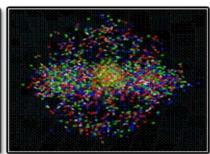
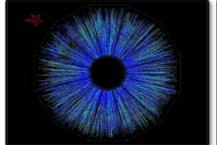
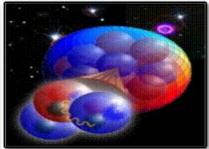
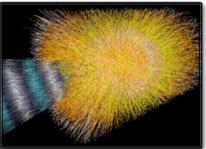

Perspectives from the DOE Office of Science Nuclear Physics Program

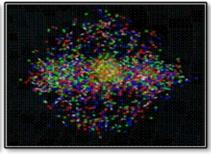

NSAC Meeting April 24, 2014

Dr. Timothy J. Hallman
Associate Director for Nuclear Physics
DOE Office of Science

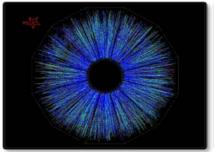


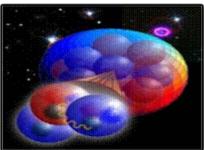

Nuclear Physics' Mission

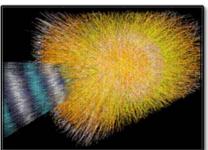

Discovering, exploring, and understanding all forms of nuclear matter

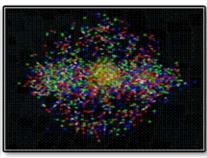

The Scientific Challenges

- The existence and properties of nuclear matter under extreme conditions, including that which existed at the beginning of the universe
- The exotic and excited bound states of quarks and gluons, including new tests of the Standard Model
- The ultimate limits of existence of bound systems of protons and neutrons
- Nuclear processes that power stars and supernovae, and synthesize the elements
- The nature and fundamental properties of neutrons and the neutrino and their role in the evolution of the early universe

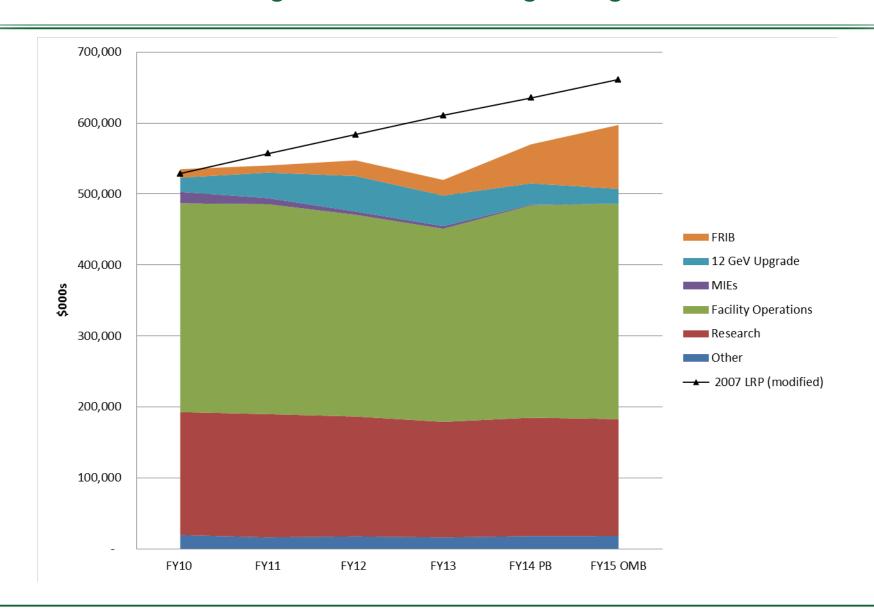



Nuclear Physics


Discovering, exploring, and understanding all forms of nuclear matter


FY 2015 Budget Highlights:

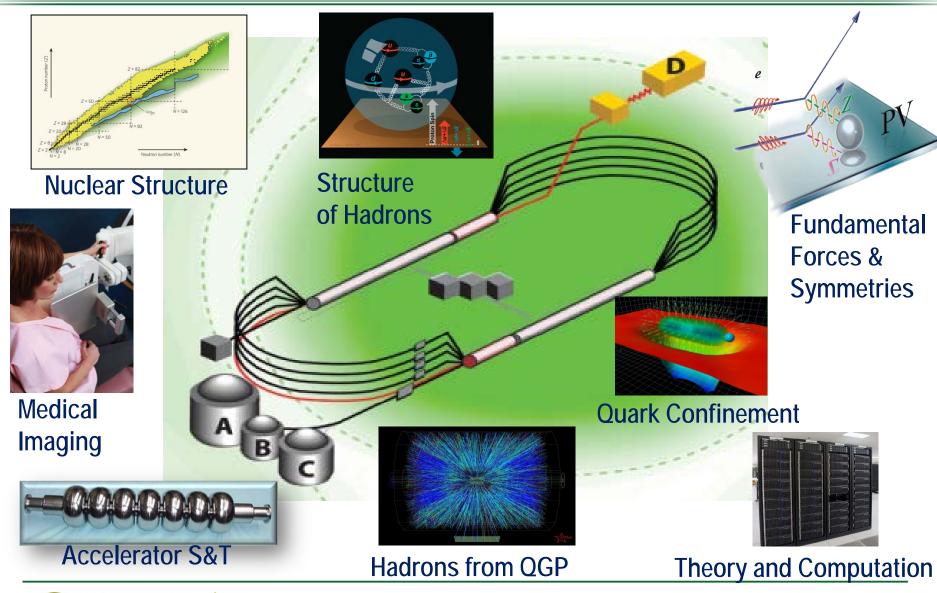
- Research at RHIC capitalizes on increased luminosity and new micro-vertex detectors to probe the properties of the perfect Quark-Gluon liquid using charm and bottom quarks.
- Construction continues for the Facility for Rare Isotope Beams to study nuclear structure and nuclear astrophysics.
- The 12 GeV CEBAF Upgrade to study the quark structure of nucleons and nuclei achieves CD-4A, Accelerator Project Completion.
- ATLAS beams using the Californium Rare Isotope Breeder (CARIBU) advance understanding of nuclear structure and the origin of the elements in the cosmos.
- Research, development, and production of stable and radioactive isotopes is provided for science, medicine, industry, and national security.
- Research decreases relative to FY 2014.



The FY2015 SC Budget Request

	FY 2013 Current (prior to SBIR/STTR)	FY 2013 Current Approp.	FY 2014 Enacted Approp.	FY 2015 President's Request		ent's Request acted Approp.
Advanced Scientific Computing Research	417,778	405,000	478,093	541,000	+62,907	+13.2%
Basic Energy Sciences	1,596,166	1,551,256	1,711,929	1,806,500	+94,571	+5.5%
Biological and Environmental Research	578,294	560,657	609,696	628,000	+18,304	+3.0%
Fusion Energy Sciences	385,137	377,776	504,677	416,000	-88,677	-17.6%
High Energy Physics	748,314	727,523	796,521	744,000	-52,521	-6.6%
Nuclear Physics	519,859	507,248	569,138	593,573	+24,435	+4.3%
Workforce Development for Teachers and Scientists	17,486	17,486	26,500	19,500	-7,000	-26.4%
Science Laboratories Infrastructure	105,673	105,673	97,818	79,189	-18,629	-19.0%
Safeguards and Security	77,506	77,506	87,000	94,000	+7,000	+8.0%
Program Direction	174,862	174,862	185,000	189,393	+4,393	+2.4%
Subtotal, Office of Science	4,621,075	4,504,987	5,066,372	5,111,155	+44,783	+0.9%
SBIR/STTR		176,208				
Total, Office of Science	4,621,075	4,681,195	5,066,372	5,111,155	+44,783	+0.9%

NP Budgets vs. 2007 Long Range Plan


Nuclear Physics FY 2015 President's Request by Subprogram

Budget Structure/ Subprogram (\$ in 000s)	FY 2013 Approp (w/SBIR/STTR)	FY 2014 Enacted	FY 2015 Request	FY 2015 vs. FY 2014				
Medium Energy	128,328	148,695	149,892	+1,197				
Heavy Ions	193,229	199,693	198,966	-727				
Low Energy*	100,190	75,704	75,269	-435				
Nuclear Theory	39,057	45,142	43,096	-2,046				
Isotope Program	18,483	19,404	19,850	+446				
Construction	40,572	80,500	106,500	+26,000				
TOTAL NP	519,859	569,138	593,573	+24,435				
* FRIB included in Low Energy in FY 2013 (\$2	* FRIB included in Low Energy in FY 2013 (\$22M)							

Increase in the FY 2015 budget request for NP is dominated by the construction profile of FRIB

JLab: Medium Energy Nuclear Science and Its Broader Impacts

The 12 GeV CEBAF Upgrade at TJNAF is 87% Complete

With the completion of the 12 GeV CEBAF Upgrade, researchers will address:

- The search for exotic new quark anti-quark particles to advance our understanding of the strong force
- Evidence of new physics from sensitive searches for violations of nature's fundamental symmetries
- A detailed microscopic understanding of the internal structure of the proton, including the origin of its spin, and how this structure is modified when the proton is inside a nucleus

Mounting of the Forward Time-of-Flight detector arrays onto the forward carriage in Hall B Project was re-baselined in September 2013 with a Total Project Cost of \$338M and completion in September 2017

Medium Energy – FY 2015 President's Request

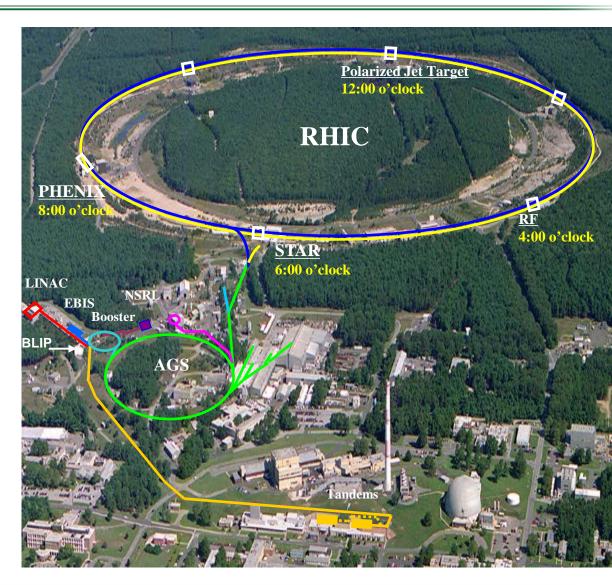
	FY 2014 Enacted	FY 2015 Request	FY15 vs. FY14
Research	36,864	36,007	-857 ≼
TJNAF Operations	94,493	96,050	+1,557 <
SBIR/STTR/Other	17,338	17,835	+497
Total	148,695	149,892	+1,197

 Research decreases relative to FY 2014. Focus is on the highest priority research preparations for the 12 GeV program and RHIC polarized proton run data.

Supports 45 operations staff FTEs transitioning from the 12 GeV Upgrade project back to the base operations budget as the 12 GeV CEBAF Upgrade project ramps down. The needed funding has been partially offset by redirecting funds from other activities such as equipment, AIP and GPP projects.

 Support is provided for NP's required contribution to the SBIR/STTR programs.

CEBAF - Thomas Jefferson National Accelerator Facility (JLab)

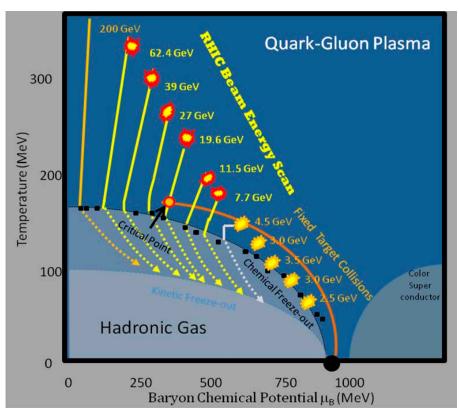


Continuing Scientific Discovery at the Relativistic Heavy Ion Collider


RHIC discovered a completely new state of matter—a perfect quark-gluon liquid. The RHIC science campaigns planned in the next 3-5 years will:

- determine, with precision, the properties of this perfect liquid
- search for new discoveries such as the postulated Critical Point in the phase diagram of QCD
- explore the gluon and sea quark contributions to the spin of the proton using RHIC, the only collider with polarized beams
- explore and develop intellectual connections and broader impacts to other subfields

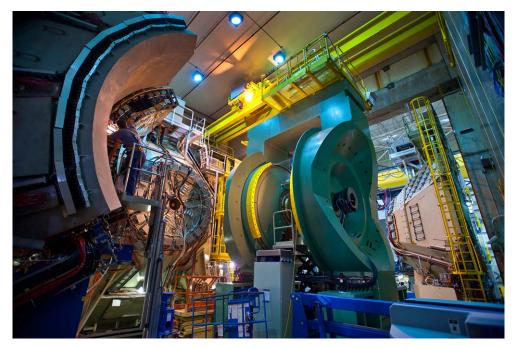
No other facility worldwide, existing or planned, can rival RHIC in range and versatility.



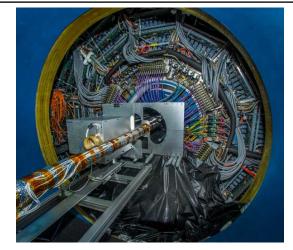
RHIC: A unique discovery tool

The recently completed STAR Heavy Flavor Tracker to enable measurement of heavy quarks

Aided by innovative machine and detector upgrades to be completed in 2014, RHIC will probe the structure of the quark-gluon plasma with heavy quarks, which serve as sensors of the internal forces that govern the



structure of the "perfect" liquid QGP, and will map the phase diagram to determine where the quark-gluon liquid cools into a gas of elementary particles and search for a critical endpoint. No other accelerator in the world can do this.


Heavy Ion – FY 2015 President's Request

	FY 2014 Enacted	FY 2015 Request	FY15 vs. FY14	
Research	34,621	33,894	-727	<
RHIC Operations	165,072	165,072	0	<
Total	199,693	198,966	-727	

PHENIX detector at BNL's Relativistic Heavy Ion Collider (RHIC)


- Research decreases relative to FY 2014. Focus is on the collection and analysis of RHIC data using newly completed scientific instrumentation to better understand the initial conditions in heavy ion collisions, as well as participation in experiments at the LHC.
- RHIC Operations is maintained at the FY 2014 level which supports 2,770 beam hours (approximately 22 weeks and 68 percent utilization). Funds for experimental equipment, accelerator R&D, and materials and supplies are reduced in FY 2015 in order to optimize running levels.

Heavy Flavor Tracker installed in STAR – ready for RHIC Run 14

ATLAS at ANL Uniquely Provides Low Energy SC Research Opportunities

Facility for Rare Isotope Beams

FRIB will increase the number of isotopes with known properties from ~2,000 observed over the last century to ~5,000 and will provide world-leading capabilities for research on:

Nuclear Structure

- The ultimate limits of existence for nuclei
- Nuclei which have neutron skins.
- The synthesis of super heavy elements

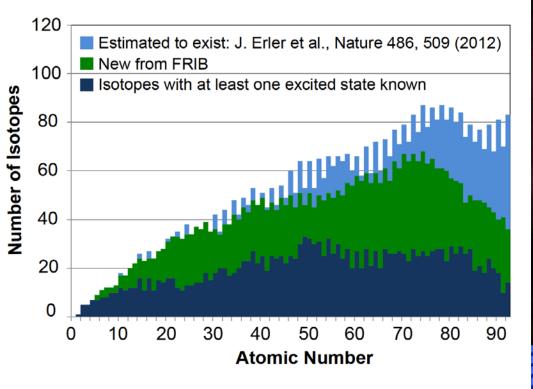
Nuclear Astrophysics

- The origin of the heavy elements and explosive nucleo-synthesis
- Composition of neutron star crusts

Fundamental Symmetries

 Tests of fundamental symmetries, Atomic EDMs, Weak Charge

This research will provide the basis for a model of nuclei and how they interact.


The coils of this high temperature superconducting (HTS) quadrupole exceeded the required currents at elevated temperatures, indicating additional operating current margin and more stability.

NSAC Meeting April 24 2014

FRIB: 21st Century Science Questions

- FRIB physics is at the core of nuclear science:
 "To understand, predict, and use"
- FRIB provides access to a vast unexplored terrain in the chart of nuclides

NRC Decadal Study Overarching Questions · How did visible matter come into being and how does it evolve? · How does subatomic matter organize itself and what phenomena emerge? · Are the fundamental interactions that are basic to the structure of matter fully understood? How can the knowledge and technological progress provided by nuclear physics best be used to benefit society? The Time Scale Protons and neutrons formed 10-6 to 1 second after Big Bang (13.7 billion years ago) H, D, He, Li, Be, B formed 3-20 minutes after Big Bang Other elements born over the next 13.7 billion years

Facility for Rare Isotope Beams

"On August 1, 2013, the Department of Energy's Office of Science approved Critical Decision-2 (CD-2), Approve Performance Baseline, and Critical Decision-3a (CD-3a), Approve Start of Civil Construction and Long Lead Procurements, for the Facility for Rare Isotope Beams (FRIB) construction project, which will be located at Michigan State University."

- As with other DOE Office of Science construction projects, CD-2 formally establishes the cost and schedule for the FRIB project.
 - The Total Project Cost for FRIB is \$730M, of which \$635.5M will be provided by DOE and \$94.5M will be provided by MSU.
 - The project will be completed by June 30, 2022.
- Start of civil construction was authorized January 22, 2014.
- Excavation activities began late February 2014.
- Ground breaking ceremony with participation by DOE officials and Senate and House representatives was held on March 17, 2014.

Preparations for NP Stewarded Neutrino-less Double Beta Decay Experiments

R&D on one of several approaches by U.S. scientists is ongoing at Lead, South Dakota

Recent progress on the Majorana Demonstrator 4800 feet below ground at the Sanford Underground Research Facility (SURF)

With techniques that use nuclear isotopes inside cryostats, often made of ultra-clean materials, scientists are "tooling up" to study whether neutrinos are their own antiparticle.

NSAC has been charged to identify the criteria for a next generation double beta decay experiment.

Inspection of copper being electroformed at the Temporary Clean Room in SURF

Low Energy – FY 2015 President's Request

	FY 2014 Enacted	FY 2015 Request	FY15 vs. FY14	
Research	49,180	48,450	-730	•
ATLAS Operations	17,246	17,541	+295	4
HRIBF Disposition and Other Operations	9,278	9,278	0	•
Total	75,704	75,269	-435	

Cryomodule components at ATLAS (ANL)

Research decreases relative to FY 2014. Focus is on nuclear structure and nuclear astrophysics research at ATLAS, preparation for FRIB, commissioning of the Majorana Demonstrator, the neutron program at the FNPB, completion of fabrication of CUORE, and support for the GRETINA detector and KATRIN experiment.

 Operations at the ATLAS national user facility are optimized at 5,900 hours of research beam time (95% of optimal operations).

Funding is maintained for operations of the 88-Inch Cyclotron at LBNL, which is funded jointly with the USAF and the NRO, and for continued equipment disposition at HRIBF.

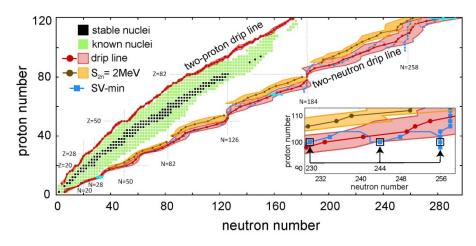
Nuclear Theory

Maintaining adequate support for a robust nuclear theory effort is essential to the productivity and vitality of nuclear science

The essential role of a strong nuclear theory effort goes without saying:

- Poses scientific questions that lead to the construction of facilities
- Helps make the case for, and guide the design of new facilities, their research programs and their strategic operations plan
- Provides a framework for understanding measurements made at facilities
- Topical Collaborations (fixed-term, multi-institution collaborations established to investigate a specific topic) appear to have been very successful and, resource permitting, the model will be continued

Nuclear Theory – FY 2015 President's Request

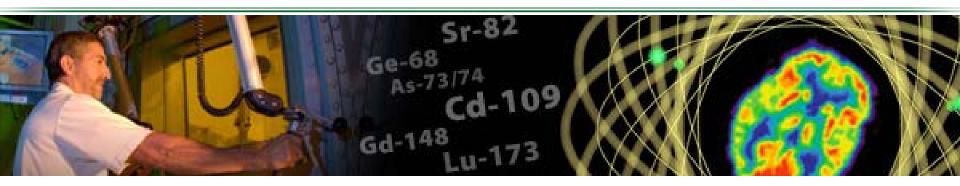

	FY 2014 Enacted	FY 2015 Request	FY15 vs. FY14	
Research	36,115	33,719	-2,396	<
SciDAC	2,000	2,000	0	<
Nuclear Data	7,027	7,377	+350	<
Total	45,142	43,096	-2,046	

 Research decreases relative to FY 2014. Focus is on the highest priority nuclear theory efforts at universities and laboratories and NP's contribution to LQCD computing.

- Funding is provided for the fourth year of the fiveyear SciDAC-3 projects first funded in FY 2012.
- Funding for the Nuclear Data program maintains staff and enhances this important national and international resource.

New GPU-based LQCD processor at TJNAF

How many different nuclei exist?


NP researchers theorize the number to be ~7,000

20

NSAC Meeting April 24 2014

Isotope Program Mission

The mission of the DOE Isotope Program is threefold

- Produce and/or distribute radioactive and stable isotopes that are in short supply, associated byproducts, surplus materials and related isotope services.
- Maintain the infrastructure required to produce and supply isotope products and related services.
- Conduct R&D on new and improved isotope production and processing techniques which can make available new isotopes for research and applications.

Produce isotopes that are in short supply only – the Isotope Program does not compete with industry

More than 150 customers in FY 2013 More than 460 shipments in FY 2013

Re-organizing the Isotope Program

The changes to the program have been substantial since being transferred to Office of Science in 2009

- Restructured the federal organization of the program
- Created the National Isotope Development Center to strengthen public outreach
- Created Research and Development Program for new and improved isotope production techniques
- Charged NSAC to set priorities for research opportunities and to develop a long-term strategic plan for isotope production and development
- Increased portfolio of isotope production sites
- Increased availability of research isotopes and made more affordable
- Introduced peer review into mode of operations
- Improved communication with stakeholders
 - Federal agencies, industry, research and applied

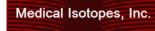
22

NSAC Meeting April 24 2014

The NP Isotope Program Continues to Provide Isotopes and Radioisotopes in Short Supply

Some key isotopes and radioisotopes and the companies that use them

Strontium-82, Rubidium-82	Imaging / Diagnostic cardiology
Germanium-68, Gallium-68	Calibration / PET scan imaging
Californium-252	Oil and gas exploration and manufacturingcontrols
Selenium-75	Radiography / Quality control
Actinium-225, Yttrium-90, Rhenium 188	Cancer / Infectious disease treatment
Nickel-63	Explosives detection at airports
Gadolinium-160, Neodymium-160	Tracers and contrast agents for biological agents
Iron-57, Barium-135	Standard sources for mass spectroscopy
Sulfur-34	Environmental monitoring
Rubidium-87	Atomic frequency / GPS applications
Lithium-6, Helium-3	Detection of Special Nuclear Materials
Samarium-154	Solar energy /transportation applications



It Also Serves a Very Important Role in Coordination and Communication: The 2nd Workshop on Isotope Federal Supply and Demand (Sept 19-20, 2013)

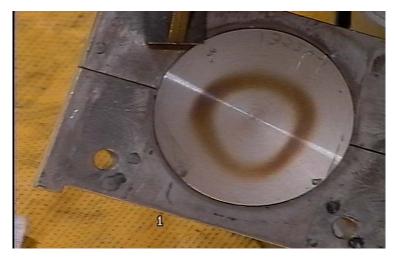
70 attendees23 different federal institutionsOver 200 isotopes identified

- Armed Research Institute
- Defense Logistics Agency
- Defense Threat Reduction Agency
- Department of Agriculture
- DOE/National Isotope Development Center
- DOE/National Nuclear Security Administration
- DOE/New Brunswick Laboratory
- DOE/Office of Fossil Energy-Oil and Natural Gas
- DOE/Office of Intelligence
- DOE/Office of Nuclear Energy
- DOE/Office of Science
- Department of Homeland Security
- Department of State
- Department of Transportation
- Federal Bureau of Investigation
- Food and Drug Administration
- National Aeronautics and Space Administration
- National Institutes of Health
- National Institute of Standards and Technology
- National Science Foundation
- National Security Staff
- Office of Science & Technology Policy
- Office of the Director of National Intelligence

Security

24

NSAC Meeting April 24 2014


One Year Ago R&D Creates New Production Method for Actinium-225

- A new isotope project at LANL shows promise for rapidly producing major quantities of a new cancer-treatment agent, actinium-225.
- Using proton beams, LANL and BNL could match current annual worldwide production of the isotope in just a few days.
- A collaboration among LANL, BNL, and ORNL is developing a plan for full-scale production and stable supply of Ac-225.
- Ac-225 emits alpha radiation. Alpha particles are energetic enough to destroy cancer cells but are unlikely to move beyond a tightly controlled target region and destroy healthy cells. Alpha particles are stopped in their tracks by a layer of skin—or even an inch or two of air.

Where are we today? Thorium Target Irradiations for Ac-225 (Cancer Therapy)

Rear window of 10g Th target prototype after irradiation

Open target in a hot cell showing Th "pie-slices" Target cut in "pieslices" to facilitate DOT Type A shipping

- Two targets fabricated with 10g Thorium
 - First target irradiated in November 2013 for short duration to test thermal parameters
 - Second target irradiated in January 2014 for >50 mCi Ac-225 production
- Material has been sent to ORNL for processing.
- Product will be sent to Memorial Sloan-Kettering for evaluation for future Phase 1 Clinical Trial.

Isotope Program – FY 2015 President's Request

	FY 2014 Enacted	FY 2015 Request	FY15 vs. FY14
Research	4,562	4,562	0
Operations	14,842	15,288	+446
Total	19,404	19,850	+446

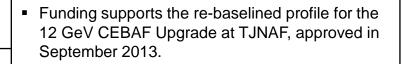
Research is flat with FY 2014. Focus continues support for important core laboratory research activities to enhance the development and production techniques for critical isotopes, and competitive R&D awards to universities and laboratories.

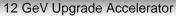
Isotope Production Facility at LANL TA-48 hot cells at LANL

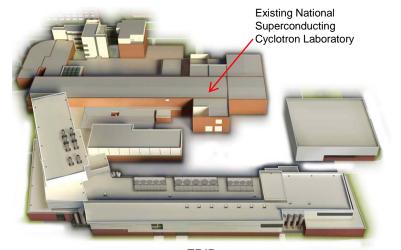
 Funding maintains mission readiness at constant effort for safe and reliable operations of IPF, BLIP and Hot Cell facilities at LANL,ORNL and BNL.

Hot cells used to purify highly radioactive materials for medical use

27


Brookhaven Linac Isotope Producer beam line


Construction – FY 2015 President's Request


	FY 2014 Enacted	FY 2015 Request	FY15 vs. FY14
12 GeV CEBAF Upgrade	25,500	16,500	-9,000
Facility for Rare Isotope Beams	55,000	90,000	+35,000
Total	80,500	106,500	+26,000

 Funding supports the baselined profile for the Facility for Rare Isotope Beams (FRIB) at MSU, approved in August 2013.

FRIB

TPC \$000s	PYs	FY13	FY14	FY15	FY16	FY17	FY18	FY19	FY20	FY21	TOTAL
12 GeV	230,928	43,072	30,000	21,000	12,000	1,000	-	-	-	-	338,000
FRIB	51,000	22,000	55,000	90,000	100,000	100,000	97,200	75,000	40,000	5,300	635,500

Recent Program Activities

- To maintain a high impact, competitive research portfolio, NP conducted a comparative review of research efforts at laboratories and universities. Five sequential international review panels were held in May-June 2013 for:
 - Nuclear Structure/Nuclear Astro; Heavy Ions; Medium Energy; Nuclear Theory; Fundamental Symmetries
 - Panel Grades and Comments were returned to PI's; An action plan has been developed to terminate
 ~20% of lowest ranking competitive awards to re-compete those resources and also address some
 impacts of Congressional direction on the full funding of grants
 - One additional competitive round for proposals received up to May 1, 2014
- A RHIC Operations Review was conducted by the SC Office of Project Assessment (Lehman)
 - Main conclusion: RHIC Operations is right sized, high quality and cost effective
- Established CD2/3a for the Facility for Rare Isotope Beams, approving the facility's performance baseline and the start of civil construction
 - Total Project Cost: \$730M, including an MSU cost share of \$94.5M; completion June 2022
- Re-baselined the 12 GeV CEBAF Upgrade project to address the impacts of a directed funding change in FY 2012 (\$50M vs \$66M in the project baseline) and technical challenges with superconducting magnets
 - Total project cost: \$338M; completion September 2017
- An NSAC Implementation Exercise revisited the 2007 LRP in a constrained fiscal outlook
- NP Isotope Program held the 2nd Workshop on Isotope Federal Supply and Demand

NSAC Meeting April 24 2014

Nuclear Science Advisory Committee

Current charges in progress

- To provide guidance on an effective strategy for implementing a possible second generation U.S. experiment on neutrino-less double beta decay (NLDBD) capable of reaching the sensitivity necessary to determine whether the nature of the neutrino is Majorana or Dirac.
- To form a Subcommittee to assess the effectiveness of the National Nuclear Security Administration-Global Threat Reduction Initiative's Domestic Molybdenum-99 (Mo99) Program, in accordance with direction given to the DOE in the National Defense Authorization Act for FY 2013.
- To form a subpanel to examine potential gaps in training and workforce critical to the NP/SC mission

Upcoming charges at NSAC meeting April 24, 2014:

- To form a new subpanel to conduct a new study of the opportunities and priorities for isotope research and production resulting in a long range strategic plan for the Department of Energy (DOE) Isotope Program
- To conduct a new Long Range Plan exercise to study the opportunities and priorities for United States nuclear physics research and recommend a long range plan that will provide a framework for coordinated advancement of the Nation's nuclear science research programs over the next decade.

Major Considerations for Nuclear Physics in the FY 2015 Budget Request

- Maintaining the baseline schedule and budget for the Facility for Rare Isotope Beams and the 12 GeV CEBAF Upgrade projects
- Optimizing Core Research within available funds
- Optimizing productivity of user facility operations
 - Increased support for 12 GeV operations to transition essential staff back from the
 12 GeV CE BAF Upgrade Project and begin commissioning the upgraded machine
 - Maintain support of the Relativistic Heavy Ion Collider to realize compelling science opportunities
 - Optimal utilization of ATLAS as the only SC facility uniquely providing beams for nuclear structure and nuclear astrophysics
- Meeting the stable and radioisotope needs of the Nation, and mitigating impacts, to the extent possible, of potential isotope shortages

NP News and Events

- Successful OPA review of the 12 GeV CEBAF Upgrade on April 8-10, 2014
- FRIB Groundbreaking March 17, 2014
- DBD charge given to NSAC
- Mo-99 charge given to NSAC
- Workforce charge given to NSAC
- FY2016 Budget formulation in progress
- Candidate selected for Nuclear Physics Instrumentation Program Manager
- Gulshan Rai appointed as Medium Energy Program Manager
- Ted Barnes working with community on strategic visions for Nuclear Data and Nuclear Theory Computing
- Coordination on Accelerator R&D with HEP and BES continuing
- Some strategic restructuring of "day-to-day" operation of the Isotope Program; Marc Garland work directly with NIDC Management
- SC Director nomination awaiting confirmation
- SC transitioning rapidly to Portfolio Analysis and Management System

NP News and Events

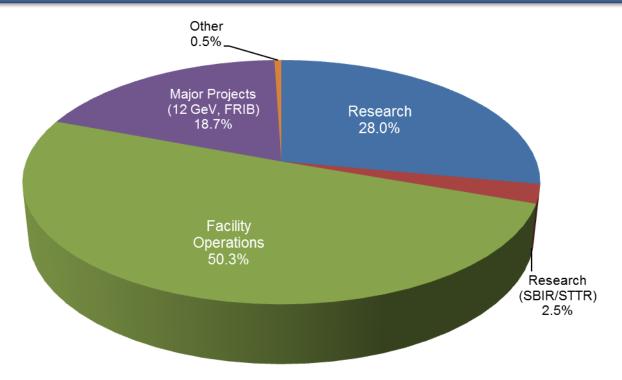
2014 DOE NP Competitive Review of New Proposals

As part of its ongoing effort to steward a research program of the highest quality and impact, the DOE Office of Nuclear Physics (NP) will conduct a competitive review of all new proposals responsive the Office of Science (SC) annual <u>Funding Opportunity Announcement</u> (FOA) received until May 1, 2014. The review will take place in the June-July timeframe in order to inform FY 2015 NP Research Division awards, subject to the availability of funds. Applications received during the period May 2 – September 30, 2014 may not receive consideration for funding until FY 2016.

The planned competitive review will address topics and proposed activities within the portfolio of the NP Physics Research Division. Research efforts that are not included in this review are the Accelerator R&D Program, the Isotope Program, the Nuclear Data Program, the NP SciDAC Program, Topical Collaborations in Nuclear Theory, and international collaboration awards.

Outlook

- The future of nuclear science in the United States continues to be rich with science opportunities.
- Long term, an electron-ion collider may be the optimum path towards new opportunities in QCD research.
- The United States continues to provide resources for and to expect:
 - ➤ U.S. world leadership in discovery science illuminating the properties of nuclear matter in all of its manifestations.
 - ➤ Tools necessary for scientific and technical advances which will lead to new knowledge, new competencies, and groundbreaking innovation and applications.
 - Strategic investments in tools and research to provide the U.S. with premier research capabilities in the world.


Nuclear Science will continue to be an important part of the U.S. science investment strategy to create new knowledge and technology innovation supporting U.S. security and competitiveness

Nuclear Physics FY 2015 President's Request – By Function

~69% of the FY 2015 NP budget supports operations or construction of facilities

The percentage devoted to major projects is almost 19% in FY 2015

FY 2015 President's Request Total = \$593.6M

