path":"input/data/bmdc beoh350-gt-sdo frdm2012.bin", "active":true, "id":"beta"}</pre>
13	<pre>("dtype":"ascii", "rtype":"prob-decay","path":"input/data/betam nubase2016 moller.dat", "active":true, "id":"beta"},~</pre>
14	
15	<pre>("dtype":"bin", "rtype":"prob-rxn","path":"input/data/nif_coh350_frdm2012_asy_ss0.50.bin","id":"nif", "active":true},-</pre>
16	<pre>{"dtype":"bin", "rtype":"prob-decay","path":"input/data/bdfc beoh350-gt-sdo frdm2012 asy ss0.50.bin", "active":true, "id":"bdf"},~</pre>
17	<pre>{"dtype":"ascii", "rtype":"prob-decay","path":"input/data/SF5050_nubase2016.dat","id":"spf", "active":true},-</pre>
18	
19	<pre>{"dtype":"bin", "rtype":"decay", "path":"input/data/alpha frdm2012.bin", "id":"alpha", "active":true},~</pre>
20	<pre>("dtype":"ascii", "rtype":"decay", "path":"input/data/alpha nubase2016.dat", "id":"alpha", "active":true},-</pre>
21	····]},**
22	"conditions": ¬
23	<pre>("trajectory":{"path":"input/conditions/th_nsns150738_lgyr"}, "initial_composition":{"path":"input/conditions/initnsns150738ex"}},</pre>
24	"network":
25	· · · · - {
26	<pre>"extent":{"path":"input/extent/default.dat"},-</pre>
27	••••••"start":{"T9":2e0}, ~
28	<pre>"stop":{"time":lel6}-</pre>
29	· · · } , ¬
30	"output": -
31	<pre>{"time":{"active":false},-</pre>
32	<pre>ab":{"active":true},-</pre>
33	<pre>abA":{"active":true},~</pre>
34	·····"abZ":{"active":false},-
35	·····"tau":{"include":["ncap","rev-ncap","beta","nif","n2n","bdf","spf","alpha"], "active":true},~
36	"flows":{"include":["ncap","rev-ncap","beta","nif","bdf","spf","alpha"], "active":true}-
37	· · · · · Les
38	}
39	Neutron Ctax Neutron Ctax Margar Figsts Conditions
	Neutron Star - Neutron Star Merger Ejecta Conditions
	10-2
	WS3V6
	NTD22 1
	6-1-2012
	10-8
	F UNEDF1 1
	120 130 140 150 160 170 180 190 200

A

Nuclear Inputs

Complete information about the structure, decay and reactions of all atomic nuclei is needed

Highlights

The FIRE collaboration has integrated state-of-the-art calculations of fission and β -decay into the most advanced r-process simulations

- List of highlights
 - Table of initial fission fragment distributions for all Z > 80
 - R-process simulations with physics-based fission fragment distributions
 - Impact of neutron emission from all fission fragments on r-process simulations
 - Discovery of the role of β -delayed fission in r-process
 - Special nuclei: the crucial role of spontaneous fission in ²⁵⁴Cf
- Other notable achievements
 - Fully-microscopic calculation of β -decay rates: toward a fully self-consistent theory of nuclear data for r-process
 - Reverse engineering of nuclear masses: what masses are needed to reproduce features of the r-process peaks?
 - (Nuclear) data mining: the role of β -decay spectrum of fission fragments in shaping the anti-neutrino anomaly of nuclear reactors

Fission

All fission channels (spontaneous, induced, β -delayed) must be accounted for in a r-process calculation

Lawrence Livermore National Laboratory

uncertainties pile up

In complex channels such as β -delayed fission,

Prepared by LLNL under Contract DE-AC52-07NA27344.

Fission Theories

Both microscopic and semi-microscopic fission models have predictive power, but a full-scale, complete description remains beyond reach

First-chance Fission

Capture

Second chance

Fission

awrence Livermore National Laboratory. I NI - PRES-805725

Prepared by LLNL under Contract DE-AC52-07NA27344.

Highlight 1

We computed the first-ever full table of fission fragment distributions for all Z > 80 nuclei by simulating fission dynamics explicitly

- Two-step process
 - Calculate potential energy surfaces in 5-dimensional deformation space
 - Random walk on this surface
- Database of results has been made publicly available to the community

Lawrence Livermore National Laboratory LLNL-PRES-805725

Prepared by LLNL under Contract DE-AC52-07NA27344.

We performed the first r-process calculations with fission yields from a nuclear physics calculation rather than systematics

Highlight 3

We have added the capability to compute the number of neutrons and photons emitted by the fission fragments in r-process simulations

Couple Q-value and daughter nucleus information from β-decay with fission yields
Comparison provide a series in a series in the EDEXA

Compute neutron emission with FREYA

Prepared by LLNL under Contract DE-AC52-07NA27344.

β-decay Theory

 β -decay is a key mechanism of several nucleosynthesis processes and is also involved in fission

р

udu

- β-decay is the primary mechanism that allows synthesizing higher-Z elements in nucleosynthesis
- Weak process embedded in stronglyinteracting many-body system
- Transitions induced by β-decay operators are treated within linear response theory – ORPA with weak external field
- We have coupled QRPA with reaction theory (Hauser-Feshbach) to handle competition between β-, γ-decay and fission

antineutrino

electron

Highlight 4 We have quantified the impact of beta-delayed fission using direct simulation of decay fission channels

M. R. Mumpower, T. Kawano, T. M. Sprouse, N. Vassh, E. M. Holmbeck, R. Surman, and P. Möller, ApJ 869, **14** (2018) N.Vassh, et al., J. Phys. G: Nucl. Part. Phys. **46**, 065202 (2019)

- Darker regions: elements where β-delayed fission occurs the most
- Profound implications for the production of actinides and superheavy elements

Highlight 5 We have identified what is so far the only "smoking gun" that actinides could be produced in a neutron star merger

- Extra heating comes from the spontaneous fission of a single nucleus, $^{\rm 254}Cf$ because of late-time β -decay feeding
 - Nuclear theorists back to work on spontaneous fission of Cf isotopes...
 - Our calculations have observational consequences that can be tested

Summary The FIRE collaboration has delivered a unique, US-based, capability to tackle the problem of the origin of elements in the universe

Lawrence Livermore National Laboratory LLNL-PRES-805725

Outlook

This is a "perfect storm" of multi-messenger observations, FRIB, and theory enabled by HPC and machine learning techniques

- FIRE has made great progress in
 - Incorporating realistic models of fission in r-process simulations
 - Describing β and γ -decay in a single framework
 - Connecting network calculations with astronomical observations
 - Educating new workforce: two FIRE postdocs hired as staff at national laboratories
- Consistency of theoretical inputs is key to reduce nuclear physics uncertainties in r-process simulations
- Next frontiers:
 - Start from nuclear forces and compute nuclear data within a fully quantum-mechanical theory
 - Propagation of uncertainties and the role of machine learning
- Collaborative model works!

