

Progress and outlook in nuclear science on the search for new physics using EDMs

Roy J. Holt

Physics Division, Argonne National Laboratory

Outline

- Introduction
- The EDM experiments
 - leptonic
 - hadronic
- Summary

The big questions

Why do we exist?

- Why is there more matter than antimatter?
- Only 1 part in 10⁹ of matter left from the big bang
- Sakharov's three conditions for a baryon asymmetry
 - Baryon number violation
 - Microscopic C, CP (or T) violation
 - Thermal non-equilibrium

"The observation of a nonzero EDM in any of the above searches would constitute a major discovery with significant implications for the origin of matter and the nature of new forces in the early universe." (NSAC Long Range Plan, 2015)

Why EDMs?

- "... EDM searches shed light on one of the key questions for all of physics: why the present universe contains more visible matter than antimatter." (NSAC Long Range Plan, 2015)
- "Improved sensitivities by a factor of 10–100 would imply reach on the scale of CPV interactions in the 10–50 TeV range, inaccessible at high-energy colliders today …" (NSAC Long Range Plan, 2015)
- Impacts cosmology as well as high energy, nuclear, atomic and molecular physics
- No Standard Model background

EDM Searches in Three Sectors

Sector	Exp Limit (e-cm)	Method	Standard Model
Electron	9 x 10 ⁻²⁹	ThO in a beam	10 ⁻³⁸
Neutron	3 x 10 ⁻²⁶	UCN in a bottle	10-31
¹⁹⁹ Hg	7.4 x 10 ⁻³⁰	Hg atoms in a cell	10 ⁻³³

Experiments worldwide

Leptonic EDMs

۰.	YbF (beam)	Imperial College
•	HfF ⁺ (trapped)	JILA
۰.	ThO (beam)	Harvard-Yale
•	²¹⁰ Fr (trapped)	CYRIC
•	²¹⁰ Fr (fountain)	TRIUMF
•	μ ⁺ (ring)	FNAL
•	μ^+ (ring)	J-PARC

Hadronic EDMs

•	n (vac)	ILL-PNPI
•	n (beam,solid)	ILL
•	n (vac)	PSI
•	n (vac)	Munich-(ILL)
•	n (⁴ He)	RCNP-TRIUMF
•	n (⁴ He)	SNS nEDM
•	n (vac)	J-PARC
•	n (vac)	LANL
•	p (ring)	(CERN)
•	d (ring)	COSY
•	¹²⁹ Xe (cell)	Mainz/Juelich
•	¹²⁹ Xe (cell)	Tokyo Tech.
•	¹²⁹ Xe (cell)	Munich
•	¹⁹⁹ Hg (cell)	U. Washington
•	²²³ Rn (cell)	TRIUMF
•	²²⁵ Ra (trapped)	ANL (FRIB)
	TIF (beam)	Harvard-Yale

Precision in EDM measurements

Argonne National Laboratory

Systematics in EDM measurements

- Magnetic fields
 - shielding
 - Field gradients
 - (Co-)Magnetometry
- Correlations with E-field
- E x v effects
- Geometric phase effect

PSI n2EDM science chamber

Leptonic EDMs

Molecules: highly polarizable 10 V/cm -> 10¹⁰ V/cm effective electric field

$$H'_{de} = -d_e \cdot \mathcal{E}_{eff}$$

de interacts with *Eeff*

 $\mathcal{E}_{eff} \sim 10^{11} \, \mathcal{V}/cm$

Thanks to J. Doyle

Continuing search for new physics with ACME

YbF Electron EDM Measurement

Imperial College

Thanks to E Hinds

JILA eEDM Project HfF⁺: ${}^{3}\Delta_{1}$ in an ion trap

- Effective E-field = 23.3 GV/cm
- Coherence time > 0.5 s
- Count rate = 5 /s

Data still blinded! EDM = $? \pm 1.5(stat) \pm 0.025(syst) 10^{-28} e \cdot cm$ Expect x10 over next 2 years Longer term: switch to ThF⁺

Thanks to E. Cornell

Muon EDM

- Present limit: $|d_{\mu}| < 1.8 \times 10^{-19} \text{ e-cm}$ CL=95%
- induced motional E-field: $\vec{E}_m \propto \vec{\beta} \times \vec{B}$ $\gamma = 29.3 \rightarrow E \sim 13 \text{ GV/m}$
- Measure up and down slopes of muon decays: tracking detectors
- FNAL (2020) and J-PARC (2022): sensitivity ~ O(10⁻²¹ e-cm)

Thanks to D. Hertzog

T. Gorringe, D. Hertzog, Prog. Part. Nuc. Phys. (2015)

Argonne National Laboratory

Hadronic EDMs

Argonne National Laboratory

Neutron EDM experiments

Argonne National Laboratory

Thanks to B. Filippone

Neutron EDM searches

Experiment	UCN source	cell	Measurement techniques	<mark>σ_d Goal</mark> (10 ⁻²⁸ e-cm)
			Present neutron EDM	limit < 300
ILL-PNPI	ILL turbine PNPI/Solid D ₂	Vac.	Ramsey technique for ω E=0 cell for magnetometer	Phase1<100 < 10
ILL Crystal	Cold n Beam	solid	Crystal Diffraction Non-Centrosymmetric crystal	< 100
PSI EDM	Solid D ₂	Vac.	Ramsey for o, external Cs & Hg comag.	Phase1 ~ 50
			Xe or Hg comagnetometer	Phase 2 < 5
Munich F RMI I ILL	Solid D ₂ SUN	Vac.	Room Temp. , Hg Co-mag., also external 3He & Cs mag.	< 5
RCNP/TRIUMF	Superfluid ⁴ He	Vac.	Small vol., Xe co-mag. @ RCNP Then move to TRIUMF	< 50 < 5
SNS nEDM	Superfluid ⁴ He	⁴ He	Cryo-HV, ³ He capture for ω , ³ He co-mag. with SQUIDS & dressed spins, supercond.	< 5
JPARC	Solid D ₂	Vac.	Under Development	< 5
JPARC	Solid D ₂	Solid	Crystal Diffraction Non-Centrosymmetric crystal	< 10?
LANL	Solid D ₂	Vac.	R & D, Ramsey SOF, Hg co-mag.	~ 30

Argonne National Laboratory

 \rightarrow

 \rightarrow

Thanks to B. Filippone

The collaboration

PSI nEDM

Thanks to K. Kirch, P. Schmidt-Wellenburg

- 13 Institutions
- 7 Countries
- 48 Members
- 10 PhD students

The PSI nEDM spectrometer

Thanks to K. Kirch, P. Schmidt-Wellenburg

nEDM@PSI statistical sensitivity

Thanks to K. Kirch, P. Schmidt-Wellenburg

Schedule of nEDM@PSI

Thanks to K. Kirch, P. Schmidt-Wellenburg

- nEDM online sensitivity per day presently approaching 1x10⁻²⁵ ecm
- nEDM operation will come to an end in 2017
- n2EDM sensitivity will intrinsically be more than 5 times better than that of nEDM, plus additional gains from UCN source improvements
- n2EDM will be installed and commissioned in 2018/19
- n2EDM will start production data taking in 2020 and cut into the low 10⁻²⁷ e-cm region

The TUM EDM experiment

- Contributions from Berkeley/Mainz, ILL, Jülich, LANL, Michigan, MSU, _ NCSU, PTB, RAL, TUM (FRM, Cluster), UIUC, Yale
- Ramsey experiment with UCN trapped at room temperature, ultimately cryogenic. Room temperature option already available.
- Double chamber with co-magnetometers as option (if needed)
- ¹⁹⁹Hg, Cs, ¹²⁹Xe, ³He, SQUID magnetometers with sufficient precision developed

The new flagship experiment at Super-SUN UCN source at ILL!

Projected sensitivity at ILL: Super-SUN Stage I (2018) $\sigma = 2.10^{-27}$ ecm Super-SUN Stage II (2019) $\sigma = 4.2 \cdot 10^{-28}$ ecm (100 days)

Thanks to P. Fierlinger

ТΠ

Super-SUN superfluid helium source:

- Stage I: 4x10⁶ UCN with Fomblin spectrum (2018)
- Stage II: 2x10⁷ UCN with
 230 neV polarized (2019)

O. Zimmer et al., Phys. Rev. Lett. 107 (2011) 134801

Thanks to P. Fierlinger

nEDM Collaboration

R. Alarcon, A. Dipert Arizona State University

> G. Seidel Brown University

D. Budker, B.K. Park UC Berkeley

M. Blatnik, R. Carr, B. Filippone, C. Osthelder, S. Slutsky, X. Sun, C. Swank *California Institute of Technology*

M. Ahmed, M. Busch, P. –H. Chu, H. Gao Duke University

> I. Silvera Harvard University

M. Karcz, C.-Y. Liu, J. Long, H.O. Meyer, M. Snow Indiana University

L. Bartoszek, D. Beck, C. Daurer, J.-C. Peng, T. Rao, S. Williamson, L. Yang University of Illinois Urbana-Champaign

> C. Crawford, T. Gorringe, W. Korsch, E. Martin, N. Nouri, B. Plaster University of Kentucky

S. Clayton, S. Currie, T. Ito, Y, Kim, M. Makela, J. Ramsey, W. Wei, Z. Tang, W.Sondheim *Los Alamos National Lab*

K. Dow, D. Hasell, E. Ihloff, J. Kelsey, J. Maxwell, R. Milner, R. Redwine, E. Tsentalovich, C. Vidal Massachusetts Institute of Technology

> D. Dutta, E. Leggett Mississippi State University

R. Golub, C. Gould, D. Haase, A. Hawari, P. Huffman, E. Korobkina, K. Leung, A. Reid, A. Young North Carolina State University

R. Allen, V. Cianciolo, Y. Efremenko, P. Mueller, S. Penttila, W. Yao *Oak Ridge National Lab*

> M. Hayden Simon Fraser University

> G. Greene, N. Fomin University of Tennessee

S. Stanislaus Valparaiso University

S. Baeβler University of Virginia

> S. Lamoreaux Yale University

Thanks to B. Filippone

Argonne National Laboratory

24

Key Features of nEDM@SNS

- Sensitivity: ~2x10⁻²⁸ e-cm, 100 times better than existing limit
- In-situ Production of UCN in superfluid helium (no UCN transport)
- Polarized ³He co-magnetometer
 - Also functions as neutron spin precession monitor via spin-dependent n-³He capture cross section using wavelength-shifted scintillation light in the LHe
 - Ability to vary influence of external B-fields via "dressed spins"
 - Extra RF field allows synching of n & ³He relative precession frequency
- Superconducting Magnetic Shield
- Two cells with opposite E-field
- Control of central-volume temperature
 - Can vary ³He diffusion (mfp)- big change in geometric phase effect on ³He that allows minimization of this systematic effect

nEDM @ SNS

Thanks to B. Filippone

Argonne National Laboratory

Status of nEDM@SNS

- 2014-2017: Critical Component Demonstration (CCD) phase is underway
 - Build working, full-scale, prototypes of technically-challenging subsystems (can use these in the full experiment)
 - 4yr National Science Foundation funds 5.5M\$ for CCD
 - Department of Energy commitment of 1.8M\$/yr for CCD
- 21
 2018-2020: Large Sale Integration (LSI) and Conventional Component Procurement (CCP)
 - LSI Integrate Central Detector, Magnets and ³He systems
 - CCP Includes Neutron Guide, Magnetic Shield, He Liquefier, etc
- 2021: Begin Commissioning and Data-taking

•	KEK:	T. Adachi, S. Jeong, S. Kawasaki, Y. Watanabe
•	RCNP Osaka:	K. Hatanaka, I. Tanihata, R. Matsumiya, E. Pierre (also TRIUMF)
•	UBC:	<u>E. Altiere</u> , D. Jones, K. Madison, <u>E. Miller</u> , T. Momose, <u>J. Weinands,</u> T. Hayamizu
•	U Winnipeg:	C. Bidinosti, B. Jamieson, R. Mammei (also TRIUMF), J. Martin
•	U Manitoba:	<u>T. Andalib</u> , J. Birchall, M. Gericke, <u>M. Lang</u> , J. Mammei, S. Page, <u>L. Rebenitsch, S. Hansen-Romu, S. Ahmed</u>
•	TRIUMF:	C. Davis, B. Franke, K. Katsika, T. Kikawa, A. Konaka (also UVic and Osaka U.), F. Kuchler, L. Lee (also U. Manitoba), R. Picker (also SFU), W. Ramsay, W. van Oers (also U. Manitoba), T. Lindner (also UW)
•	UNBC:	E. Korkmaz
•	SFU:	J. Sonier

We are an open collaboration and are accepting new membership requests/

33 PhD members, <u>7 student members</u>

Schedule

R&D Toward a new nEDM Experiment at LANL

S. Clayton, S. Currie, T. Ito, M. Makela, C. Morris, R. Pattie, J. Ramsey, A. Saunders, Z.Tang Los Alamos National Laboratory C.-Y. Liu, J. Long, W. Snow Indiana University A. Aleksandrova, J. Dadisman, B. Plaster University of Kentucky T. Chupp University of Michigan S. Lamoreaux Yale University E. Sharapov Joint Institute of Nuclear Research

- Conventional room temperature Ramsey separated oscillatory field method
- Existing LANL SD₂ UCN source
- Sensitivity: O(10⁻²⁷ e-cm)
- Relatively fast implementation and low cost

Thanks to T. Ito

Area B layout with proposed nEDM Experiment

- UCN density achievable with the previous source was already competitive with PSI.
- The new UCN source is about to be commissioned.
 - If the expected performance (x 5-10) is achieved, it could provide a sensitivity of a few x 10^{-27} e–cm with existing technology.

Thanks to T. Ito

¹⁹⁹Hg collaboration

The Team

Graduate Students Jennie Chen Brent Graner*

Scientific Glassblower Eric Lindahl

Faculty B. R. Heckel

Primary support from NSF * Supported by DOE Office of Nuclear Science

Past Contributors

E. N. Fortson (UW) S. K. Lamoreaux (Yale) M. V. Romalis (Princeton) J. Jacobs (U. Montana) B. Klipstein (JPL) W. C. Griffith (U. Sussex) M. D. Swallows (AOSense) T. H. Loftus (AOSense)

Argonne National Laboratory

± 10 kV

UV Beams

¹⁹⁹Hg EDM search

Final EDM Data Set +1.50 $) > 10^{-30}$ d_{Hg} (2, 20, 1, 2, 75)

$$=(2.20\pm 2.75_{stat}\pm 1.59_{sys})\times 10$$
 e·cm

 $|d_{Hg}| < 7.5 \times 10^{-30} e \cdot cm$

at 95% C.L.

(B. Graner, et al, PRL 116, 161601, 2016)

SM limit ~ 2045

Expect factor of 2-3 improvement with existing apparatus

Thanks to B. Heckel

Argonne National Laboratory

The HeXe experiment

Collaboration of Jülich, MSU, PTB, TU Munich, U.Mich.

- SEOP polarized ³He and ¹²⁹Xe simultaneously placed in a cell
- Coherent precession of spins causes rotating magnetic dipole field
- Detection using SQUIDs
- fT noise vs. ~ 10⁴ fT signal
- Cylindrical cells with Si electrodes
- projected EDM sensitivity:

-10³ s T^{2*} while 5 kV applied to cell
-Investigation of systematics ongoing
-Goal with current setup: < 10⁻²⁹ ecm

Measurement and Investigation of the Xenon-129 electric dipole moment

- J.O. Grasdijk
- K. Jungmann
- L. Willmann

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

- M. Doll
- W. Heil
- S. Karpuk
- Y. Sobolev
- K. Tullney
- S. Zimmer

ruprecht-karls-UNIVERSITÄT HEIDELBERG

F. Allmendinger

U. Schmidt

H.-J. Krause

A. Offenhäusser

Progress

- measure with E field
- realistic expectation
 - $\delta \phi \approx 10 \mu rad$ in a day
 - δυ ≈ 18pHz in a day

< 4.1 x 10⁻²⁷ e-cm M. Rosenberry et al PRL (2001)

$$|d_{Xe}| < \frac{\pi\hbar}{2E\left(\gamma_{He}/\gamma_{Xe}\right)}\delta\nu$$

Thanks to K. Jungmann

Progression of the Radium EDM Search

- 2006 Atomic transitions identified and studied;
- 2007 Magneto-optical trap (MOT) of radium realized;
- 2010 Optical dipole trap (ODT) of radium realized;
- 2011 Atoms transferred to the measurement trap;
- 2012 Spin precession of Ra-225 in ODT observed;
- 2014 First measurements of EDM of Ra-225;
- 2015 Sensitivity improved by a factor of 36.

The Search for the Electric Dipole Moment of Radium-225

Radium Upper Limit (ANL 2016)	1.4×10 ⁻²³ e-cm
Radium/Blue Slower (3 year)	10 ⁻²⁶ e-cm
New Radium Source (with FRIB)	10 ⁻²⁸ e-cm

R. Parker et al. PRL (2015), M. Bishof et al. PRC (2016)

Due to its nuclear octupole deformation, radium-225 is expected have an EDM of about 100 to 1000 times greater than that of other species.

ANL/Kentucky/MSU/USTC

BSM parameter	C _T	$g_{\pi}^{(0)}$	${\sf g}_{\pi}^{(1)}$	đ _n (e cm)	
Current limits (95% CL)	2×10 ⁻⁶	8×10 ⁻⁹	1.2×10 ⁻⁹	1.2×10 ⁻²²	
Improvement Factor (over current limit)					
Current + ²²⁵ Ra [10 ⁻²⁵ e cm] 40 2 1.2 20					
Current + ²²⁵ Ra [10 ⁻²⁶ e cm]	200	8	4	60	

T. Chupp, M. Ramsey-Musolf, PRC (2015)

CeNTREX: Cold molecule Nuclear Time-Reversal EXperiment

(D. DeMille [Yale], D. Kawall [UMass], S. Lamoreaux [Yale], T. Zelevinsky [Columbia])

New TIF molecule-based search for nuclear Schiff moment

complementary to ¹⁹⁹Hg and n EDMs: ²⁰⁵Tl primarily sensitive to *proton* EDM & θ QCD

Similar to *e*-EDM, enhanced by intra-molecular E-field \Rightarrow spin precession rate due to Schiff moment ~10⁴× larger than in ¹⁹⁹Hg atoms for similar underlying physics contributions

+ internal co-magnetometer for systematics control

<u>GOAL</u>: use molecular "enhancement" + cycling detection & cooling to obtain improved sensitivity to *hadronic* CP-violating interactions 1st generation target (est. ~2022): 30x improvement vs. ¹⁹⁹Hg

Thanks to D. DeMille

Storage ring Proton EDM experiment

Deuteron EDM (JEDI Collaboration at COSY)

- Ions have the advantage of no Schiff shielding
- 2017:Use COSY ring as proof of principle and make initial measurement of d EDM
- 10⁻¹⁹-10⁻²⁰ e-cm
- 2019: Conceptual design for dedicated EDM ring at 10⁻²⁹ e-cm
- For deuteron, both E and B fields required for "frozen spin" condition
- Align spin along direction of flight at magic momentum
- Search for time development of vertical polarization

Thanks to Frank Rathmann

EDM measurements for multiple systems are necessary

Global model independent analysis: 6 parameters

TVPV π- N i $\mathcal{L}_{\pi NN}^{\text{TVPV}} = \bar{N} [\bar{g}_{\pi}^{(0)}]$	nteraction: $\vec{\tau} \cdot \vec{\pi} + \bar{g}_{\pi}^{(1)} \pi^0 +$	$\bar{g}_{\pi}^{(2)}\left(3\tau_{3}\pi^{0}-\vec{\tau}\cdot\vec{\pi}\right)]N$	Pseudo scala coup	scalar- r e-N oling	lso cc	oscalar π -N oupling	lsovect π-N couplir	or
$\mathcal{L}_{eN}^{\text{eff}} = -\frac{G_F}{\sqrt{2}} \Big\{ \bar{e}i\gamma_5 e$	$\bar{N} \left[C_{S}^{(0)} + C_{S}^{(1)} \tau_{3} \right] N$	$V - 8 \bar{e} \sigma_{\mu\nu} e v^{\nu} \bar{N} \left[C_T^{(0)} + C_T^{(1)} \tau_3 \right]$ e EDN	$\left\{ S^{\mu}N\right\} + \cdots$	Ten scala cou	sor- r e-N oling			Short range n EDM
	Current Limits	(95%)	$\frac{d_e \text{ (e-cm)}}{5.4 \times 10^{-27}}$	$\frac{C_S}{4.5 \times 10^{-7}}$	$\frac{C_T}{2 \times 10^{-6}}$	$\bar{g}_{\pi}^{(0)}$ 8 × 10 ⁻⁹	$\bar{g}_{\pi}^{(1)}$ 1.2 × 10 ⁻⁹	$\frac{\bar{d}_n \text{ (e-cm)}}{12 \times 10^{-23}}$
System	Current (e-cm)	Projected			Projected	sensitivity		
ThO	5×10^{-29}	5×10^{-30}	$\frac{4.0 \times 10^{-27}}{2.4 \times 10^{-27}}$	3.2×10^{-7}				
^{Fr} ¹²⁹ Xe	3×10^{-27}	$\frac{a_e < 10^{-29}}{3 \times 10^{-29}}$	2.4×10^{-11}	1.8×10^{-1}	3×10^{-7}	3×10^{-9}	1×10^{-9}	5×10^{-23}
Neutron/Xe	2×10^{-26}	$10^{-28}/3 \times 10^{-29}$			1×10^{-7}	1×10^{-9}	4×10^{-10}	2×10^{-23}
Ra		10^{-25}			5×10^{-8}	4×10^{-9}	1×10^{-9}	6×10^{-23}
" Neutron/Xe/Ra		$\frac{10^{-26}}{10^{-28}/3 \times 10^{-29}/10^{-27}}$			$\frac{1 \times 10^{-8}}{6 \times 10^{-9}}$	1×10^{-9} 9×10^{-10}	3×10^{-10} 3×10^{-10}	$\frac{2 \times 10^{-24}}{1 \times 10^{-24}}$

T. Chupp and M. Ramsey-Musolf, PRC 91 (2015) 035502

Summary

- Many new technologies are being developed
- My expectation
 - New best sensitivities (n, d, Ra, Xe, Hg, ThO, YbF, HfF⁺)within 1-2 years
 - Factor of 5-10 improvement (μ, n, Ra, Xe, Rn, ThO, YbF, HfF⁺/ThF⁺) within 5 years
 - Factor of 50-100 improvement (n, p, d, Ra, Rn, TIF, ThO, YbF, ThF⁺) within 10 years

Extra slides

CENTREX 1st generation proposed schematic

Incorporates many methods from ACME & laser cooling experiments (slow molecular beam, rotational cooling, cycling fluorescence for detection, etc.)

Design/construction phase recently funded by Templeton Foundation & Heising-Simons Foundation

Future generations of CENTREX will also incorporate --transverse laser cooling for increased flux --laser slowing and/or trapping for increased interaction time

Thanks to D. DeMille

Faraday Rotation Detection

Thanks to B. Heckel

Argonne National Laboratory

YbF Electron EDM

Imperial College

Increasing the number of molecules in the experiment

Put more molecules into the initial state

• Achieved x 9 population in initial state

Detect the molecules better at the final stage

• Achieved x 24 increase

Total signal increase (expected): 216

•Test EDM run to start late in 2016

•Expected sensitivity 2 x 10⁻²⁹ e-cm 90% CL

•Current limit $|d_{e}| < 9 \ge 10^{-29}$ e-cm 90% CL

•Goal: intense slow beams 10⁻³⁰ e-cm/day

Thanks to E Hinds

EDM: γff CEDM: gff

Weinberg ggg:

Four fermion

Argonne National Laboratory

³He/¹²⁹Xe Measurement

October 2015

polarized ³He and ¹²⁹Xe transported from Mainz by car

T₁ (¹²⁹Xe) transport cell ~7h

M. Repetto et al, J Mag. Reson. 252, 163(2015)

Thanks to K. Jungmann

Broken Mirrors 2015 - Olivier Grasdijk

Experiment

 $\delta \mathbf{d} = \frac{\hbar}{\mathbf{EP}\epsilon\sqrt{\tau \mathbf{TN}}}$

- E 2kV/cm
- P 50%
- *€* 10⁻⁵
- *τ* several 10⁴s
- T ~month
- N 10²²

- spin polarized ³He and ¹²⁹Xe loaded in cell
- spin precession measured with SQUIDs

Storage ring proton EDM experiment

High precision, primarily electric storage ring

- Crucial role of alignment, stability, field homogeneity, and shielding from perturbing magnetic fields.
- High beam intensity: $N = 4 \times 10^{10}$ particles per fill.
- High polarization of stored polarized hadrons: P = 0.8.
- Large electric fields: E = 10 MV/m.
- Long spin coherence time: $\tau_{SCT} = 1000 \, s.$
- Efficient polarimetry with
 - large analyzing power: $A_y \simeq 0.6$,
 - and high efficiency detection $f \simeq 0.005$.

1x10⁻²⁹ e-cm achievable, statistically

"Magic" momentum

Spin precession frequency of particle *relative* to direction of flight:

$$\vec{\Omega} = \vec{\Omega}_{\text{MDM}} - \vec{\Omega}_{\text{cyc}}$$
$$= -\frac{q}{\gamma m} \left[G\gamma \vec{B}_{\perp} + (1+G)\vec{B}_{//} - \left(G\gamma - \frac{\gamma}{\gamma^2 - 1}\right) \frac{\vec{\beta} \times \vec{E}}{c} \right]$$

 $\Rightarrow \vec{\Omega} = 0$ called frozen spin, because momentum and spin stay aligned.

• In the absence of magnetic fields $(B_{\perp}=ec{B}_{//}=0)$,

$$\vec{\Omega} = 0$$
, if $\left(G\gamma - \frac{\gamma}{\gamma^2 - 1}\right) = 0$.

$$G - \frac{1}{\gamma^2 - 1} = 0 \Leftrightarrow G = \frac{m^2}{p^2} \quad \Rightarrow \quad \left[p = \frac{m}{\sqrt{G}} = 700.740 \text{ MeV c}^{-1} \right]$$

YbF Electron EDM Signal:noise increases (√signal)

Imperial College

Upgrade	Increase in signal:noise	Status
Pumping	2.2	Achieved
Optics	2	Achieved
Longer interaction time	1.5	Achieved
Shorter rf pulses	1.25	Achieved
Detection	3.5	In progress
Total	28.9	

- Test EDM run to start late in 2016
- Expected d_e sensitivity 2 x 10⁻²⁹ e.cm (90% conf.)
- Current limit $|d_e| < 9 \times 10^{-29}$ e.cm (90% conf.)
- Longer term: intense slow beams ~ 10⁻³⁰ e-cm/day

Thanks to E Hinds

Expected achievable statistical sensitivity with the current LANL UCN source without the upgrade

Parameters	Values
E (kV/cm)	12.0
N (per cell)	14,700
T _{free} (s)	180
T _{duty} (S)	300
a	0.80
σ/day/cell (10 ⁻²⁶ e-cm)	9.3
σ/day (10 ⁻²⁶ e-cm) (for double cell)	6.5
σ/year* (10 ⁻²⁷ e-cm) (for double cell)	3.4
90% C.L./year* (10 ⁻²⁷ e-cm) (for double cell)	5.6

This estimate is based on the following:

- The estimate for N is based on the results of the UCN storage test performed in January 2016 and is not assuming the source upgrade.
- The estimate for E, T_{free}, T_{duty}, and α is based on what has been achieved by other experiments.

* "year" = 365 live days. In practice it will take 3+ years to achieve this.

- Beamline and target commissioning fall 2016
- First UCN at TRIUMF summer 2017
- We will start with a prototype EDM apparatus from Japan (Phase 1), upgrade it as possible and develop techniques with it
- Source upgrades necessary for 10⁻²⁷ ecm statistics shall come online 2019
- Our Phase 2 aparatus in 2020
 - Double EDM cell, room temperature, Ramsey technique
 - 4-layer magnetically shielded room
 - Self shielded B_{0,1} coil
 - Start with ¹⁹⁹Hg comag, then implement dual ¹⁹⁹Hg/¹²⁹Xe comag to measure field and gradient simultaneously

"Phase 2" – to implement by 2020

Slide thanks to J. Martin

Technical Challenges for nEDM@SNS

- 1200 L of superfluid Helium @ T = 0.5K
 - Must minimize heat sources
 - Eddy-current heating from AC B-fields ightarrow minimal conducting material
 - Large cooling plant required
- Highly sensitive to magnetic field variations and gradients
 - Significant magnetic shielding required
 - B-field uniformity of ppm/cm over measurement volume
 - Low-field operation: B = 3 μ T
- High electric fields: E = 75 kV/cm
 - Producing and maintaining V > 600 kV in cryogenic environment

Summary

PSI UCN source

Thanks to K. Kirch, P. Schmidt-Wellenburg

n2EDM at PSI

- Two UCN precession chambers with opposite E fields
- Improved magnetometry
 - Hg laser readout
 - Cs
 - ³He

Neutron EDM with Super-SUN at ILL

	SuperSun stage I	_	SuperSun stage II	_
UCN density	333	1/cm3	1670	1/cm3
Diluted density	80	1/cm3	400,8	1/cm3
Transfer loss factor	3		1,5	
Source saturation loss factor	2		2	
Polarization loss factor	2		1	
Density in cells	6,7	1/cm3	133,6	1/cm3
2 EDM chamber volume	33,2	1	33,2	1
Neutrons per chamber	110556		2217760	
EDM sensitivity				
E	2,00E+04	V/cm	2,00E+04	V/cm
alpha	0,85		0,85	
т	250	s	250	s
N after time T (1/e)	398000		794000	
Number of EDM cells	2		2	
Sensitivity (1 Sigma, 1 cell)	3,9E-25	ecm	8,7E-26	ecm
Sensitivity (1 Sigma, 2 cells)	2,7E-25	ecm	6,1E-26	ecm
Preparation time	150	S	150	s
Measurements per day	216		216	
Sensitivity (1 Sigma, 2 cells) per day	1,9E-26	ecm	4,2E-27	ecm
Sensitivity 100 days	1,9E-27	ecm	4,2E-28	ecm
Limit 90% 100 days	3,00E-27	ecm	7,00E-28	ecm

Thanks to P. Fierlinger

Argonne National Laboratory

TIM Sensitivity and systematics

Super-SUN superfluid helium source:

- Stage I: 4x10⁶ UCN with Fomblin spectrum (2018)
- Stage II: 2x10⁷ UCN with 230 neV polarized (2019)

Control of systematics:

< 100 pT/m B gradient over cell volume, < 10 fT/250 s drift : sufficient for 10⁻²⁸ ecm level, even without comagnetometer

Potentially new class of systematics identified:

- Non-gaussian spin distributions in traps with gradients or Efields
- Time-dependent shape of distributions

Thanks to P. Fierlinger

EDM search in HfF⁺ molecular ion

NIST

Thanks to E. Cornell and J. Ye

Radium-224 exhibits properties of octupole deformation

EDM of ²²⁵Ra enhanced

- Closely spaced parity doublet Haxton & Henley, PRL (1983)
- Large Schiff moment due to octupole deformation Auerbach, Flambaum & Spevak, PRL (1996)
- Relativistic atomic structure (²²⁵Ra / ¹⁹⁹Hg ~ 3) Dzuba, Flambaum, Ginges, Kozlov, PRA (2002)

Schiff _moment =
$$\sum_{i \neq 0} \frac{\langle \psi_0 | \hat{S}_z | \psi_i \rangle \langle \psi_i | \hat{H}_{PT} | \psi_0 \rangle}{E_0 - E_i} + c.c.$$

Enhancement Factor: EDM (²²⁵Ra) / EDM (¹⁹⁹Hg)

	Isoscalar	Isovector
Skyrme SIII	300	4000
Skyrme SkM*	300	2000
Skyrme SLy4	700	8000

Schiff moment of ²²⁵Ra, Dobaczewski, Engel, PRL (2005) Schiff moment of ¹⁹⁹Hg, Dobaczewski, Engel et al., PRC (2010)

"[Nuclear structure] calculations in Ra are almost certainly more reliable than those in Hg."

- Engel, Ramsey-Musolf, van Kolck, Prog. Part. Nucl. Phys. (2013)

Presently available

- National Isotope Development Center, ORNL
 - Decay daughters of ²²⁹Th ²²⁵Ra: 10⁸/s

Projected

- FRIB (B. Sherrill, MSU)
 - Beam dump recovery with a ²³⁸U beam ----- 6 x 10⁹ /s
 - Dedicated running with a ²³²Th beam ------ 5 x 10¹⁰ /s
- ISOL@FRIB (I.C. Gomes and J. Nolen, Argonne)
 - Deuterons on thorium target, 1 mA x 400 MeV = 400 kW 10^{13} /s
- MSU K1200 (R. Ronningen and J. Nolen, Argonne)
 - Deuterons on thorium target, 10 uA x 400 MeV = 4 kW 10^{11} /s

The Radium Team

ATOM TRAPPERS

 Argonne: Kevin Bailey, Michael Bishof, John Greene, Roy Holt, Nathan Lemke, Zheng-Tian Lu, Peter Mueller, Tom O'Connor, Richard Parker;
Kentucky: Mukut Kalita, Wolfgang Korsch;
Michigan State: Jaideep Singh;
Northwestern: Matt Dietrich.
Special Thanks To: Irshad Ahmad, Dave Potterveld

What does it take to measure the radium EDM?

Jon Engel Calculations

Enhancement Factor: EDM (²²⁵Ra) / EDM (¹⁹⁹Hg)

Skyrme Model	Isoscalar	Isovector	Isotensor
SIII	300	4000	700
SkM*	300	2000	500
SLy4	700	8000	1000

Schiff moment of ²²⁵Ra, Dobaczewski, Engel (2005) Schiff moment of ¹⁹⁹Hg, Ban, Dobaczewski, Engel, Shukla (2010)

Enhancement Factor: EDM (²²⁵Ra) / EDM (¹⁹⁹Hg)

Skyrme Model	Isoscalar	Isovector	Isotensor
SkM*	1500	900	1500
SkO'	450	240	600

Schiff moment of ¹⁹⁹Hg, de Jesus & Engel, PRC72 (2005) Schiff moment of ²²⁵Ra, Dobaczewski & Engel, PRL94 (2005)

2010

2005
Outlook

- 2016-2017
 - Implement STIRAP more efficient way to detect spin;
 - Longer trap lifetime;
- 2018-2020, blue upgrade more efficient trap;
- Five-year goal (before FRIB): 10⁻²⁶ e cm;
- 2021 and beyond (at FRIB): 3 x 10⁻²⁸ e cm;
- Far future: search for EDM in diatomic molecules
 - Effective E field is enhanced by a factor of 10³;
 - Reach the Standard Model value of 10⁻³⁰ e cm.