

National Science Foundation Nuclear Physics Overview

Allena K. Opper

- Personnel
- Announcements
- Budget focus on PHY
- Highlights

NSF/MPS/Physics Personnel

France Córdova – Director

- Anne L Kinney Assistant Director for MPS
- Denise Caldwell Physics Division Director
 Saúl González Acting Deputy Division Director
- Bogdan Mihaila Nuclear Theory Program Director
- Jim Thomas Expt'l Nuclear Physics Program Director
 - Allena Opper Expt'l Nuclear Physics Program Director

http://www.nsf.gov/pubs/2015/phy15001/phy15001.jsp?org=PHY http://www.nsf.gov/careers/rotator/index.jsp Solicitation for NSF Physics Division Investigator-Initiated Research Projects <u>18-564</u>

All proposals submitted to the Division of Physics programs must go through this solicitation.

- Deadlines:
 - December 3, 2019 for Particle Astrophysics, Elementary Particle Physics, *Experimental & Theoretical Nuclear Physics*
- Has text on Midscale Instrumentation & Long Duration Efforts
- Follow Proposal & Award Policies & Procedures Guide (PAPPG)

https://www.nsf.gov/pubs/policydocs/pappg17_1/index.jsp

Follow the Proposal Preparation checklist

- Collaborators and Other Affiliations Template
- Follow instructions that are specific to this solicitation

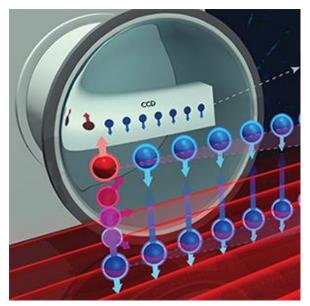
Major Research Instrumentation (MRI) NSF 18-513

- Two tracks:
 - Track 1 \$100 k < \$ from NSF < \$1 M; max of 2/university</p>
 - Track 2 \$1 M < \$ from NSF < \$4M; max of 1/university</p>
- Two types: development and acquisition
- Contact program directors well ahead of submission to discuss (avoid pitfalls)
- Maximum award is \$4M; awards above \$1M compete across the entire Foundation
- Submission window January 1 21, 2020

FY19

- Physics: ~ 25% of the PHY proposals were in ENP
 - Grzywacz, U of TN: Development of a high resolution neutron detector for decay and reaction studies with exotic nuclei; ~ \$910k
 - Wissink, IU: Development of a forward calorimetry upgrade for STAR; ~ \$2,150k
 - Voytas, Wittenberg U: Development of a high sensitivity instrument to search for CP violation in positronium decay; ~ \$292k
 - Lesher, U of WI LC: Acquisition of Si(Li) detectors and two BGO Compton suppression shields for the development of the La Crosse fIREBAll; ~ \$397k

Permanent Position in PHY



Program Director with expertise in QIS

<u>https://www.usajobs.gov/GetJob/ViewDetails/548130300</u>

Topological GNR Qubit $|\psi_1
angle = rac{1}{\sqrt{2}} (|\uparrow\downarrow
angle - |\downarrow\uparrow
angle)$ $|\psi_2\rangle = \frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle)$

Ref: University of California -- Berkeley

Ref: University of Maryland

NSAC: NSF NP Overview

Artificial Intelligence Research Institutes Solicitation: NSF 20-503

The AI Research Institutes program will support the advancement of multidisciplinary, multi-stakeholder research on larger-scale, longer-time-horizon challenges in AI research than are supported in typical research grants

- Joint effort of the NSF, USDA, NIFA, DHS-S&T, DOT, FHWA, & VA to enable AI research
- Two tracks:

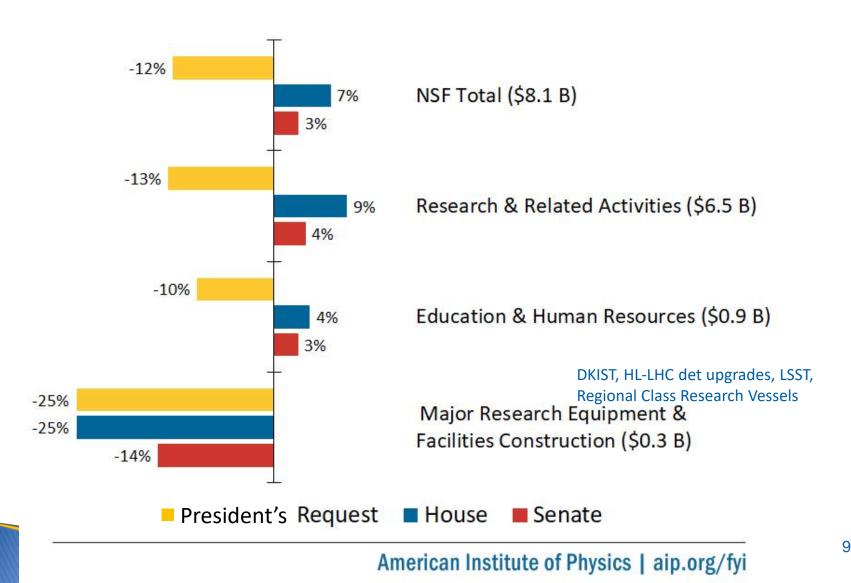
- Institutes in 6 themes (including AI for Discovery in Physics); due date 28-jan-2020
- Planning; due date 30-jan-2020

Mid-scale Research Infrastructure (Mid-scale RI)

- Track 1 (Mid-scale RI-1): \$6-\$20 million implementation or design, funded from R&RA account.
 - Solicitation NSF 19-537
 - \$60M in FY 2019 projected
 - \$30M in FY 2020 Request
 - FY19 awards total \$121M

- Track 2 (Mid-scale RI-2): \$20-\$70 million implementation only, funded from MREFC account.
 - Solicitation NSF 19-542.

\$60M in FY 2020 Request; \$75M in Senate mark


PHY Midscale Instrumentation Proposals should be submitted to the PHY Solicitation <u>18-564</u>

- Design and Construction or Acquisition of Instrumentation
 - R & early D, operations *funded by research programs*
- ~ \$4M < TPC < ~ \$15M; over multiple years
- Selection based on
 - merit review

- exceptional opportunity
- research community priorities.
- Currently 6 Midscale projects (3 Nuclear Physics: MUSE, nEDM, LEGEND-200)
- For more info, see PHY Solicitation

NSF FY20 Budget Proposals \$ in () = FY19 enacted

FY20 PHY \$247.50M

President's Request

(Dollars in Millions)

				Change over		
	FY 2018	FY 2019	FY 2020	FY 2018	Actual	
	Actual	(TBD)	Request	Amount	Percent	
Total	\$310.75	-	\$247.50	-\$63.25	-20.4%	
Research	182.35	-	145.63	-36.72	-20 .1%	
CAREER	10.14	-	6.78	-3.36	-33.1%	
Centers Funding (total)	4.81	-	5.00	0.19	4.0%	
STC: Center for Bright Beams	4.81	-	5.00	0.19	4.0%	
Education	4.50	-	4.70	0.20	4.4%	
Infrastructure	123.90	-	97.17	-26.73	-21.6%	
IceCube	3.50	-	3.50	-	-	
LHC	15.86	-	20.00	4.14	26.1%	
LIGO	39.43	-	44.60	5.17	13.1%	
Midscale Research Infrastructure	14.42	-	6.67	-7.75	-53.7%	
NSCL	24.00	-	22.00	-2.00	-8.3%	
Research Resources	0.09	-	-	-0.09	-100.0%	
Facilities Design Stage Activities (total)	26.60	-	0.40	-26.20	-98.5%	
High Luminosity-LHC ¹	16.60	-	-	-16.60	-100.0%	
Advanced LIGO Plus (LIGO A+)	10.00	-	0.40	-9.60	-96.0%	

¹ FY 2018 Actual reflects \$7.50 million of funding for FY 2019 and FY 2020 development and design. No additional funds are expected in these years.

Budget Trends – NSF Nuclear Physics

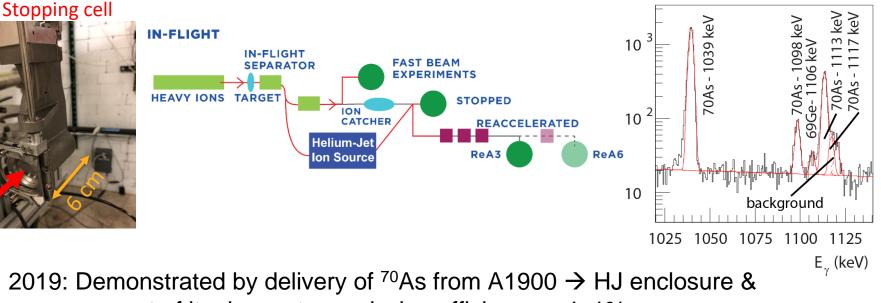
Includes co-funding and other leveraged					funds			25% = R 75% = C			
FY	Nucleon & Hadron QCD	Nuclear Astroph, Reactions, Structure	Prec Meas'ts & Fund. Symm.	Total Exp't Nuclear Physics	Nuclear Theory	Nuclear Program Total (k\$)	NSCL (k\$)	JINA & JINA -CEE (k\$)	MRI (K\$)	Mid- Scale (K\$)	Total Nuclear Physics (k\$)
2013	(k\$) 6,183	(k\$) 4,693	(k\$) 5,653	(k\$) 16,509 base = 16,277	(k\$) 3,474	20,008	21,500	2,150	2,996	490	47,144
2014	5,826	5,189	5,999	17,014 <mark>17,014</mark>	3,514	20,528	22,500	2,280	1,038	1,188	47,533
2015	6,769	4,702	7,304	18,774 <mark>18,267</mark>	4,183	22,957	23,000	2,280	1,801	1,367	51,406
2016	7,141	5,046	7,391	19,579 <mark>17,761</mark>	4,223	23,802	24,000	2,280	1,869	3,238	55,189
2017	6,955	6,273	6,692	19,920 <mark>17,801</mark>	4,344	24,264	24,000	2,280	530	2,990	54,064
2018	7,160	5,048	7,589	19,787 <mark>17,761</mark>	4,384	24,291	24,000	2,280	3,970	5,249	59,791
2019	6,325	7,322	6,884	20,531	3,921	24,452	24,000	2,280	3,549	5,806	60,086

MRI: competes each year; one-time acquisition/development funds Mid-scale: ad hoc competition; design and construction funds (L-200, MUSE, nEDM)

PD 18-5115 July 31, 2018 Program Description: Windows on the Universe: The Era of Multi-Messenger Astrophysics

- Proposals submitted to participating programs in MPS/AST, MPS/PHY and GEO/OPP.
- Proposals funded through "Big Idea" allocation as well as existing programs.
- Criteria: <u>any area of research supported through the</u> <u>participating divisions that address at least one of the</u> <u>following:</u>
 - *Coordination:* Hardware, software, or other infrastructure to coordinate observations involving more than one messenger.
 - Observations: Observations of astrophysical objects or phenomena that are potentially sources of more than one messenger, including the use of existing observatories, experiments, and data archives, as well as the development and construction of new capabilities for advancing multimessenger astrophysics.
 - *Interpretation:* Theory, simulations and other activities to understand or interpret observations of astrophysical objects that are sources of more than one messenger.

https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=505593


MRI: Helium-Jet Ion-Guide System (HJ-IGS) for multi-user operation at NSCL

- 7 atm He-aerosol mixture
- Off-axis and along A1900
- Some selection of isotopes

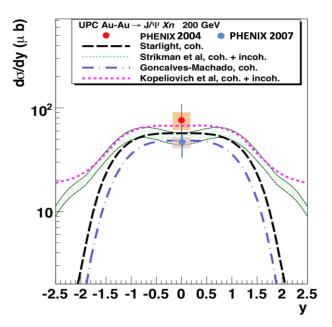
Isotopes transported to HJ-IGS

- Decay experiments
- Ionization & transport to other experimental stations

2019: Demonstrated by delivery of **As from A1900 → HJ enclosure & measurement of its decay; transmission efficiency = 4±1%
 Goal: select & collect short-lived isotopes for simultaneous experiments
 Complementary to isotope harvesting from beam dump

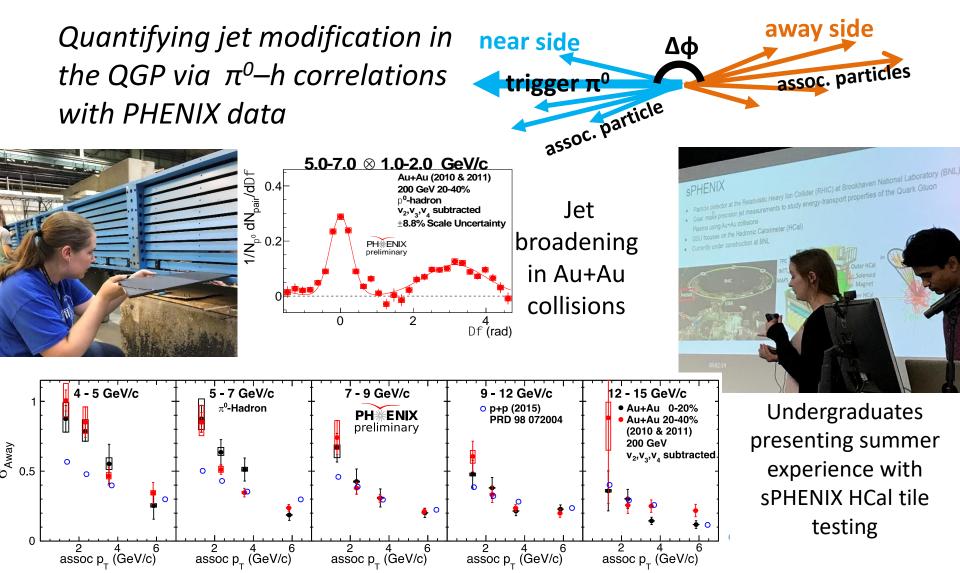
NSAC: NSF NP Overview

HBCU Collision Collaboration



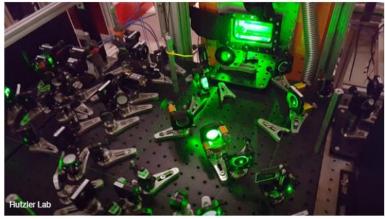
With Mickey Chiu at BNL

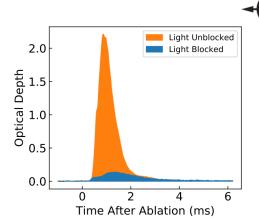
- Analysis of UPC data on photoproduction of J/Ψ from PHENIX
 - \rightarrow x 3 reduction in stat errors

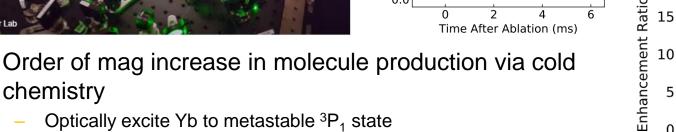


Develop cosmic test stand
→ R&D for future colliders (test RPCs & fast TOF systems)

CAREER: Jet Measurements and a Novel Hadronic Calorimeter at RHIC Megan Connors






CAREER: Search for CP-Violating Hadronic **Physics BSM with Polyatomic Molecules Nick Hutzler**

- Goal: search for Nuclear MQM in cryo beam of ¹⁷³YbOH
 - Nuclear MQMs probe hadronic CP-violation
 - Effects amplified by large E fields in polar molecules
 - Yb has quadrupole deformation \rightarrow enhanced MQM

chemistry

Reactive state to overcome chem barriers

Co-funded by NSF AMO and ENP Programs

NSAC: NSF NP Overview

OCT-2019

100

200

Power (mW)

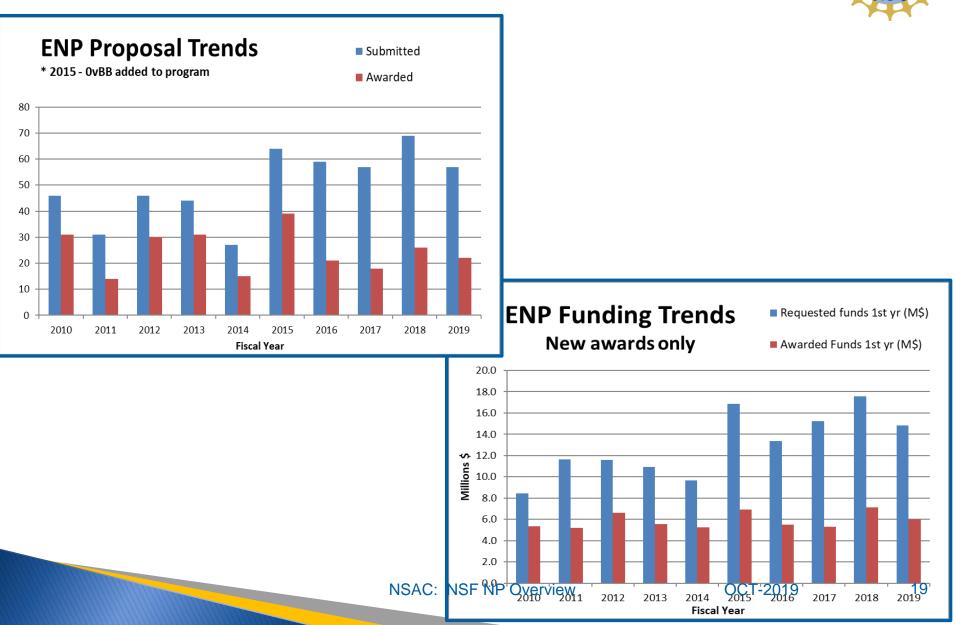
300

15-(b)

For the latest updates, check out https://www.nsf.gov/div/index.jsp?div=PHY

TNSAC: NSF IN

Contact us:


- bmihaila@nsf.gov or call (703)292-8235
- jhthomas@nsf.gov or call (703)292-2911
- aopper@nsf.gov or call (703)292-8958

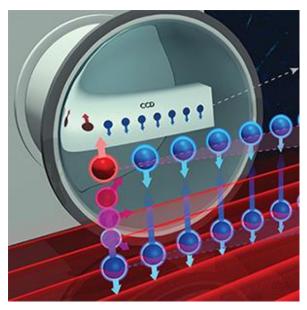
	COVERIES NEWS PUBLICATIONS STATISTICS ABOUT NSF FASTLANE					
	cience Foundation thematical & Physical Sciences (MPS)					
MPS HOME MPS FU	NDING MPSAWARDS MPSDISCOVERIES MPSNEWS ABOUTMPS					
Physics (PHY)	Email Print D Share Physics (PHY) PHY Replaces DCL with Solicitation NSF 14-576					
PHY Home About PHY Funding Opportunities Awards News Events	The Physics Division has issued a solicitation (<u>NSF 14-576</u>) for FY2015 that replaces its prior annual Dear Colleague Letter. The solicitation follows most of the requirements in the Grant Proposal Guide, but has additional requirements that relate primarily to proposers who anticipate having multiple sources of support, and proposals involving significant instrumentation development. The solicitation also has deadlines instead of target dates. All proposals submitted to the Physics Division that are not governed by another solicitation (such as CAREER) should be submitted to this solicitation; otherwise they will be returned without review.					
Discoveries Publications Career Opportunities Facilities and Centers PHY Program Director Jobs See Additional PHY Resources View PHY Staff	PHY Int'l Activities - Potential Co-Review The Physics Division has issued a Dear Colleague Letter (NSF 14-009) to announce the guidelines for "International Activities within the Physics Division - Potential Internation Co-Review". The DCL outlines a possible coordinated review of projects involving international colleagues and counterpart funding organizations where a mutual review and funding process is beneficial to the advancement of Physics research. Contact with the appropriate NSF Program Officer is a necessary first step and additional time for thh coordination must be allowed. Proposals requesting co-review will be competing with all other proposals in that area and must succeed on the strengths of their intellectual men- and broader impact.					
Search PHY Staff	Special Announcements					
MPS Organizations Astronomical Sciences (AST) Chemistry (CHE) -NSAC: NSF NP Over	MPS Alliances for Graduate Education and the Professoriate - Graduate Research Supplements (AGEP-GRS) Dear Colleague Letter (NSF 13-071) Dear Colleague Letter - Announcement of Instrumentation Fund to Provide Mid-Scale VIEWhentation for FY2014 Awards in Physics Division 109F 13-118)					

Backup Slides

Experimental Nuclear Physics

FY20 Funding for NSF Big Ideas President's Request

(Dollars in Millions)


	FY 2019
_Big Ideas	Request
Research Ideas	\$180.00
Harnessing the Data Revolution for 21st- Century Science and Engineering - HDR (CISE/ITR) ¹	30.00
Navigating the New Arctic - NNA (GEO/ICER)	30.00
The Future of Work at the Human-Technology Frontier - FW-HTF (ENG/EFMA) ¹	30.00
The Quantum Leap - QL (MPS/OMA)	30.00
Understanding the Rules of Life - URoL (BIO/EF)	30.00
Windows on the Universe - WoU (MPS/OMA)	30.00
Process Ideas	\$102.50
Growing Convergence Research - GCR (IA)	16.00
Inclusion across the Nation of Communities of Learners of Underrepresented Discoverers in Engineering and Science - NSF INCLUDES (EHR)	20.00
Mid-Scale Research Infrastructure (IA)	60.00
NSF 2026 Fund (IA)	6.50
Total, NSF Big Ideas	\$282.50

Quantum Leap

Exploiting quantum mechanics to observe, manipulate, and control the behavior of particles and energy at atomic and subatomic scales, resulting in next-generation technologies for sensing, computing, modeling, and communicating.

- NSF 18-578 QAMASEI: Foundries for Q. Materials Science, Engineering, and Info. \$20M - \$25M
- NSF 19-507 QCIS Faculty Fellows; FY'19 and FY'20; \$6.7M
- NSF 19-532 QII-TAQS Transformational Advances in Quantum Systems; \$26M in FY'19
- NSF 19-559 QLCI Quantum Leap Challenge Institutes; \$5M/year for each of several centers

https://www.nsf.gov/news/special_reports/big_ideas/quantum.jsp

OCT-2019

