US Nuclear Data Program

A.A. Sonzogni

National Nuclear Data Center

sonzogni@bnl.gov

www.nndc.bnl.gov

www.nndc.bnl.gov/usndp

a passion for discovery

Office of Science

The Beginning

International Congress of Radiology and Electricity

2nd congress, Brussels, September 13-15 1910.

788

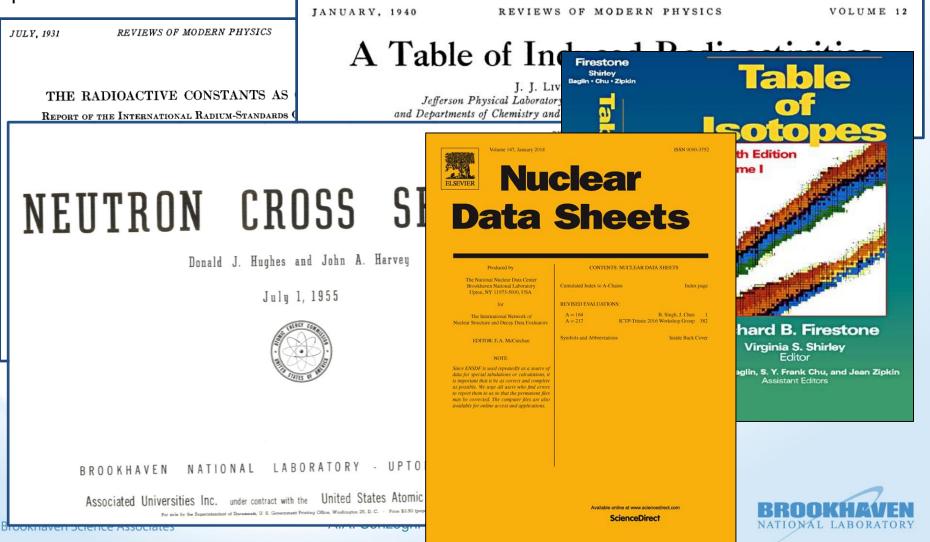
SCIENCE

[N. S. VOL. XXXII. No. 831

The proceedings were begun by Professor Rutherford, who stated that he had recently compared, by the γ -ray method, the radium standards employed in the leading laboratories of several different countries and had observed very considerable differences, amounting in some cases to 20 per cent., between them. He pointed out the importance of a uniform, international standard by which the results and experiments of workers in all parts of the world might be brought into accord.

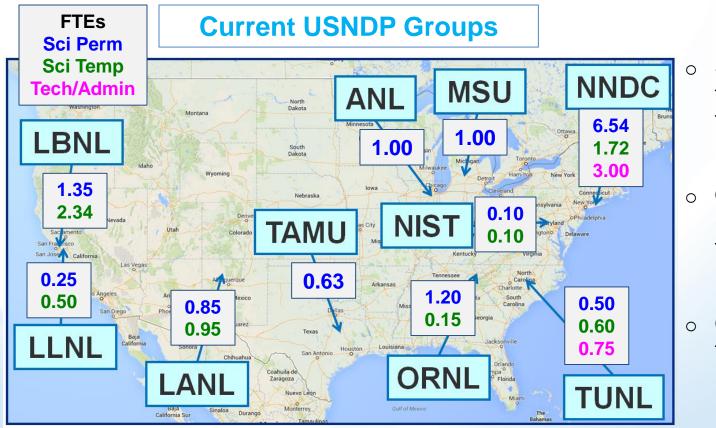
It is to be hoped that the International Radium Standards Committee, in its efforts to place radioactive measurements on the same accurate basis as electrical and other measurements, will be supported financially by the governments of the countries represented. All questions with regard to the international radium standard should be addressed to Professor Stefan Meyer, the secretary of the International Committee. Institut fur Radiumforschung, Waisenhausgasse 3, Vienna IX., Austria. BERTRAM B. BOLTWOOD

Some goals have not changed:


- Reduce uncertainties below 20%
- Request financial support

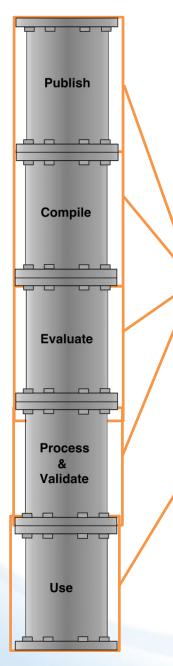
Vienna still a major center for applied nuclear physics (IAEA)

Nuclear Data


The need to count with a list of measured nuclear properties (compilation), that was critically reviewed (evaluation) and published for the use of other researchers (dissemination) has been present since the earliest times

US Nuclear Data Program

The mission of the United States Nuclear Data Program (USNDP) is to provide current, accurate, authoritative data for workers in pure and applied areas of nuclear science and engineering. This is accomplished primarily through the compilation, evaluation, dissemination, and archiving of extensive nuclear datasets. USNDP also addresses gaps in the data, through targeted experimental studies and the use of theoretical models. (Updated in 2014).


A.A. Sonzogni – NSAC, March 12, 2018

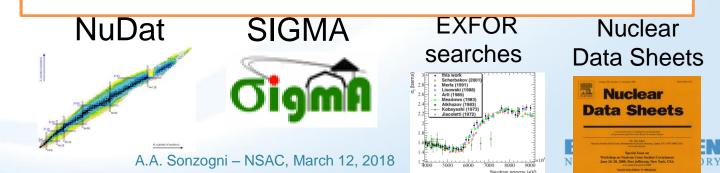
Brookhaven Science Associates

- Some ND groups trace back their roots to the Manhattan Project (LBNL).
- Other ND groups
 (BNL, ORNL) were formed by Manhattan Project alumni.
- Current organization
 follows a mid-1990s
 DoE review.

The USNDP main products and the nuclear data pipeline

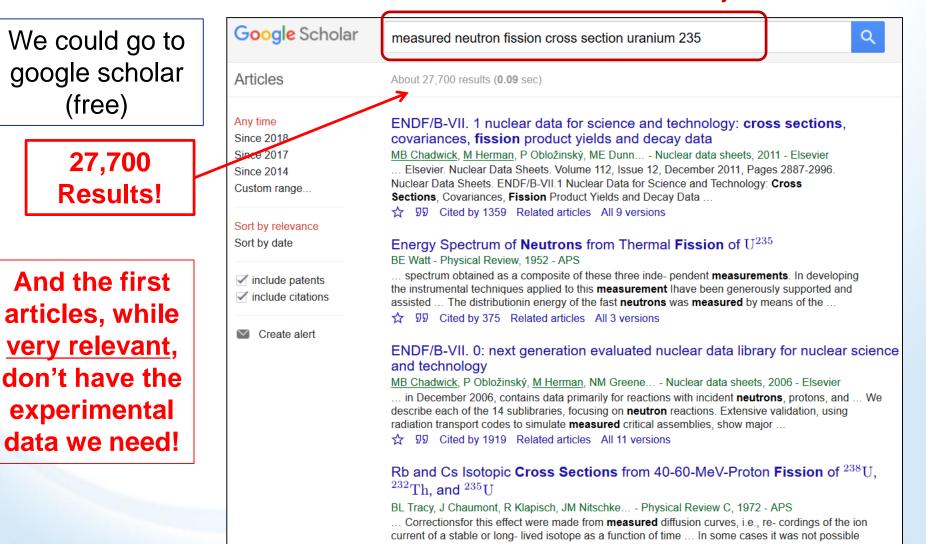
NSR XUNDL ENSDF WWW.NNdc.bnl.gov

Our work begins when data is (or should be) published


Code development: Actively develop codes that support our work

Archive: Seek "abandoned" data and archive it before it is lost

Address gaps: Perform targeted experiments to address gaps in databases



An example of our databases

Let's say we want a list of articles that measured neutron induced fission cross sections on Uranium-235. Keywords

Brookhaven Science Associates

to **measure** the ... The quoted errors indicate only the pre- cision of the **measurements** ... 27 99 Cited by 152 Related articles All 5 versions

Using the Web of Science (\$\$\$) will not help either.

Alternatively, we could use NSR, *www.bnl.gov/nsr*

	Initialization Parameters Search parameters		
	Publication year range: 1896 to 2018		
	Primary only: View All: Require measured quantity:		
	Output year order: OAscending Oescending		
	Output format: Interest Otext Otext Otext Otext Otext		
	Search all entries O Search entries added since 1 v / 12 v / 2018 v (month/day/year)		
	Search Parameters		
	- Target v 235u browse		
	AND		
	- Incident \vee n browse		
	AND		
	- Measured ~ SIGMA browse		
Y			
	Search Reset		

Results, 289 articles

Found 289 matches. Showing 1 to 100. [Next]

Back to query form

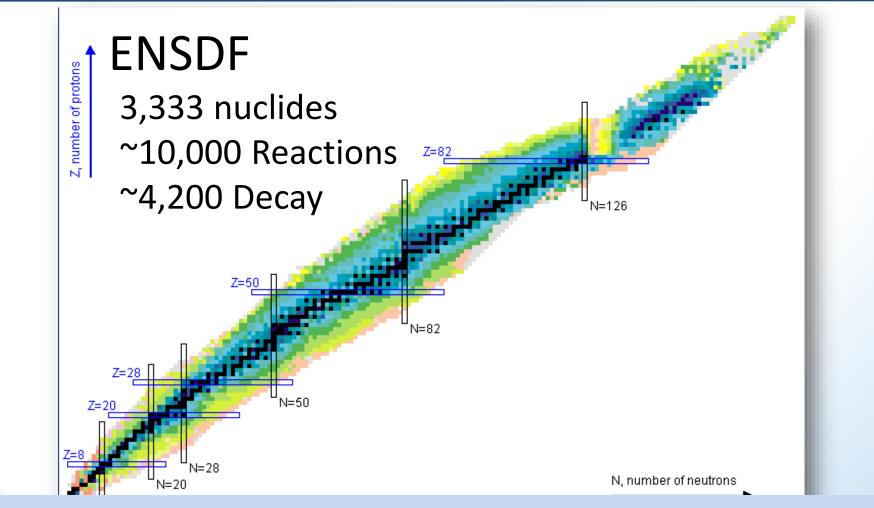
2016DI03 Phys.Rev. C 93, 034614 (2016)

M.Diakaki, for the n_TOF Collaboration

Neutron-induced fission cross section of ²³⁷Np in the keV to MeV range at the CERN n_TOF facility

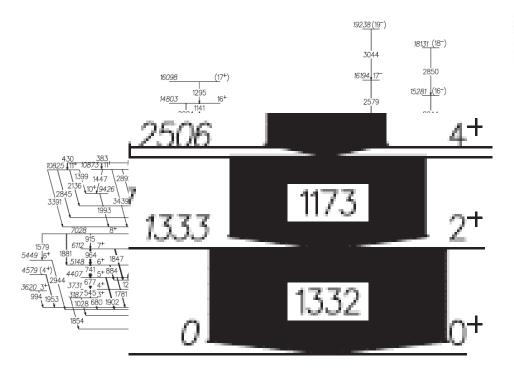
NUCLEAR REACTIONS 235,238 U(n, F), E=0.1-9 MeV; 237 Np(n, F), E=0.1-9 MeV; measured fission σ (E) using fast ionization chamber at high-resolution and high-intensity facility n_TOF at CERN. Comparison with previous experimental data in literature and EXFOR database, and with ENDF/B-VII.1, JEFF 3.2, and JENDL 4.0 evaluations. 237 Np(n, X), (n, F), E=0.1-20 MeV; calculated cross sections for the main neutron-induced reaction channels in Hauser-Feshbach formalism using the EMPIRE code, and comparison with experimental data in the present work and EXFOR database; deduced final fission barrier parameters for 236,237,238 Np.

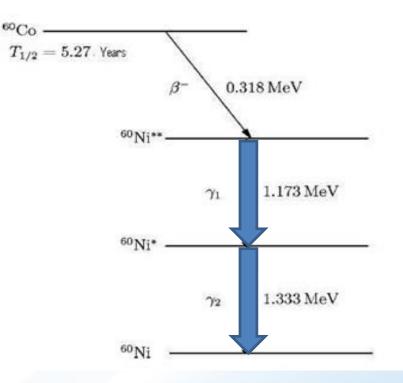
doi: 10.1103/PhysRevC.93.034614


Data from this article have been entered in the **EXFOR** database. For more information, access X4 dataset22742. Access publication in PDF format.

Link to journal

And you can only e-mail Boris Pritychenko or Joann Totans for free help (~200 e-mails/year)

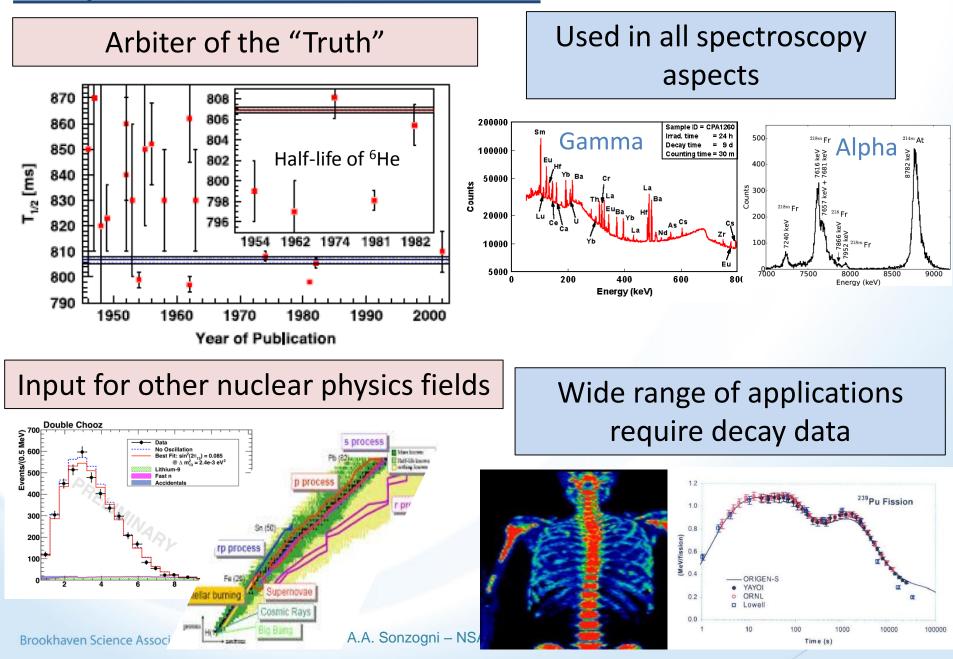

Evaluated Nuclear Structure Data File


It is Unique: Only Nuclear Database of this kind in the world It is Complete: All nuclei and all level and radiation properties It is Versatile: Feeds back into both basic and applied sciences

ENSDF in a Nutshell

Properties of Nuclei

And how they decay

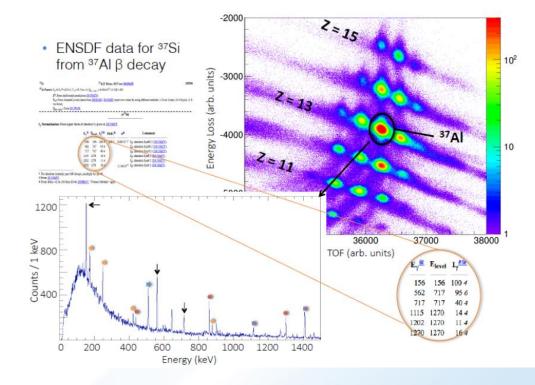


⁶⁰Ni

Level energies, spin, parity, half-life, ... Gamma-ray energies, intensities, ...

Radiation energies, intensities, decay modes

Why do we need ENDSF?


ENSDF and **FRIB**

ENSDF is essential for planning, designing, performing and interpreting FRIB experiments

As an example:

- Gamma-rays are routinely used to identify fragmentation products
- ENSDF is the only place to search them in live-time

ORGANIZATION GATHERINGS FRIB THEORY

FRIB USERS ORGANIZATION FOR RARE ISOTOPE BEAMS

WORKING GROUPS

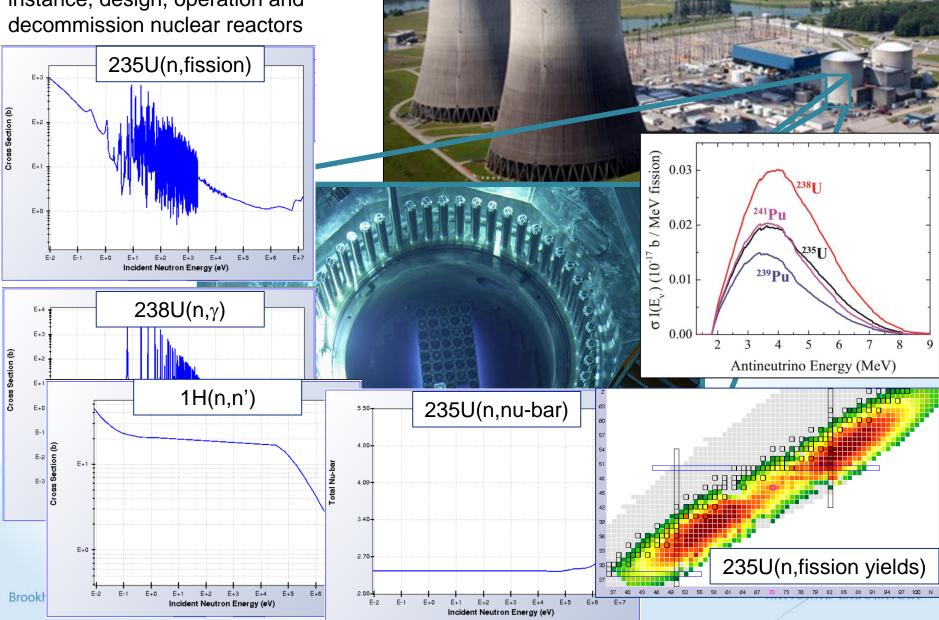
NUCLEAR DATA

WORKING GROUP CONVENERS

Libby McCutchan (NNDC, BNL), Filip Konde (ANL), John Kelley (TUNL)

the efforts of the Nuclear Data community and the program foreseen for FRIB physics. More

- NNDC hosted at Brookhaven Nation
- Applications Data Summary from 2014
 - Data Summary from 2013 LEC Meeting


NUCLEARMATTERS

Home * Working Groups * Nuclear Data

Nuclear Data Working Group established within FRIB Users Organization in order to develop data needs for FRIB

ENDF

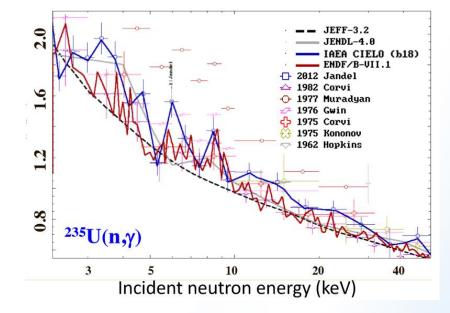
Data needed in many applications, for instance, design, operation and decommission nuclear reactors

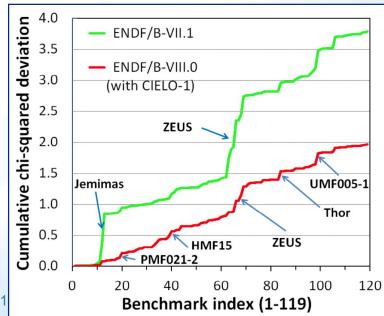
ENDF

ENDF/B-I was released in June 1968.

More accurate experiments, improvements in nuclear reaction models and supercomputers have led us to ENDF/B-VIII.0, which was released on February 2nd, 2018 by the Cross Section Evaluation Working Group (CSEWG)[1]

ENDF/B-VIII.0 Integrates contributions from:


BNL, IAEA, LANL, LLNL, NIST, IAEA, Criticality Safety Program, Naval Reactors, NCSU, CNL (Canada), CAB (Argentina)


ENDF/B-VIII.0 is our best performing and highest quality library yet

- 1198 critical assembly benchmarks
- 14 MeV source transmission
- o Many other tests

ENDF is used in many applications, simulations & licensing codes such MCNP, GEANT, SCALE, ORIGEN

[1] D. Brown *et al.*, Nuclear Data Sheets **148**, 1 (2018) Brookhaven Science Associates A.A. Sonzogni – NSAC, March 1

Nuclear Data Sheets

- Began in 1966, currently published by Elsevier.
- NNDC responsible for editorial role and management
- Original mission was to publish ENSDF evaluations and Recent References (NSR).
- Starting in 2006, one issue per year is devoted to nuclear reaction related articles.
- Unusual in that we publish ~20 manuscripts per year

Торіс	Reference	# of Citations
ENDF/B-VII.0	NDS 107, 2931 (2006)	1147
ENDF/B-VII.1	NDS 112, 2887 (2011)	791
RIPL	NDS 110, 3107 (2009)	497
EMPIRE	NDS 108, 2655 (2007)	335
TALYS	NDS 113, 2841 (2012)	271
FLUKA	NDS 120, 211 (2014)	258
NuShellX@MSU	NDS 120, 115 (2014)	83

ScienceDirect **ENDF** library **Reaction library Reaction codes** Application Structure code

For perspective, most cited paper in PRC between 2006-2018:

RHIC theory paper (2008) with 522 citations A.A. Sonzogni – NSAC, March 12, 2018

Special Issue of Nuclear Data Sheets

10 articles, more than 400 pages Essential reference for next 10 years

USNDP plays major role (USNDP organization):

- ENDF/B-VIII.0 (BNL, LANL, LLNL, NIST)
- Neutron Standards (NIST, LANL)
- CIELO overview (BNL, LANL, NIST, LLNL)
- CIELO Fe (BNL, LANL)
- CIELO 235U and 238U (LANL, BNL)
- PFNS (LANL)
- 2 Experimental Papers (LANL)
- Charged-particle monitor reactions (IAEA-CRP) (ANL,LANL)
- Evaluation Methodology

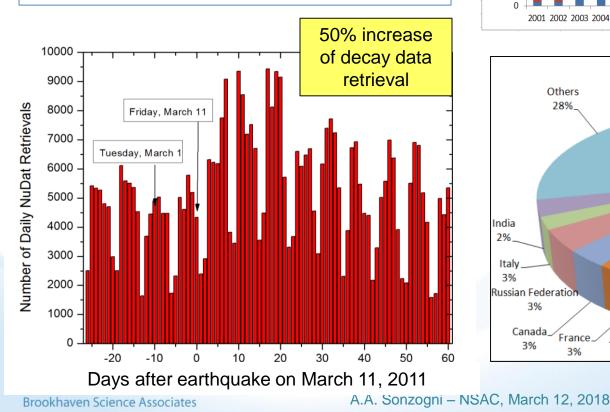
Special Issue Editor: Pavel Obložinský Special Issue Assistant Editor: Boris Pritychenko

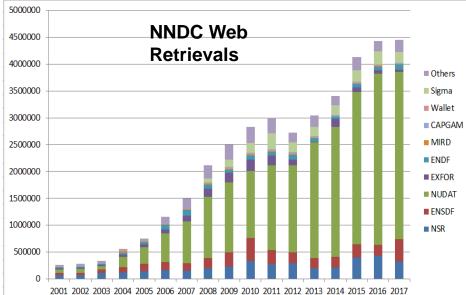
Nuclear

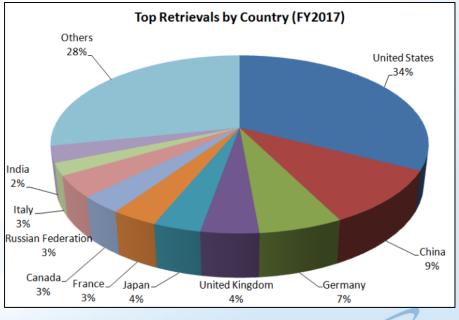
Data Sheets

Volume 148, February 2018

Contents

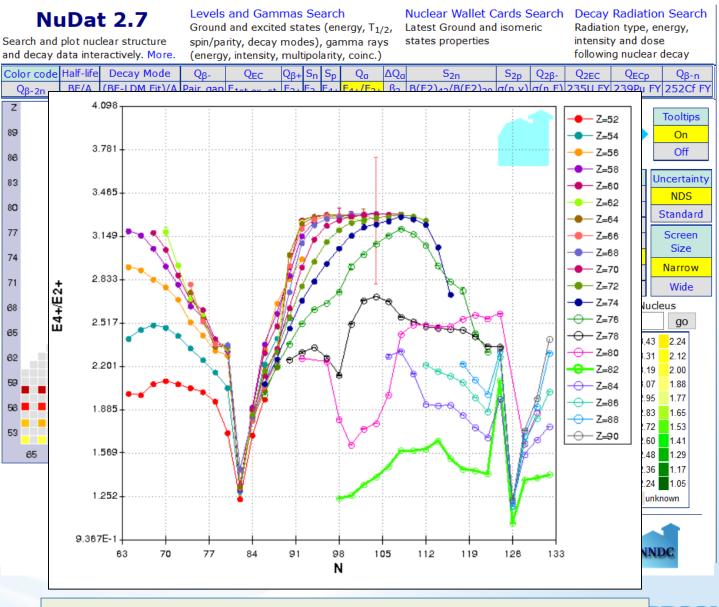

Contents continued on the back cover page


ISSN 0090-3752

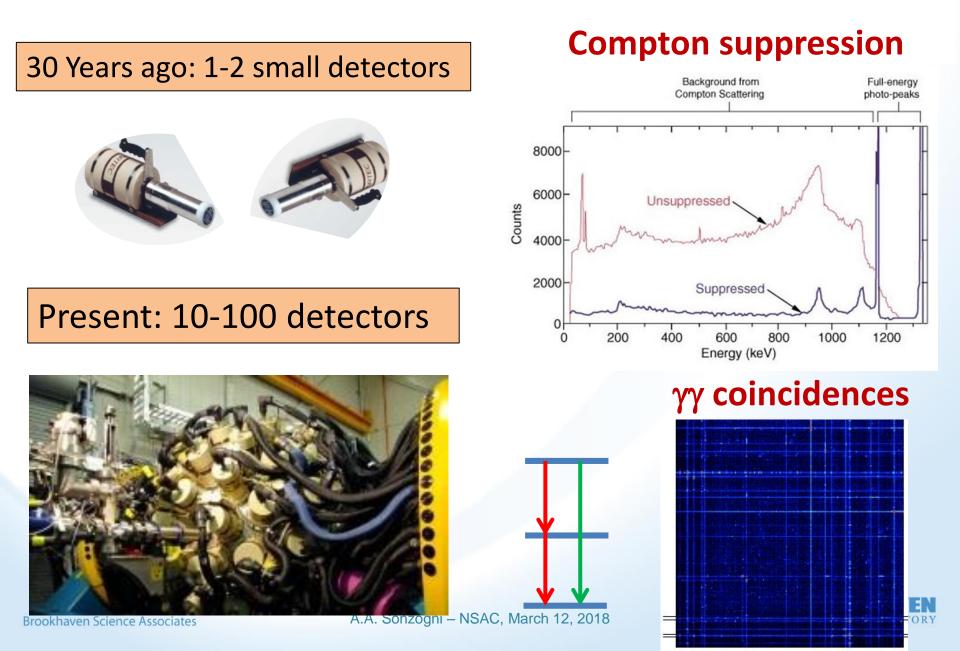


Web Dissemination

- o Started with Telnet in mid 1980s.
- First generation web applications in mid 1990s.
- Mostly performed nowadays in BNL using 7 powerful servers.
- About 4.5 Million retrievals in FY17.



Web Dissemination



Brookhaven Science Associ

Upgrades typically follow users recommendations

Capitalizing on advances in γ-ray spectroscopy

Non-conventional PET agents : ⁸⁶Y

IOP Publishing | Institute of Physics and Engineering in Medicine

Phys. Med. Biol. 60 (2015) 3479–3497

Physics in Medicine & Biology doi:10.1088/0031-9155/60/9/3479

PET imaging with the non-pure positron

PHYSICAL REVIEW C

VOLUME 2, NUMBER 6

DECEMBER 1970

Energy Levels in ⁸⁶Sr from the Decay of 14.6-h ⁸⁶Y

A. V. Ramayya, B. Van Nooijen,* J. W. Ford, D. Krmpotić,† and J. H. Hamilton Physics Department,‡ Vanderbilt University, Nashville, Tennessee 37203

and

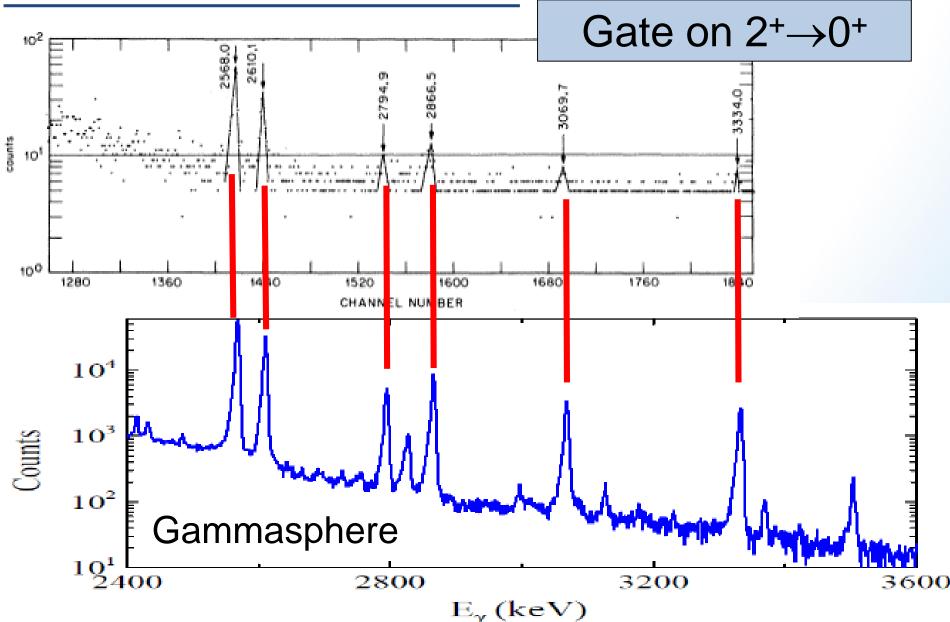
J. J. Pinajian and Noah R. Johnson Oak Ridge National Laboratory,[§] Oak Ridge, Tennessee 37803 (Received 20 April 1970)

Contents lists available at ScienceDirect

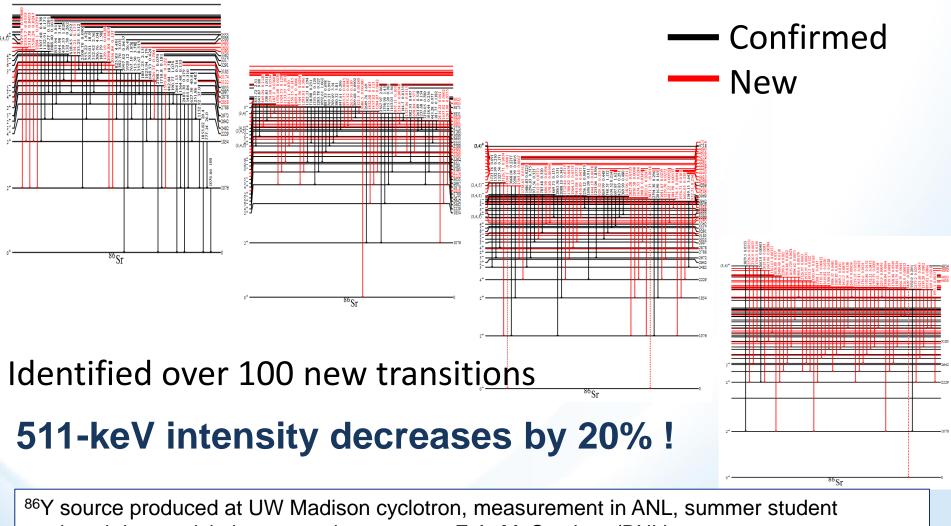
Applied Radiation and Isotopes

journal homepage: www.elsevier.com/locate/apradiso

Tailoring medium energy proton beam to induce low energy nuclear reactions in ⁸⁶SrCl₂ for production of PET radioisotope ⁸⁶Y[☆]



Applied Radiation and



Dmitri G. Medvedev*, Leonard F. Mausner, Philip Pile

Results on ⁸⁶Y

Revised Decay Scheme for ⁸⁶Y

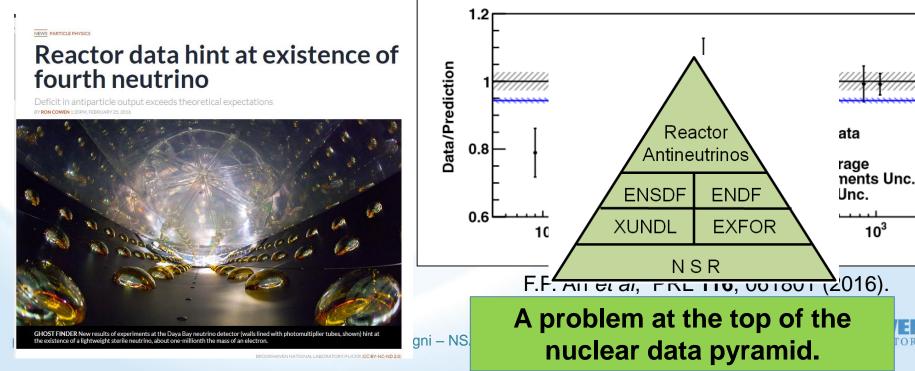
analyzed data, article in preparation, contact: E.A. McCutchan (BNL).

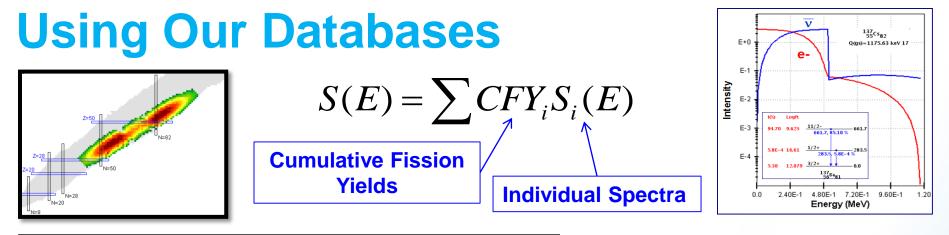
Earlier experiment on ⁸²Rb has been published, M. Nino, E.A. McCutchan et al, PRC **93**, 024301 (2016).

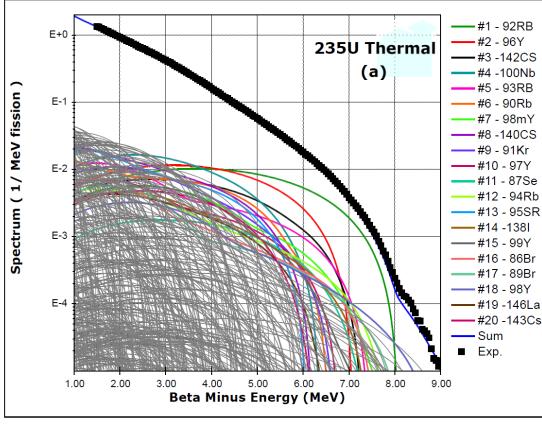
Similar efforts at ANL (F. Kondev) and LBNL (L. Bernstein).

Reactor Antineutrino Anomaly

About 6 electron antineutrinos per fission from the betaminus decay of the neutron rich fission products.


Each fission ~200 MeV, or


 \sim 5 x 10²⁰ antineutrinos/second for a 1 GWe reactor.

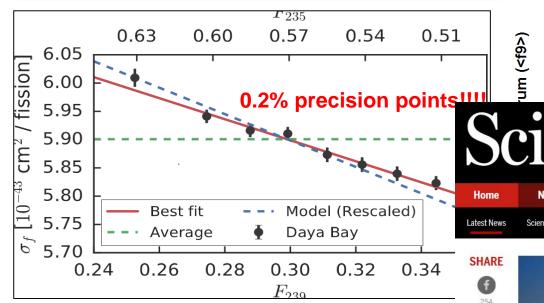


ORY

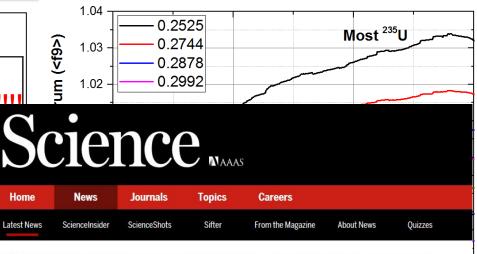
We observe 6% fewer electron antineutrinos from nuclear reactors at short distances, not accounted for the standard 3-flavor oscillation.

Comparison with the measured electron spectra.

Surprisingly, fewer contributors at high energy.


Results spurred a number of new measurements

First calculation of this type performed by P. Vogel et al in 1981 using ENDF/B-V.


3

The anomaly, or not?

F.P. An et al, PRL 118, 251801 (2017).

- Daya Bay measured the antineutrino yield as function of ²³⁹Pu in the reactors
- ²³⁹Pu agrees with measurement
- ²³⁵U does not
- If anomaly, should be present in both

The Daya Bay Reactor Neutrino Experiment studies antineutrinos from six reactors near Shenzhen, China. Photo courtesy of Lawrence Berkeley National Laboratory/Roy Kaltschmidt © 2010 The Regents of the University of California, through the Lawrence Berkeley National Laborator

Weird sterile neutrinos may not exist, suggest new data from nuclear reactors

By Adrian Cho | Apr. 6, 2017 , 5:30 PM

0

0

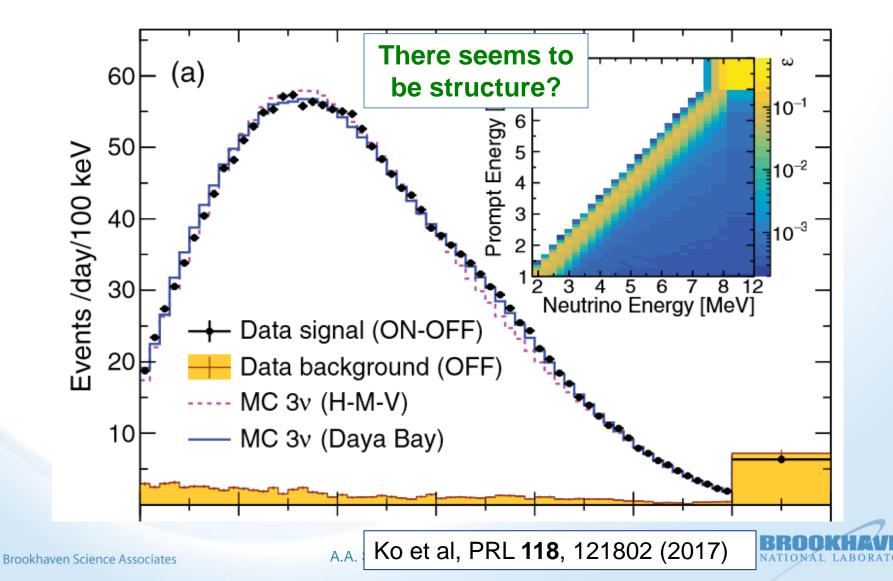

in

Nuclear data to answer major science question

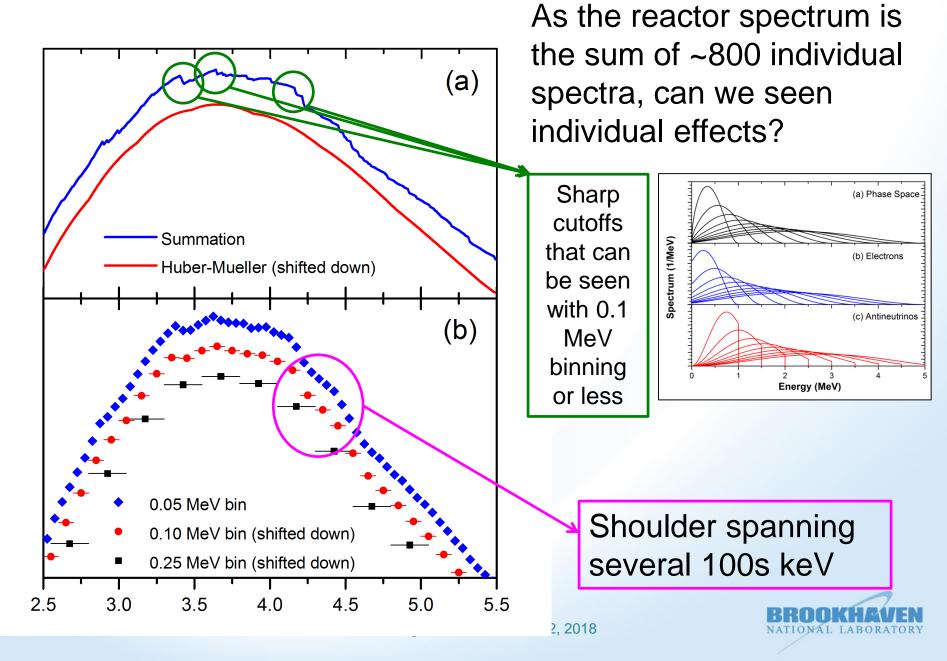
Daya Bay Analysis (conversion of ILL data) Our analysis

(Incorporates vast knowledge of decay data of fission fragments)

NNDC calculations using ENDF decay


Abstract ends with:

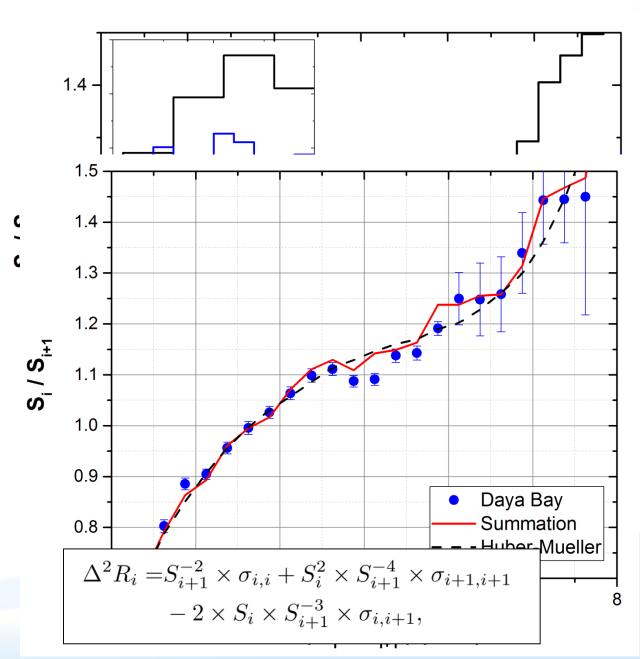
Bro


'An analysis of the antineutrino spectra that is based on a summation over all fission fragment β decays, using nuclear database input, explains all of the features seen in the Daya Bay evolution data. However, this summation method still allows for an anomaly. We conclude that there is currently not enough information to use the antineutrino flux changes to rule out the possible existence of sterile neutrinos.'

Fine Structure

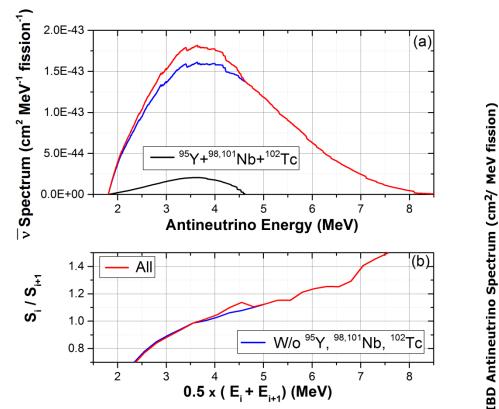
NEOS data, 30 m from a power reactor

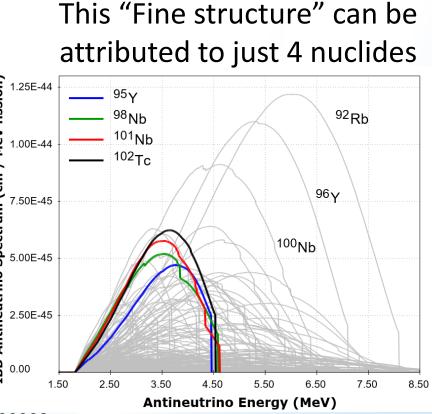
Fine Structure


How to reveal Fine Structure?

Ratio of adjacent points:

 $R_i = S_i / S_{i+1}$

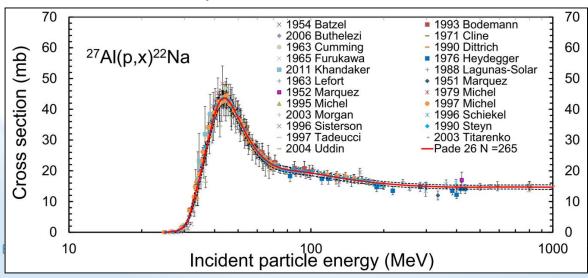

Surprisingly, even with a 0.25 MeV binning a structure can be seen.


Structure observed in Daya Bay data, covariance matrix crucial for analysis.

Nuclides behind fine structure

Looking for trees in the forest

For more details, see:


A.A. Sonzogni, M. Nino, E.A. McCutchan arXiv:1710.00092

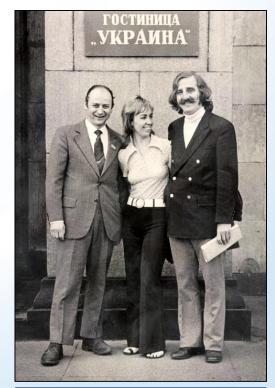
Eagerly awaiting PROSPECT data to perform similar analysis

International Collaborations

Nuclear Data Section, International Atomic Energy Agency, Vienna, Austria

- EXFOR compilation
- EMPIRE code development
- ENSDF coordination
- Coordinated Research Projects, to name just a few:
 - Beta-delayed neutron emitters.
 - Charged-particle Monitor Reactions and Medical Isotope Production.

travel arrangements for the panel members.


and Joyce Wasson discuss

John Pontierri and Jack Craig adjust tape cording equipment.

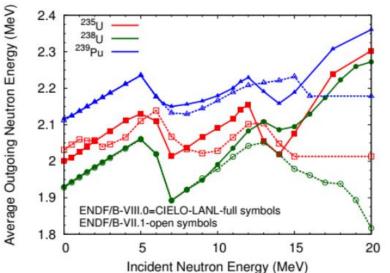
BNL bulletin, February 20 1969.

Sol Perlstein and Vicky McLane during a 1973 EXFOR meeting in Moscow (BNL Bulletin).

International Collaborations

Working Party on International Nuclear Data Evaluation Co-operation, Nuclear Energy Agency, OECD, Paris, France

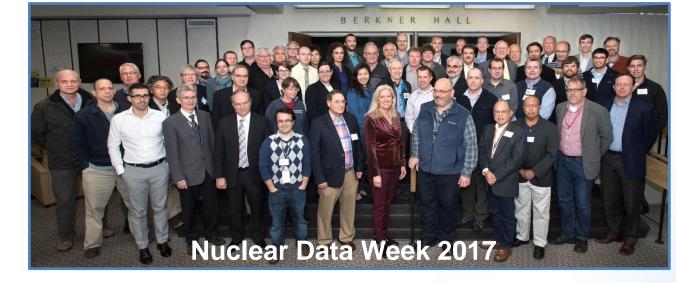
Subgroups (medium term research projects), as examples, two recent ones


 Subgroup 38, Beyond the ENDF format: A modern nuclear database structure

C.M. Mattoon et al., Nucl. Data Sheets 113, 3145 (2012).

 Subgroup 40, Collaborative International Evaluated Library Organisation (CIELO)

M.B. Chadwick et al, Nucl. Data Sheets **148**, 189 (2018).



Meetings

Nuclear Data Week

Around the 1st week of November in BNL

About 80 participants

International Nuclear Data Conferences

Take place every 3 years starting in 1978. ND 2013 organized by BNL in Manhattan, 452 participants. Next one in Beijing, May 2019.

USNDP Future

- Ensure completeness and currency of all databases. In particular work closely with FRIB and other new facilities exploring neutron rich nuclide.
- Improve nuclear data for nuclides relevant in medical, national security and antineutrino applications. Several experimental projects have received funding following recent FOA.
- New experiments and evaluations following inter-agency coordination.
- Improve the description of the fission process. Produce new ENDF evaluated fission yields.
- Improve physics in nuclear reactions model codes. Less phenomenology and more physics.
- Modernize formats and infrastructure.
- Implement technology advances in dissemination efforts.

One more slide!

- We are a small but vibrant group! Organization chart in the additional material section.
- Only a couple of examples shown due to time limitations. Many more capabilities!
- Free assistance is available with any of our products. See the contact page in the additional material.
- Actively seeking feedback in terms of new compilations, evaluations, applications and experiments.

Additional Material

US Nuclear Data Program

FY17 Organizational Chart

Nuclear Data and Nuclear Theory Computing Ted Barnes

USNDP Chair	Alejandro Sonzogni
Nuclear Structure Coordinator	John Kelly
Nuclear Reactions Coordinator	Toshihiko Kawano

ANL		
Filip Kondev	1.00	

LLNL	
lan Thompson	0.24
Sofia Quaglioni	0.01
Nicole Vash ^{pd} (FIRE ND)	0.50
Yonglin Zhugs (FIRE NCSU)	1.00

MSU	
Jun Chen	1.00
<u>Hiro Iwasaki</u>	0.00

NIST	
Alan Thompson	0.10
Allan Carlson ^c	0.10

BNL	
Alejandro Sonzogni	0.93
Ramon Arcilla ^p	1.00
Letty Krejci ^a	1.00
David Brown	0.70
Mike Herman	1.00
Tim Johnson	1.00
Libby McCutchan	1.00
Gustavo Nobre	1.00
Boris Pritychenko	1.00
Joann Totans ^a	1.00
Emil Betak ^c	0.25
Stanislav Hlavac ^c	0.25
Pavel Oblozinsky ^c	0.15
Otto Schwerer ^c	0.25
Balraj Singh ^c	0.72
Said Mughabghab ^e	0.00

LANL	
<u>Toshihiko Kawano</u>	0.50
HyeYoung Lee	0.25
John Ullmann	0.10
Alex Long ^{pd}	0.65
Matthew Mumpower ^{pd}	0.40
Jack Winkelbauer ^{pd}	0.10
Daniel Hatcher ^{gs}	0.25
Zachary Purcell ^{gs}	0.15

ORNL	
Michael Smith	0.20
Caroline Nesaraja	1.00
Murray Martin ^c	0.15
Larry Zhang ^{gs}	0.20

LBNL		
Lee Bernstein	0.75	
Shamsu Basunia	0.90	
Eddie Browne ^c	0.36	
Jon Batchelder ^c	0.75	
Aaron Hurst ^c	0.60	
Rick Firestone ^c	0.47	
Jag Tuli ^c	0.16	

Texas A&M	
Ninel Nica	0.63

TUNL	
John Kelley	0.50
Kent Leung ^{pd}	0.50
Jim Purcell ^c	0.10
Grace Sheu ^p	0.75

PI is underlined. FTEs are given in the right column.

a: administrative, c: contractor, p: professional, pd: post-doc, gs: graduate student, e: emeritus.

US Nuclear Data Program

FY 17 Project Organizational Chart

NSR

Boris Pritychenko

Emil Betak

Balraj Singh

Joann Totans

EXFOR

Boris Pritychenko

Stanislav Hlavac

Otto Schwerer

XUNDL

Libby McCutchan

Shamsu Basunia

Jun Chen

John Kelley

Filip Kondev

Caroline Nesaraja

Balraj Singh

ENDF

<u>David Brown</u> Ramon Arcilla

ENSDF

Libby McCutchan

Eddie Browne

Jun Chen

Aaron Hurst

Tim Johnson

John Kelley

Filip Kondev

Ninel Nica

Jim Purcell

Balraj Singh

Jag Tuli

Murray Martin

Caroline Nesaraja

Alejandro Sonzogni

Shamsu Basunia

Allan Carlson

Mike Herman

Toshihiko Kawano

Said Mughabghab

Libby McCutchan Gustavo Nobre

Sofia Quaglioni

Alejandro Sonzogni

Alan Thompson

Ian Thompson

Web dissemination

<u>Tim Johnson</u>

Ramon Arcilla

Boris Pritychenko

Michael Smith

Alejandro Sonzogni

Nuclear Data Sheets

Libby McCutchan

Jun Chen

Pavel Oblozinsky

Boris Pritychenko

Nuclear Astrophysics

Filip Kondev

Boris Pritychenko

Matthew Mumpower

Michael Smith

Nicole Vash

Larry Zhang

Yongling Zhu

Nuclear Structure Experiments

Filip Kondev

Libby McCutchan

Ninel Nica

Nuclear Reaction Experiments

John Batchelder

Lee Bernstein

Aaron Hurst

HyeYoung Lee

John Ullmann

BROOKHAVEN

Database/Project manager is underlined when applicable.

Brookhaven Science Associates

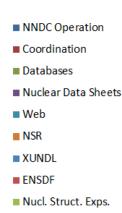
USNDP Databases & Products Contacts

NSR/EXFOR: Boris Pritychenko, pritychenko@bnl.gov

XUNDL/ENSDF/NDS: Libby McCutchan, mccutchan@bnl.gov

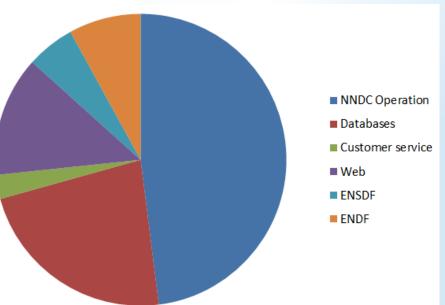
ENDF: David Brown, <u>dbrown@bnl.gov</u>

Web: Tim Johnson, tdjohnson@bnl.gov


FY2017 FTE Distribution

ENDF ENSDF

6.36 Scientific Temp. FTEs


Reac. Exps. ENSDF

- NNDC operation
- Coordination
- Databases
- Nuclear Data Sheets
- Web
- NSR
- XUNDL
- ENSDF
- Nucl. Struct. Exps.
- EGAF
- EXFOR
- ENDF
- Nuclear Astrophysics
- Nucl. Reaction Experiments

- EGAF
- EXFOR
- ENDF
- Nuclear Astrophysics
- Nucl. Reaction Experiments

3.75 Tech/Admin FTEs

13.72 Scientific Permanent FTEs

USNDP 2014 Review

James Vary (Iowa State U., chair), Robin Forest (IAEA), Alexandra Gade (MSU), Witek Nazarewicz (MSU), Meiring Nortier (LANL), Erich Ormand (LLNL).

USNDP 2015 NDAC

Dennis McNabb (LLNL, chair), Roberto Capote (IAEA), Mike Carpenter (ANL), Erich Ormand (LLNL), Meiring Nortier (LANL), Jasmina Vujic (UCB)

USNDP 2016 NDAC

Dennis McNabb (LLNL, chair), Roberto Capote (IAEA), Mike Carpenter (ANL), Witek Nazarewicz (MSU), Meiring Nortier (LANL), Jasmina Vujic (UCB)

USNDP 2018 NDAC

Dennis McNabb (LLNL, chair), Mike Carpenter (ANL), Mark Chadwick (LANL), Witek Nazarewicz (MSU), Alan Nichols (ex IAEA), Meiring Nortier (LANL), Karl van Bibber (UCB) April 9-10 2018 – the USNDP white paper will be presented

NNSA/NA-22 hosted a Nuclear Data Roadmapping Enhancement Workshop (NDREW) to develop a investment plan for the Defense Nuclear Nonproliferation

- program
 120 participants from 12 different institutions
- Seven Government agencies represented:
 - DOE: Nuclear Physics, Nuclear Energy, Isotope Program,
 - NNSA:NA-22 (Counter-proliferation), NA-113 (Defense Programs),
 - DHS/DNDO, DTRA
- Topic areas covered:
 - Data Uncertainty, Sensitivity, and Covariance,
 - Neutron Capture/Inelastic Scattering and Associated Spectra,
 - Fission Independent and Cumulative Fission Yields, Decay Data
 - (α,n) Reactions,
 - Targets, Facilities and Detector Systems
 - Benchmark Development
 - Data Processing & Transport Code Needs
 - Actinide Cross Sections

The result will be a multiyear roadmap for nuclear data investments from multiple government agencies

