Status of the LHC Detectors

Talk to March 11, 2010 Meeting of HEPAP J. Butler Fermilab/CMS

Outline

- General observations
- ATLAS
- CMS
- ALICE
- LHCb
- Prospects and Conclusions

ATLAS and CMS have very large U.S. involvement relative to ALICE and LHCb. I will spend more time on them.

General Status - Preparation

- All 4 experiments had >97% of all installed channels working
- Detectors did extensive cosmic runs
- The detector simulations were done in great detail and were tuned with input from test bench, test beam, and cosmic runs
- Computing systems, reconstruction software, and analysis systems were exercised at "full scale" in several "challenges"

General Status - Execution

- In November and December of 2009, there were collisions in all four interaction regions
- All four experiments recorded good data at
 - 0.45 TeV x 0.45 TeV; and
 - 1.18 TeV x 1.18 TeV
- All experiments were ready with their tools for reconstructing and analyzing this early data
 - to understand the detectors; and
 - to extract whatever physics can be learned
- These efforts have already led to publication of results

Estimated Luminosities and Events Collected

Luminosity at 0.9 TeV (approximate)

ALICE 9.5 μb⁻¹

ATLAS 12. μb^{-1} (stable) 19 μb^{-1} (total)

CMS 9.5 μ b⁻¹ (quiet or stable) 16 μ b⁻¹ (total)

LHCb 6.7 μ b⁻¹ (stable)

Event collection at 0.9 TeV and 2.136 TeV

ALICE:	~470k	(360K B on, 100K B off,
		10K B rev)
ATLAS:	~540k	(of which 220k not nominal fields)
CMS:	~410k	(of which 60k not nominal field)

LHCb: ~320k (of which ~3k with dipole off)

At 2.136 TeV:

ALICE: 30K events
ATLAS: 34K events, ~1 μb⁻¹
CMS: 17K events, ~0.6 μb⁻¹
LHCb: 40K events

ATLAS Status

- Impressive startup on Nov 23, 2009 – over 97% channels operational
- Excellent overall performance with remarkably good understanding of detector for this stage – in agreement often within 1% of Monte Carlo
- First physics plots from "Minimum Bias" 900 GeV running released by collaboration

Subdetector	Channel count	~Operational Fraction
Pixels	80M	97.5%
SCT Silicon Strips	6.3M	99.3%
TRT Transition Radiation Tracker	350k	98.2%
Lar EM Calorimeter	170k	98.6%
Tile Calorimeter	9800	98.0%
Hadronic endcap Lar Calorimeter	5600	99.9%
Forward Lar Calorimeter	3500	100%
LVL1 Calorimeter Trigger	7160	99.5%
MDT Muon Drift Tubes	350k	99.7%
CSC Cathode Strip Chambers	31k	98.5%
RPC Barrel Muon Trigger	370k	99.5%
TGC Endcap Muon Trigger	320k	100%

Inner Detector

• Pixel, SCT, and TRT performing well with beam and in excellent agreement with Monte Carlo

Calorimeters

- LAr calorimeter cell energy ٠ distributions for 900 GeV collisions very well described by MC
- Similarly for Tile calorimeter, ۲ where 900 GeV and 2.36TeV data are shown

Data√s=900 GeV

Data s=2.36 TeV

20

30

40

METx, METy Resolution (GeV)

3.5

0.5

3 • 2.5

Missing E_{T} looks

quite good for this

early stage – both

2.36TeV min bias

data compared to

900 GeV and

MC

HEPAP Meeting March 11, 2010 Joel Butler

70

Data: fit 0.38 E

Data: fit 0.37\ E

ATLAS Preliminary

60

50

Muon System

- Not many muons yet from collisions
 - Handfuls of candidates show expected η distribution
- Cosmics used for alignment, continually improving

Finding particles

Minimum Bias Stream, Data 2009 (Vs=900 GeV)

Both tracks: p_ > 100 MeV, Si hits $\cos(\theta) > 0.8$, flight distance > 0.2 mm

Data

Simulation

ATLAS Preliminary

Gauss (+poly) fit

μ = 1116.0±0.1 (stat) MeV 3.2 ± 0.1 (stat) MeV

PDG (2009) m =1115.683± 0.006 MeV

Λ Invariant Mass

180 ≥ 1800 ₩ 1600

800 600

400

σ=

- Where expected...
 - $\pi^0 \rightarrow \gamma \gamma$ (not yet corrected for dead material)
 - $K^{0}{}_{s} \rightarrow \pi^{+}\pi^{-}$
 - $-\Lambda^0 \rightarrow p^+ + \pi^-$

First Physics – Minimum Bias distributions

• Min Bias trigger (MBTS), primary charged particles $N_{ch} \ge 1$, $|\eta| < 2.5$, $p_T > 500 MeV$

More Min Bias Distributions

 p_T spectrum of charged particle multiplicities shows agreement with CMS, and can constrain models

Status of CMS

Operational Fraction

Silicon Strips and Pixels

Excellent agreement data and Monte Carlo simulations

Calo performance: spectacular jets at 2.36 TeV

Calorimetry performance: di-jets

Particle Flow: multi jet event @ 2.36 TeV

Reconstructing resonances: π^{o} and η^{o}

K^{o}_{s} , Λ^{o} , Ξ^{\pm} Reconstruction

K⁰_s candidate event at 2.36 TeV

$\Phi \rightarrow K^{+}K^{-}$ using dE/dx

and the first CMS paper on LHC data Transverse momentum and pseudorapidity distributions of charged

hadrons at $\sqrt{s} = 900$ and 2360GeV

submitted to JHEP on February 3-rd, accepted for publication on February 7-th

*http://dx.doi.org/10.1007/JHEP02%282010%29041

 Complete analysis with three different methods to control better systematics.

 Another confirmation of the excellent tracker performance and good MC description of pixel and strips.

 Important test of our capability to produce high quality physics results in a timely manner.

 First detailed look at minimum bias and underlying event to prepare for high luminosity and HI running.

HEPAP Meeting March 11, 2010 Joel Butler

Completion Status

Complete: ITS, TPC, TOF, HMPID, Muon, Vo, To, FMD, PMD, ZDC Partial: TRD (7/18), EMCAL(4/12), PHOS (3/5), HLT (60%)

Particle Identification

HEPAP Meeting March 11, 2010 Joel Butler

Transition Radiator and Tracking

HEPAP Meeting March 11, 2010 Joel Butler

Some ALICE Physics Results

28

HEPAP Meeting March 11, 2010 Joel Butler

Status of LHCb

Tracking, K_s and Λ masses

RICH and Calorimeter performance

B and Charm Physics: 2010-2011

Assume $\sim 200 \text{ pb}^{-1}$ in 2010 and $\sim 1 \text{ fb}^{-1}$ in 2011 @ 3.5 + 3.5 TeV σ(φ_s^{J/ψϕ}) (rad) 0.35 Uncertainties on σ(bb) 40-0.3 and BRvis($B_s^0 \rightarrow J/\psi \phi$) $CDF(3.7fb^{-1})$ $BR(B_s^0 - > \mu^+ \mu^-) (x I 0^-)$)(rad) 0.25 30 CDF+D0, 8fb⁻¹ EACH 0.2 $\exists_{\sigma}^{\psi\phi_{0.15}}$ $CDF + DO(8fb^{-1})$ Exclusion limit @ 90% C.L. LHCb 3.5+3.5TeV; σ(bb)=219μb 2β, SM value S Aprediction 🛛 0.05 0 0 00 01 02 03 04 05 06 08 0.9 0.7 10 0.25 0.5 0.75 1.25 1.5 1.75 201 Integrated Luminosity (fb⁻¹) <u>Sensitive probe for MSSM with large tanβ</u>: Large (non-SM) phase (D0 and CDF): Φ_{s} [-1.47 ; -0.29] U [-2.85 ; -1.65] Br ($B_S \rightarrow \mu^+ \mu^-$) ~ tan β^6 / M_A^4 (90% CL range)

<u>Charm: Expect ~4x10⁶ D*+→D⁰(K⁻K⁺)π⁺ (100 pb⁻¹)</u>: Measurements of D⁰ mixing Studies of CP violation in charm decays Searches for rare decays, such as D⁰→μμ

Prospects for Upcoming Run ATLAS and CMS

3.SM Higgs exclusion in range $\sim 165 \pm 10 \text{ GeV/c}^2$

 M_{x} (GeV)

Conclusions

- All 4 detectors have their equipment for the run in place and working and are ready to take data and to analyze it expeditiously
- Every opportunity to use particles from cosmics and the LHC has been exploited
 - Cosmic rays, beam splash events, beam halo events, collisions
 - Not all issues have yet been addressed because of the low integrated luminosity – especially muons, triggers
- Pushing the early collision data through to publication has created a discipline that has advanced our capabilities
- The luminosity that we expect to get over the next two years will allow us to address the remainder detector issues and offer the opportunity for new physics if we are lucky. This run has the potential for a new discovery!

Bring on the COLLISIONS!

Acknowledgement

• Thanks to the spokespersons and their designees in all four collaborations who provided material for this talk.