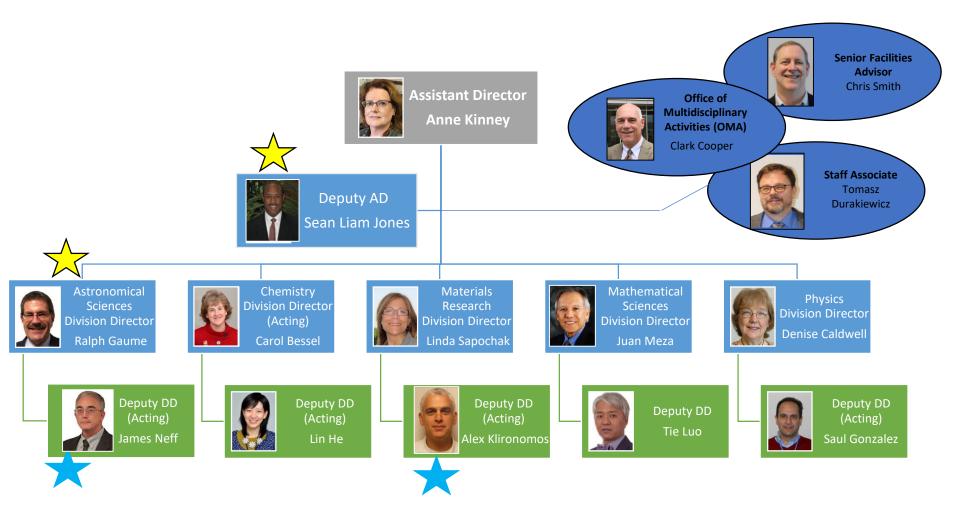
National Science Foundation Mathematical and Physical Sciences Update

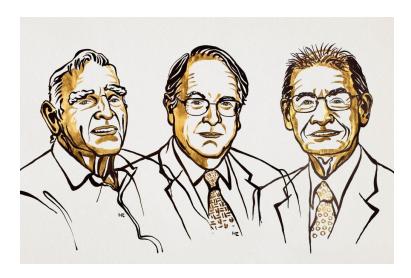
Nuclear Science Advisory Committee

Meeting
October 18, 2019



Denise Caldwell
Division Director, Physics

Directorate for Mathematical and Physical Science


Staff Changes in MPS

2019 Awardees Funded by NSF/MPS

2019 Nobel Laureates in Chemistry

Nobel Prize in Chemistry

 John Goodenough, M. Stanley Wittingham

Nobel Prize in Physics

James Peebles

Breakthrough Prize in Physics

EHT Collaboration

Breakthrough Prize in Mathematics

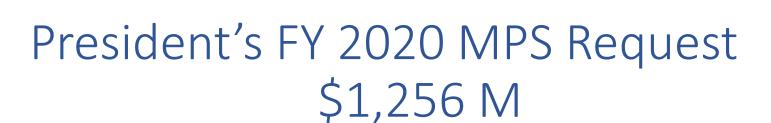
Alex Eskin

Budget

- FY 2019 Appropriation
 - \$8.075 billion enacted for NSF
 - \$1.465 billion for MPS

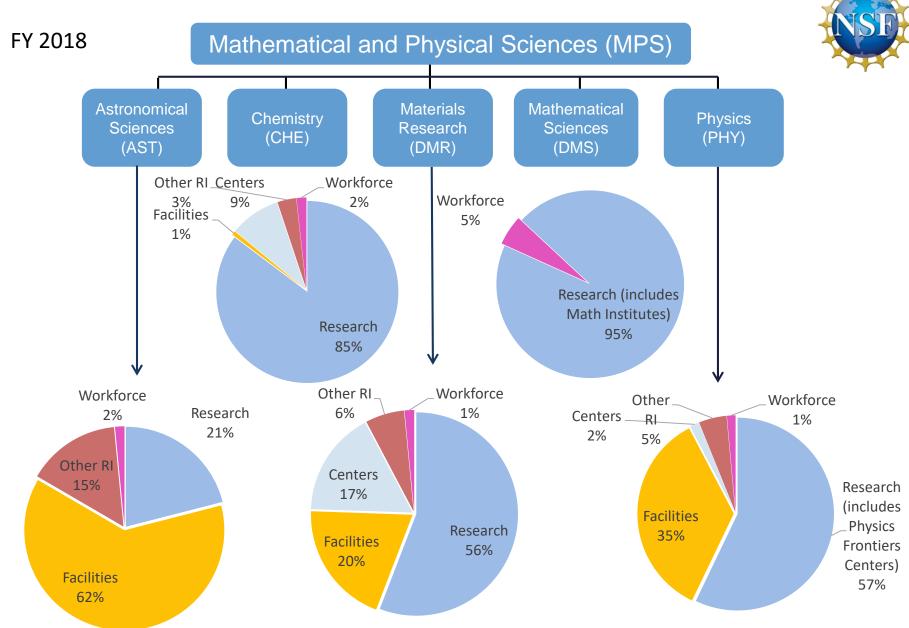
- FY 2020
 - Continuing Resolution until 11/21/19
 - NSF budget request = \$7.226 billion
 - MPS budget request = \$1.255 billion

SUMMARY TABLE FY 2020 BUDGET REQUEST TO CONGRESS

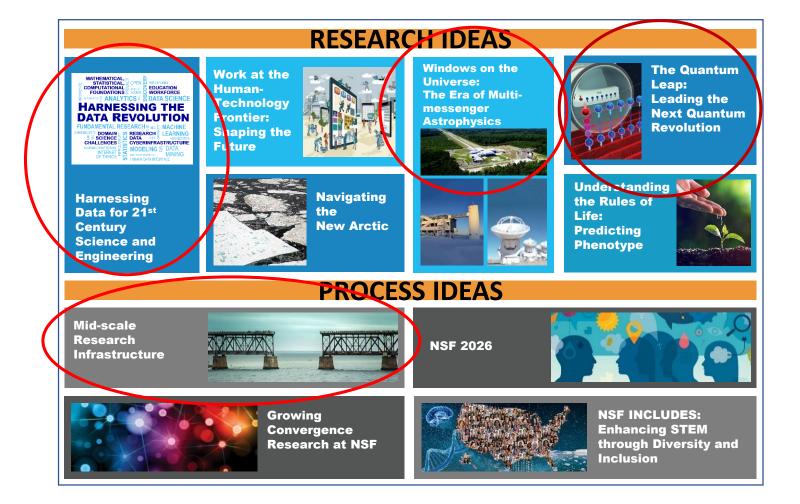

(Dollars in Millions)

FY 2018 Actual \$756.60 960.80 977.90 767.92 209.98 907.80 1,503.41 250.09 48.98	FY 2019 Annualized CR ¹	FY 2019 Enacted ²	FY 2020 Request \$683.36 883.04 881.42 686.27 195.15 787.05	-\$73.24 -77.76 -96.48 -81.65 -14.83 -120.75	
\$756.60 960.80 977.90 767.92 209.98 907.80 1,503.41	Annualized CR ¹	Enacted ²	\$683.36 883.04 881.42 686.27 195.15	-\$73.24 -77.76 -96.48 -81.65 -14.83	-9.7° -8.1° -9.9° -10.6°
\$756.60 960.80 977.90 767.92 209.98 907.80 1,503.41	- - - - -	- - - - -	\$683.36 883.04 881.42 686.27 195.15	-\$73.24 -77.76 -96.48 -81.65 -14.83	-9.7° -8.1° -9.9° -10.69
960.80 977.90 767.92 209.98 907.80 1,503.41	- - - - -	- - - - -	883.04 881.42 686.27 195.15	-77.76 -96.48 -81.65 -14.83	-8.19 -9.99 -10.69
977.90 767.92 209.98 907.80 1,503.41	- - - - -	-	881.42 686.27 195.15	-96.48 -81.65 -14.83	-9.99 -10.69
767.92 209.98 907.80 1,503.41	- - - -	- - -	686.27 195.15	-81.65 -14.83	-10.69
209.98 907.80 1,503.41	- - -		195.15	-14.83	
907.80 1,503.41 250.69	:	-			-7.1
1,503.41 250.69	-	-	787.05	120 7F	
200.09	-			-120.75	-13.3
		-	1,255.82	-247.59	-16.5
48 Q8	-	-	230.00	-20.01	-0.2
40.90	-	-	46.24	-2.74	-5.6
501.72	-	-	403.39	-98.33	-19.6
71.13	-	-	71.00	-0.13	-0.2
430.59	-	-	332.39	-98.20	-22.8
471.05	-	-	491.04	19.99	4.2
1 43		_	1.52	0.09	6.3
\$6,380.38	\$6,334.48	\$6,520.00	\$5,662.96	-\$717.42	-11.2
\$903.87	\$902.00	\$910.00	\$823.47	-\$80.40	-8.9
\$186.30	\$182.80	\$295.74	\$223.23	\$36.93	19.8
\$328.51	\$328.51	\$329.54	\$336.89	\$8.38	2.6
					-4.6
					1.7
\$7,818.43		\$8,075.00	\$7,066.00	-\$752.43	-9.6
192.26	192.23	192.23	120.00	-72.26	-37.6
29.22	71.76	71.76	40.00	10.78	36.9
\$221.48	\$263.99	\$263.99	\$160.00	-\$61.48	-27.8
				+	-21.0
	430.59 471.05 1 43 \$6,380.38 \$903.87 \$186.30 \$328.51 \$4.30 \$15.09 \$7,818.43 192.26 29.22	430.59 471.05 - 1 43 - \$6,380.38 \$903.87 \$186.30 \$186.30 \$182.80 \$328.51 \$4.30 \$4.37 \$15.09 \$7,818.43 \$7,767.36 192.26 192.23 29.22 71.76	430.59 - - 471.05 - - 1 43 - - \$6,380.38 \$6,334.48 \$6,520.00 \$903.87 \$902.00 \$910.00 \$186.30 \$182.80 \$295.74 \$328.51 \$328.51 \$329.54 \$4.30 \$4.37 \$4.37 \$15.09 \$15.20 \$15.35 \$7,818.43 \$7,767.36 \$8,075.00 192.26 192.23 192.23 29.22 71.76 71.76	430.59 - - 332.39 471.05 - - 491.04 1 43 - - 1.52 \$6,380.38 \$6,334.48 \$6,520.00 \$5,662.96 \$903.87 \$902.00 \$910.00 \$823.47 \$186.30 \$182.80 \$295.74 \$223.23 \$328.51 \$328.51 \$329.54 \$336.89 \$4.30 \$4.37 \$4.37 \$4.10 \$15.09 \$15.20 \$15.35 \$15.35 \$7,818.43 \$7,767.36 \$8,075.00 \$7,066.00 192.26 192.23 192.23 120.00 29.22 71.76 71.76 40.00	430.59 - - 332.39 -98.20 471.05 - - 491.04 19.99 1.43 - - 1.52 0.09 \$6,380.38 \$6,334.48 \$6,520.00 \$5,662.96 -\$717.42 \$903.87 \$902.00 \$910.00 \$823.47 -\$80.40 \$186.30 \$182.80 \$295.74 \$223.23 \$36.93 \$328.51 \$328.51 \$329.54 \$336.89 \$8.38 \$4.30 \$4.37 \$4.37 \$4.10 -\$0.20 \$15.09 \$15.20 \$15.35 \$15.35 \$0.26 \$7,818.43 \$7,767.36 \$8,075.00 \$7,066.00 -\$752.43 192.26 192.23 192.23 120.00 -72.26 29.22 71.76 71.76 40.00 10.78

Totals exclude reimbursable amounts.


¹ Annualized CR amount shown to be consistent with figures presented with the President's budget, which was finalized prior to the enactment of the FY 2019 Omnibus appropriation.

² Funding amounts below the account level for the FY 2019 Enacted were not available at the time of printing.


MPS Funding							
(Dollars in Millions)							
	FY 2018	FY 2019	FY 2020	Change FY 2018 /			
	Actual	(TBD)	Request	Amount	Percent		
Astronomical Sciences (AST)	\$311.16	-	\$217.08	-\$94.08	-30.2%		
Chemistry (CHE)	246.29	-	214.18	-32.11	-13.0%		
Materials Research (DMR)	337.14	-	273.78	-63.36	-18.8%		
Mathematical Sciences (DMS)	237.69	-	203.26	-34.43	-14.5%		
Physics (PHY)	310.75	-	247.50	-63.25	-20.4%		
Office of Multidisciplinary Activities (OMA)	60.39	-	100.02	39.63	65.6%		
Total	\$1,503.41	-	\$1,255.82	-\$247.59	-16.5%		

Source: FY 2018 Actuals Data

NSF's 10 Big Ideas

NSF's Role in the National Quantum Initiative

Contribution to national strategy

NATIONAL STRATEGIC OVERVIEW FOR QUANTUM INFORMATION SCIENCE Basic QISE research

31 'quantum' Nobel laureates funded since 1964

Quantum workforce development

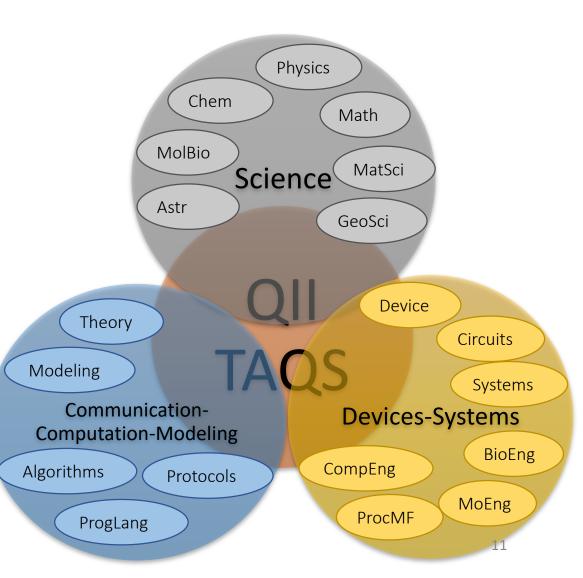
Interagency collaboration

https://www.nsf.gov/mps/quantum/quantum research at nsf.jsp

Taking the Leap – FY 2019 +

NSF 19-559 Quantum Leap Challenge Institutes (QLCI); Total Funding Amt. \$94M; 18 Conceptualization Grants in FY 2019 (\$3M); First full Institute awards in FY 2020; Second group in FY 2021

QII-TAQS Incubators: Transformational Advances in Quantum Systems; Follow-on to extremely successful FY 2018 RAISE (TAQS) awards; 19 Awards in FY 2019; \$35.5 M over two years


Quantum Computing and Information Science Faculty Fellows (QCIS-FF)
Two Awards in FY 2019, Each \$250k per year for three years

Enabling Quantum Leap: Convergent Accelerated Discovery Foundries for Quantum Materials Science, Engineering and Information (Q-AMASE-i); Award 1906325 "Enabling Quantum Leap: Q-AMASE-i: Quantum Foundry at UCSB"; A. Bleszynski-Jayich; \$25M over six years.

NSF 19-532: Quantum Idea Incubator - Transformational Advances in Quantum Systems (QII -TAQS)

- Concept: the Quantum Idea Incubator solicitation aims to support the process of translating innovative, original, and potentially transformative ideas into reality
- Includes: at least three research disciplines, which preferably come from at least two of the recommended thrust areas

QI-TAQS Awards

CII-TAQS: Quantum Devices with Majorana Fermions in High-Quality Three-Dimensional Topological Insulator Heterostructures William Oliver Massachusetts institute of Technology QII-TAQS: Characterizing and Utilizing 2D van der Wals Materials with Superconducting Qubits William Oliver Massachusetts institute of Technology QII-TAQS: Topological Quantum Devices from Nanoscale Mechanical Control of Materials Stephen Wu University of Rochester QII-TAQS: Spatially and Temporally Resolved Ultrasensitive Magnetic Sensing of Quantum Materials Gang Xiao Brown University QII-TAQS: Solid State Integration of Molecular Qubits Ezekiel Johnston-Halperin Ohio State University QII-TAQS: Solid State Integration of Molecular Qubits Ezekiel Johnston-Halperin Ohio State University QII-TAQS: Quantum Network Alexander Gaeta Columbia University QII-TAQS: Chip-Scale Quantum Emulators Based on Polaritonic Lattices Vinod Menon CUNY City College QII-TAQS: Quantum Circuits Through Symmetry-Driven Valley Optoelectronics Ritesh Agarwal University of Chicago QII-TAQS: Quantum Metrological Platform for Single-Molecule Bio-Sensing Peter Maurer University of Chicago QII-TAQS: Quantum-Enhanced Telescopy Paul Kwlat University of Illinois at Urbana-Champaign	
Heterostructures QII-TAQS: Characterizing and Utilizing 2D van der Wals Materials with Superconducting Qubits William Oliver Massachusetts Institute of Technology QII-TAQS: Topological Quantum Devices from Nanoscale Mechanical Control of Materials Stephen Wu University of Rochester QII-TAQS: Spatially and Temporally Resolved Ultrasensitive Magnetic Sensing of Quantum Materials Gang Xiao Brown University QII-TAQS: Solid State Integration of Molecular Qubits Ezekiel Johnston-Halperin Ohio State University QII-TAQS: All-Photonic Quantum Network Alexander Gaeta Columbia University QII-TAQS: Quantum Photonics at Telecommunications Wavelengths Based on Metal-Ion-Doped Materials Rufus Cone Montana State University QII-TAQS: Chip-Scale Quantum Emulators Based on Polaritonic Lattices Vinod Menon CUNY City College QII-TAQS: Quantum Circuits Through Symmetry-Driven Valley Optoelectronics Ritesh Agarwal University of Chicago	
QII-TAQS: Topological Quantum Devices from Nanoscale Mechanical Control of Materials Stephen Wu University of Rochester QII-TAQS: Spatially and Temporally Resolved Ultrasensitive Magnetic Sensing of Quantum Materials Gang Xiao Brown University QII-TAQS: Enhancing Quantum Coherence by Dissipation in Programmable Atomic Arrays Sebastian Will Columbia University QII-TAQS: Solid State Integration of Molecular Qubits Ezekiel Johnston-Halperin Ohio State University QII-TAQS: All-Photonic Quantum Network Alexander Gaeta Columbia University QII-TAQS: Quantum Photonics at Telecommunications Wavelengths Based on Metal-Ion-Doped Materials Rufus Cone Montana State University QII-TAQS: Chip-Scale Quantum Emulators Based on Polaritonic Lattices Vinod Menon CUNY City College QII-TAQS: Quantum Circuits Through Symmetry-Driven Valley Optoelectronics Ritesh Agarwal University of Pennsylvania QII-TAQS: Quantum Metrological Platform for Single-Molecule Bio-Sensing Peter Maurer University of Chicago	
QII-TAQS: Spatially and Temporally Resolved Ultrasensitive Magnetic Sensing of Quantum Materials Gang Xiao Brown University QII-TAQS: Enhancing Quantum Coherence by Dissipation in Programmable Atomic Arrays Sebastian Will Columbia University QII-TAQS: Solid State Integration of Molecular Qubits Ezekiel Johnston-Halperin Ohio State University QII-TAQS: All-Photonic Quantum Network Alexander Gaeta Columbia University QII-TAQS: Quantum Photonics at Telecommunications Wavelengths Based on Metal-Ion-Doped Materials Rufus Cone Montana State University QII-TAQS: Chip-Scale Quantum Emulators Based on Polaritonic Lattices Vinod Menon CUNY City College QII-TAQS: Quantum Circuits Through Symmetry-Driven Valley Optoelectronics Ritesh Agarwal University of Pennsylvania QII-TAQS: Quantum Metrological Platform for Single-Molecule Bio-Sensing Peter Maurer University of Chicago	
QII-TAQS: Enhancing Quantum Coherence by Dissipation in Programmable Atomic Arrays Sebastian Will Columbia University QII-TAQS: Solid State Integration of Molecular Qubits Ezekiel Johnston-Halperin Ohio State University QII-TAQS: All-Photonic Quantum Network Alexander Gaeta Columbia University QII-TAQS: Quantum Photonics at Telecommunications Wavelengths Based on Metal-Ion-Doped Materials Rufus Cone Montana State University QII-TAQS: Chip-Scale Quantum Emulators Based on Polaritonic Lattices Vinod Menon CUNY City College QII-TAQS: Quantum Circuits Through Symmetry-Driven Valley Optoelectronics Ritesh Agarwal University of Pennsylvania QII-TAQS: Quantum Metrological Platform for Single-Molecule Bio-Sensing Peter Maurer University of Chicago	
QII-TAQS: Solid State Integration of Molecular Qubits Ezekiel Johnston-Halperin Ohio State University QII-TAQS: All-Photonic Quantum Network Alexander Gaeta Columbia University QII-TAQS: Quantum Photonics at Telecommunications Wavelengths Based on Metal-Ion-Doped Materials Rufus Cone Montana State University QII-TAQS: Chip-Scale Quantum Emulators Based on Polaritonic Lattices Vinod Menon CUNY City College QII-TAQS: Quantum Circuits Through Symmetry-Driven Valley Optoelectronics Ritesh Agarwal University of Pennsylvania QII-TAQS: Quantum Metrological Platform for Single-Molecule Bio-Sensing Peter Maurer University of Chicago	
QII-TAQS: All-Photonic Quantum Network Alexander Gaeta Columbia University QII-TAQS: Quantum Photonics at Telecommunications Wavelengths Based on Metal-Ion-Doped Materials Rufus Cone Montana State University QII-TAQS: Chip-Scale Quantum Emulators Based on Polaritonic Lattices Vinod Menon CUNY City College QII-TAQS: Quantum Circuits Through Symmetry-Driven Valley Optoelectronics Ritesh Agarwal University of Pennsylvania QII-TAQS: Quantum Metrological Platform for Single-Molecule Bio-Sensing Peter Maurer University of Chicago	
QII-TAQS: Quantum Photonics at Telecommunications Wavelengths Based on Metal-Ion-Doped Materials Rufus Cone Montana State University QII-TAQS: Chip-Scale Quantum Emulators Based on Polaritonic Lattices Vinod Menon CUNY City College QII-TAQS: Quantum Circuits Through Symmetry-Driven Valley Optoelectronics Ritesh Agarwal University of Pennsylvania QII-TAQS: Quantum Metrological Platform for Single-Molecule Bio-Sensing Peter Maurer University of Chicago	
QII-TAQS: Chip-Scale Quantum Emulators Based on Polaritonic Lattices Vinod Menon CUNY City College QII-TAQS: Quantum Circuits Through Symmetry-Driven Valley Optoelectronics Ritesh Agarwal University of Pennsylvania QII-TAQS: Quantum Metrological Platform for Single-Molecule Bio-Sensing Peter Maurer University of Chicago	
QII-TAQS: Quantum Circuits Through Symmetry-Driven Valley Optoelectronics Ritesh Agarwal University of Pennsylvania QII-TAQS: Quantum Metrological Platform for Single-Molecule Bio-Sensing Peter Maurer University of Chicago	
QII-TAQS: Quantum Metrological Platform for Single-Molecule Bio-Sensing Peter Maurer University of Chicago	
QII-TAQS: Quantum-Enhanced Telescopy Paul Kwiat University of Illinois at Urbana-Champaign	
QII-TAQS: Simulating Entangled Quantum Chemical Abstract Machines Srinivasan Iyengar Indiana University	
QII-TAQS: Majorana Nanomanipulation for Topological Quantum Computing Jennifer Hoffman Harvard University	
QII-TAQS: Strongly Interacting Photons in Coupled Cavity Arrays: A Platform for Quantum Many-Body Simulation Arka Majumdar University of Washington	
QII-TAQS: Suppressing and Correcting Errors in Hybrid Superconducting Qubit Systems Eli Levenson-Falk University of Southern California	
QII-TAQS: A Chip-Scale Spin-Photon Memory Interface with Coherence Exceeding One Second Chee Wei Wong University of California-Los Angeles	
QII-TAQS: Quantum Control of Ultracold Atoms in Optical Lattices for Inertial Sensing for Space Applications Dana Anderson University of Colorado at Boulder	
QII-TAQS: Quantum Machine Learning with Photonics Edo Waks University of Maryland College Park	

What are Quantum Leap Challenge Institutes (QLCI)?

NSF 19-559

- The QLCI program will support large-scale projects driven by a
 cross-disciplinary challenge research theme for advancing the
 frontiers of quantum information science and engineering.
- Timely and bold research agenda aimed at making breakthroughs on compelling challenges in a 5-year period.
- Conceptualize, develop, and implement revolutionary new approaches and technologies for quantum information processing.
- Research will span the focus areas of quantum computation, quantum communication, quantum simulation, or quantum sensing.

The QLCI program will support two types of awards:

Conceptualization Grants (CGs) funded at a level of \$100,000-\$150,000 for 12 months

Challenge Institute (CI) awards funded at a level of up to \$5,000,000/year for 5 years

Two rounds of competition:

ROUND I (2019-2020): **CG or CI proposals** but not both

ROUND II (2020-2021): CI proposals only

CG awardees will have the opportunity to submit a CI proposal in Round II

Quantum Leap Challenge Institute Conceptualization Grant Program Concept

- Conceptualization Grants intend to build capacity among teams to plan for large-scale, interdisciplinary research projects that aim to advance the frontiers of quantum information science and engineering.
- Research at these Institutes will span the focus areas of quantum computation, quantum communication, quantum simulation, and/or quantum sensing.
- The Institutes are expected to foster multidisciplinary approaches to specific scientific, technological, educational, and workforce development goals in these fields.
- Funding up to \$150k, 12 months

QLCI Conceptualization Grant Awards

Title	PI	Organization
QLCI-CG: Nevada Institute for Quantum Sciences and Technology		
QLCI-CG: Quantum Software for Scientific and Engineering Applications	Bernard Zygelman	University of Nevada Las Vegas
OLG. CC. Three Overham leatings	George Siopsis	University of Tennessee Knoxville
QLCI - CG: Texas Quantum Institute	Junichiro Kono	William Marsh Rice University
QLCI-CG Quantum Challenge Institute for Quantum Photonic Information Processing	Ryan Camacho	Brigham Young University
QLCI - CG: Quantum Photonic Institute	Donald Figer	Rochester Institute of Tech
QLCI-CG: Design of Novel Functional Materials for Quantum Devices	Vasili Perebeinos	SUNY at Buffalo
QLCI-CG: Institute for Hybrid Quantum Systems	Kai-Mei Fu	University of Washington
QLCI-CG: Conceptualization of The Institute for Quantum Biology on Quantum Computers	Beverly Sanders	University of Florida
QLCI-CG: Scalable Integrated Platforms for Quantum Information Processing	Marek Osinski	University of New Mexico
QLCI-CG: Atomic, Molecular, and Photonic Instruments on Chip for Quantum Sensing	Chandra Raman	Georgia Tech Research Corporation
QLCI-CG: Center for a Quantum-Engineered Distributed Computing and Communication Testbed	Eden Figueroa	SUNY at Stony Brook
QLCI-CG: Towards a Boston Area Quantum Science and Engineering Institute	Andrei Ruckenstein	Trustees of Boston University
QLCI-CG: The Open Quantum Frontier Institute	Lincoln Carr	Colorado School of Mines
QLCI-CG: Conceptualizing a Quantum Information Bioscience Institute for Quantum Sensing and Simulations in Novel Hybrid Architectures		
	Maria Procopio	Johns Hopkins University
QLCI-CG: Center for Quantum Sensors	Kater Murch	Washington University
QLCI-CG: Identification and Control of Fundamental Properties of Quantum Systems	Vesna Mitrovic	Brown University
QLCI-CG: Center for Interdisciplinary Research in Quantum Information Theory and Simulation	Canbia Cananau	Vissinia Palutanhaia Instituto and State University
QLCI-CG: Institute for Chiral-Quantum Materials Interfaces	Sophia Economou	Virginia Polytechnic Institute and State University
qual co. Institute for Gintal quantum Materials Interfaces	Vladimiro Mujica	Arizona State University 16

Mid-scale Research Infrastructure (Mid-scale RI) Opportunities

- Mid-scale RI is an NSF Big Idea to address the growing needs for RI to advance research.
- NSF-wide program will support projects in the MRI MREFC gap (~\$6 to \$70 million range).
- RI is broadly defined, from disciplinary instrumentation to mid-scale facilities, upgrades, cyberinfrastructure, and others.
- Two solicitations released: one for projects between ~\$6 M and ~\$20 M (MSRI-1) and one for ~\$20 \$70 M (MSRI-2).
- Awards for first group have been made; Full proposals for second are in and under review

Mid-Scale RI-1 Awards in MPS Disciplines

Mid-scale RI-1 (M1:IP): A world-class Neutron Spin Echo Spectrometer for the Nation:

UD-NIST-UMD Consortium; Award Number: 1935956;

Principal Investigator: Norman Wagner; University of Delaware

Mid-scale RI-1 (M1:IP): NSF National EXtreme Ultrafast Science (NEXUS) Facility

Award Number: 1935885; Principal Investigator: Lawrence Baker; Ohio State University

Mid-scale RI-1 (M1:IP): Zettawatt-Equivalent Ultrashort Pulse Laser System (ZEUS)

Award Number: 1935950; Principal Investigator: Karl Krushelnick;

University of Michigan Ann Arbor

Mid-scale RI-1 (M1:DP): Next Generation Event Horizon Telescope Design

Award Number: 1935980; Principal Investigator: Sheperd Doeleman

Smithsonian Institution Astrophysical Observatory

PD 18-5115 July 31, 2018

Program Description: Windows on the Universe: The Era of Multi-Messenger Astrophysics

- Proposals submitted to participating programs in MPS/AST, MPS/PHY and GEO/OPP.
- Proposals funded through "Big Idea" allocation as well as existing programs.
- Criteria: <u>any area of research supported through the</u> <u>participating divisions that address at least one of the</u> following:
 - Coordination: Hardware, software, or other infrastructure to coordinate observations involving more than one messenger.
 - Observations: Observations of astrophysical objects or phenomena that are potentially sources of more than one messenger, including the use of existing observatories, experiments, and data archives, as well as the development and construction of new capabilities for advancing multimessenger astrophysics.
 - Interpretation: Theory, simulations and other activities to understand or interpret observations of astrophysical objects that are sources of more than one messenger.

https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=505593

Fiscal 2019 – WoU-MMA

\$30M from WoU-MMA awarded in FY19
66 awards (full or co-funded w/ PHY/AST & OMA)
Roughly 2/3 went for support of individual investigators
The remaining 1/3 was split between Instrumentation and Facilities

Examples:

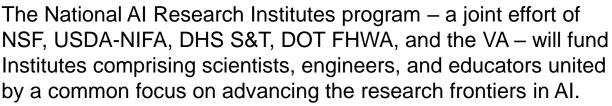
PI Community (individual investigators) Ice Cube – F. Halzen (Univ. of Wisconsin) Support for 19 institutions to do the scientific analysis of data taken with the IceCube neutrino detector

Instrumentation SNEWS: a Super Nova Early Warning System - R. Lang et al. Analysis of neutrino detector data to provide a prompt alert for an impending supernova ... hours before it will be visible in the sky

Facilities SCIMMA – P. Brady et al. Scalable Cyberinfrastrucure Institute for Multi-Messenger Astrophysics

NSF 20-503, October 8, 2019

National Artificial Intelligence (AI) Research Institutes:


Accelerating Research, Transforming Society, and Growing the American Workforce

DEPART

CALLED STATES OF AMERICA

Submissions to the **Planning** track are encouraged in any areas of foundational and use-inspired research appropriate to NSF and its partner organizations. Proposals for the **Institute** track must have a principal focus in one or more of the following themes

- Trustworthy AI;
- Foundations of Machine Learning;
- AI-Driven Innovation in Agriculture and the Food System;
- AI-Augmented Learning;
- Al for Accelerating Molecular Synthesis and Manufacturing; and
- Al for Discovery in Physics.

Proposal Deadlines:

- January 28, 2020 (for Institute proposals in one of the six specified themes)
- January 30, 2020 (for Planning proposals)

