

Compact Binary Mergers, Nuclear EOS, and LIGO

- GWs and LIGO
- Compact binary mergers
- prospects for LIGO GW detection and EM counterparts
- Neutron stars
- Nuclear EOS
- Neutron star mass & radius
- BNS mergers
- BNS r-process nucleosynthesis
- BNS merger constrains on NEOS

Alan Weinstein, Caltech for the LIGO Scientific Collaboration

DOE/NSF NSAC Meeting, Bethesda, March 23, 2016 LIGO-G1600723

"Merging Neutron Stars" (Price & Rosswog)

The Advanced LIGO detectors

University of Southampton

Leibniz

Universität

Hannover

2

4 100

10

PennState

of Technology

Universitv

STATE UNIVERSITY

EMBRY-RIDD

Science & Technology Pacilities Council Rutherford Appleton Laboratory

CHARLES ST

Travitational-Wave Group

$\text{iLIGO} \rightarrow \text{eLIGO} \rightarrow \text{aLIGO}$

2006	2007	2008	2009	9 2010	2011	2012	2013	2014	now
S5 data run		e-LIGO installation and commissioning		S6 data run	Dark period			1	
Cuprom	Distancing Sectors Distances Distances	Hone and the second sec		S6 for Advance Ad	data analys d LIGO con ranced LI	is & preparat nmissioning a GO Project	tions and open dat	a	
AdvLIGO More and a second and a	Constant Vol Const			Adv L Install beg	-IGO ation ins	Comm Wi	iissioning & th Advance	& initial da ed LIGO	ta
	Anto-		lmpro ⇒ Nur	ve amplitud mber of sou	e sensiti rces goe	vity by a f	actor of 1 x!	0x, and	5

GWs from coalescing compact binaries (NS/NS, BH/BH, NS/BH)

• Neutron star – neutron star (Centrella et al.)

Tidal disruption of neutron star

A unique and powerful laboratory to study strong-field, highly dynamical gravity and the structure of nuclear matter in the most extreme conditions

Waveform carries lots of information about binary masses, orbit, merger

1100

950

800

650

500

350

200

50

Sensitive Luminosity Distance (Mpc)

Template-based searches

Masses and (aligned) spins Templates spaced for < 3% loss of SNR: 250K templates.

Sensitive distance in Mpc

GW150914

Phys. Rev. Lett. 116, 061102 – Published 11 February 2016

https://dcc.ligo.org/LIGO-P150914/public/main

GW150914 in the frequency domain

Observed BBH merger rate

https://dcc.ligo.org/LIGO-P1500217/public/main

Same ballpark as population synthesis models, CCSN rate, etc iLIGO+eLIGO BBH rate upper limit: ~< 420 Gpc⁻³ yr⁻¹ Aasi, J. et al. 2013, Phys. Rev. D, 87, 022002, arXiv:1209.6533

Expected (and measured!) compact binary merger rates

Expected ranges of binary neutron star merger rates and detections

Estimated BNS rate: [10¹ – 10⁴] Gpc⁻³yr⁻¹

	Estimated			Number
	Run	BNS Rang	of BNS	
Epoch	Duration	LIGO	Virgo	Detections
2015	3 months	40 - 80	_	0.0004 - 3
2016–17	6 months	80 - 120	20-60	0.006 - 20
2017 - 18	9 months	120 - 170	60-85	0.04 - 100
2019+	(per year)	200	65 - 130	0.2 - 200
2022+ (India)	(per year)	200	130	0.4 - 400

LIGO and Virgo Collaborations, "Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo" Living Rev. Relativity, 19, 1 (2016)

Binary neutron star mergers are a unique laboratory for nuclear (astro)-physics

Daniel Price and Stephan Rosswog

Short-hard and Long-soft GRBs

Copyright © 2005 Pearson Prentice Hall, Inc.

BNS and NSBH mergers

Figure 1 from I Bartos et al 2013 Class. Quantum Grav. 30 123001

http://www.nasa.gov/mission_pages/swift/bursts/short_burst_nsu_multimedia.html

Low-latency identification of transients for rapid (< ~100s) followup

EM counterparts to GW sources (if any) are short-lived and faint

sky localization with the GW detector network

LIGO

Neutron stars

- Remnants of core collapse supernovae
- A unique laboratory for fundamental physics
- Strong, Weak, EM, gravity all under the most extreme conditions
- Structure can be revealed through binary mergers

All four fundamental forces

- Gravity: Compact stars have gravitational fields GM/c²R ~ O(1), strong tidal effects, strong curvature, highly relativistic
- Strong interaction at > 2x nuclear density in core
 - » Hard repulsive core of nucleonnucleon interaction plays crucial role
 - Potential transition to hyperonic matter, strange quark matter, QGP
 - » Complex ionic crystal lattice structure in crust: "nuclear pasta"
- Weak interaction under extreme conditions with neutrino trapping -> beta equilibrium
- EM: Superfluid core supporting extreme magnetic fields (perhaps > 10¹⁵ Gauss at surface), flux tube pinning in core

 Simplification: T=0, pure neutron & proton gas. Appropriate (?) for interior of cold neutron stars.

Phase diagram of ground state

Cold equation of state: pressure vs density

• T=0, pure neutron & proton gas. $f=\epsilon$

$$\epsilon(n_n, n_p) = \frac{3}{5} \frac{p_{F,n}^2}{2m_n} \frac{n_n}{n} + \frac{3}{5} \frac{p_{F,p}^2}{2m_p} \frac{n_p}{n} \quad p_F = (3\pi^2\hbar^3)^{1/3} n^{1/3}$$

$$P = n^2 \frac{\partial\epsilon}{\partial n} \propto n^{5/3}$$

$$\Gamma = \frac{d\ln P}{d\ln \rho} \Big|_s = \frac{5}{3} \qquad P = K\rho^{\Gamma}$$
"polytrope"

 $\Gamma = 5/3$ corresponds to a non-relativistic gas. A relativistic gas has $\Gamma = 4/3$, which is unstable to collapse. Note that (unlike ideal gas law P = nkT) the result is independent of temperature. In general, $pv^n = const$ is polytropic, with $\Gamma = 1 + 1/n$; here, n = polytropic index (NOT $n = \rho/m_N$)

Nuclear Statistical Equilibrium ($\rho > 10^7 \text{ g/cm}^3$, T > 0.5 MeV)

C. Ott, 2012

C. Ott, 2012

Nuclear Equation of State

• T=0, interacting pure neutron & proton gas.

$$\epsilon(n_n, n_p) = \frac{3}{5} \frac{p_{F,n}^2}{2m_n} \frac{n_n}{n} + \frac{3}{5} \frac{p_{F,p}^2}{2m_p} \frac{n_p}{n} + \frac{V_{np}(n_n, n_p)}{n}$$

nucleon-nucleon (NN) potential energy density

- Nuclear force is NN many-body interaction = "effective" strong force interaction.
 - Mediated by mesons:
 π (s=0), σ (s=0), ω (s=1), ρ (s=1)
- Dependent on separation and spin orientation. Scalar, vector, and tensor components.
 Vector component is repulsive.

C. Ott, 2012

C. Ott, 2012

Neutron Star Structure

Newtonian:
$$\frac{dP}{dr} = -\frac{GM\rho}{r^2} \quad \frac{dM}{dr} = 4\pi r^2 \rho \quad \text{(no maximum mass!)}$$
GR: Tolman-Oppenheimer-Volkov (TOV) eqns
$$\frac{dP}{dr} = -G(\rho(1 + \epsilon/c^2) + P/c^2) \frac{M + 4\pi r^3 p/c^2}{r(r - 2GM/c^2)}$$

$$\frac{dM_g}{dr} = 4\pi r^2 \rho(1 + \epsilon/c^2) \quad \text{gravitational mass}$$

$$\frac{dM_b}{dr} = \frac{4\pi r^2}{\sqrt{1 - \frac{2GM}{rc^2}}} \rho \quad \text{baryonic mass}$$

Radius is circumferential radius!

• Solve by ODE integration from r=0, invert $P(\rho)$ at each step to obtain ρ . C. Ott, 2012 36

J. Lattimer, Annu. Rev. Nucl. Part. Sci. 62, 485 (2012)

EOS and Neutron star structure

Neutron star masses

Mass and radius constraints

Strange quark models appear to be ruled out...Radius (km)

Astrophysical constraints on masses and radii of NSs

J. Lattimer, Annu. Rev. Nucl. Part. Sci. 62, 485 (2012), arXiv:1305.3510v1

Binary neutron star mergers

Matter distribution during the disruption of the neutron star

F. Foucart et al, Phys. Rev. D 90, 024026 (2014) arXiv:1405.1121 43

- Lightest elements (H, He, Li) forged in Big Bang
- Heavier elements (C, O, N, ... Fe) forged in the core of massive stars, distributed to ISM by corecollapse supernovae (star-death)
- Elements beyond Fe (like Cu, Au, Pb, Pt, U...) are forged during the SN ("r-process")
- but many/most of them might come from binary neutron star mergers (second-death)

Binding Energy Per Nucleon (MeV)

COSMIC ABUNDANCES of the elements

By Cmglee - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=31761437

Nucleosynthesis in binary neutron star collisions

C. Ott; http://www.lippuner.ca/files/nucleosynthesis_000_med.mp4

GWs from BNS mergers

S Bernuzzi, T Dietrich, A Nagar, Phys Rev Lett 115, 091101 (2015) arxiv.org:1504.01764

Spectrum of BBH inspiral, scale to 1.35-1.35, 45 Mpc

J. Read, CGWAS 2015

48 7

Spectrum of NS-NS inspiral, 1.35-1.35, 45 Mpc

J. Read, CGWAS 2015

Spectrum of NS-NS inspiral, 1.35-1.35, 45 Mpc

J. Read, CGWAS 2015

Consider two extended bodies in orbit or free-fall:

Residual gravitational effect is tide.

Amount of deformation depends on size and matter properties.

Deformation induces change in gravitational potential.

Tides and the Quadrupole moment Q

mass M radius R Love number k deformed by mass m distance a away

$$Q = \frac{2}{3} k R^5 \left(\frac{m}{d^3}\right)$$

gives the gravitational potential around a deformed body

$$U=-\frac{M}{r}-\frac{3}{2}\frac{Q(cos^2\theta-1)}{r^3}$$

This tells us about things like satellite movement, tidal locking ("back-reaction" on bulges), and **orbital dynamics** in binary systems J. Read, CGWAS 2015

Calculate in GR:

Perturb a spherically symmetric neutron star impose quadrupole angular dependence look at scaling with distance from star r

(0711.2420, 0906.1366, 0906.0096)

$$\lambda = \frac{Q}{\mathcal{E}} = \frac{\text{size of quadrupole deformation}}{\text{strength of external tidal field}} \quad (\sim r^{-3})$$

Love number k_2 Radius RJ. Read, CGWAS 2015

$$\lambda = \frac{2}{3}k_2R^5 \quad (G=c=1)$$

53 31

Equation of state determines λ for each M

Effect of tides on orbit:

some energy into tides as stars come closer together

a bit of extra GW luminosity from rotating quadrupoles

stars merge earlier

J. Read, CGWAS 2015

Tidal effect on PN waveforms

Simulations & animations by K Hotokezaka J. Read, CGWAS 2015

Nuclear Astrophysics: NS-NS Mergers

Sekiguchi+ 11: First full GR NS-NS simulation with realistic microphysics, finite-temperature nuclear EOS of H. Shen+ '98,'11

Frequency of peak of final hyper-massive NS resonance

61

Universality of peak frequency

Many observations required to constrain NEOS

M. Agathos et al (LVC), Phys. Rev. D 92, 023012 (2015), arXiv:1503.05405v1

Constraining the NEOS using GWs from BNS

THANK YOU!

Questions?