#### **Project X Status Report**

Sergei Nagaitsev (Fermilab) March 11, 2010

http://www.fnal.gov/pub/projectx/







- Previous Project X presentation at HEPAP
  - S. Holmes, Nov 13, 2008
- Developments since Nov 2008
  - Evolution of initial configuration
  - Preliminary IC-1 and IC-2 estimates
  - 4<sup>th</sup> Project X Physics Workshop

http://www.fnal.gov/directorate/Longrange/Steering\_Public/workshop-physics-4th.html

- Collaboration
- Technical and cost optimization
- Strategy
  - Cost range strategy



Concurrent

# **Project X missions**



#### Long-Baseline

#### Neutrino Experiment:

#### 2 MW at 60-120 GeV

- well understood beam requirements;
- it will be supported in any configuration we select.
- Rare Processes: ≥ several 100's kW at 2.x 8 GeV
  - well understood beam requirements for this mission.
    4<sup>th</sup> Project X Physics Workshop (Nov 2009)
- NF/MC Platform: upgradable to 4 MW at 5 15 GeV
  - MC beam requirements are (x~10) harder than NF;
  - High on our "radar screen" but is not a driver;
  - Do not need to have it on day 1 of initial program; need to demonstrate a plausible path.

# Project X Initial Configuration -1 (IC-1)

- IC-1 has been based on ILC-technology with a pulsed, 325-MHz lowenergy and 1.3GHz high-energy SC linac (8 GeV)
- Objectives for the initial proposal (September, 2007)
  - ILC technology test (360 kW proton beam power at 8 GeV)
  - 2 MW at (60 -120 GeV) in the Main Injector for neutrinos
  - 100-200 kW at 8 GeV for rare processes (muons and kaons)
  - Replacement for a ~40 year-old Booster & Linac
- Final IC-1 (as of spring 2009)
  - 2 MW at (60 -120 GeV) in the MI for neutrinos (LBNE)
  - ~300 kW at 8 GeV for rare processes
    - 150 kW to Mu2e (Phase 2) upgraded (with a slow extraction)
  - Reduced coupling to ILC (500 kW proton beam power at 8 GeV)
  - Improved but still comparatively narrow physics program









Rare processes require a stream of bunches with a ~100% duty cycle.

|           |                                                              | <b>Train Frequency</b> | Pulse Width   |
|-----------|--------------------------------------------------------------|------------------------|---------------|
|           |                                                              |                        | (nanoseconds) |
| Examples: | Kaon experiments                                             | 20-30 MHz              | < 0.2         |
|           | Muon conversion experiment                                   | 0.5-1.0 MHz            | <100          |
|           | $\mu \rightarrow e\gamma \& \mu \rightarrow eee experiments$ | 80-300 MHz             | < 0.2         |

- A pulsed beam from linac is not optimal; requires beam conditioning in rings and slow extraction.
- There is a fundamental limit to slow extraction: losses at the electrostatic septum
  - Also, space-charge for short bunches, single user for a given bunch format, non-uniform spill rates
  - World's best: AGS, 70 kW (2% loss), unbunched beam (25 GeV); similar beam power from Tevatron in the past
  - JPARC design: several 100 kW at 50 GeV, unbunched (undemonstrated)
- At the end, we understood that slow extraction is the bottleneck.



# **Initial Configuration - 2**



• Mar. 2009: To improve the rare processes program we have focused on a cw proton linac.

Missions:

- 2 MW at 60-120 GeV in MI for LBNE
  - Same as in IC-1
- Diverse program with muon, kaon, and nuclear physics
  - Different experiments require different time structures
  - "unlimited" beam power on target
- 8 GeV program with a single turn extraction (≥100 kW)
  g-2, ...
- A path to MC/NF
- Experiments in other fields
- CEBAF is an example of such a machine with e-beam -



Page 7







- IC-2 concept (as of end of summer 2009)
  - 2.0 GeV CW linac
  - potentially "unlimited power"
  - RF separation + bunch-by-bunch chopping
  - Multiple experiments operating simultaneously
  - Independent bunch structure control
- "Pulsed" 2-to-8 GeV acceleration (10 Hz, 4.3 ms, 5% duty cycle) to support MI program
  - Both synchrotron and pulsed SC linac are a good choice



# **IC-2** Overview







# **IC-2 Operating Scenario**





S. Nagaitsev, March 11, 2010



## **IC-2 Provisional Siting**







#### Initial Configuration-2 Technology Map 2-GeV Super Conductive cw linac











- IC-1 point estimate completed March 2009, subject to Director's Review
  - Assessed to be conservative w/ caveats: escalation, scope, schedule
- IC-2 point estimate completed in October 2009
  - Same estimators and methodology as IC-1
  - Not yet reviewed
  - ~6% higher than IC-1 within range of error.

|                   | IC-1 (\$M) | IC-2 (\$M) |
|-------------------|------------|------------|
| Base Cost         | \$743.5    | \$798.4    |
| Overhead          | \$185.9    | \$187.5    |
| Escalation        | \$135.7    | \$144.0    |
| Contingency (40%) | \$426.1    | \$452.0    |
| Total             | \$1,491.2  | \$1,581.9  |



• Identified optimum energies for various programs

|                                     | Proton Energy<br>(kinetic) | Beam Power | Beam Timing                       |
|-------------------------------------|----------------------------|------------|-----------------------------------|
| Rare Muon decays                    | 2 – 3 GeV                  | > 500 kW   | 1 kHz – 160 MHz                   |
| Precision K <sup>0</sup><br>studies | 2.6 – 3 GeV                | > 200 kW   | 20 – 160 MHz<br>(< 50 psec pings) |
| Rare Kaon decays                    | 2.6 – 4 GeV                | > 500 kW   | 20 – 160 MHz<br>(< 50 psec pings) |
| (g-2) measurement                   | 8 GeV                      | 20 – 50 kW | 30 - 100 Hz                       |
| Neutron and exotic nuclei EDMs      | 1.5 – 2.5 GeV              | > 500 kW   | > 100 Hz                          |



# **IC-2 remaining issues**



- Solved the IC-1 problems (slow extraction)
- But...
- two issues remained...
- 1. Low proton beam energy (2 GeV intead of 3)
- 2. Inefficient acceleration in the linac







• What problem are we trying to solve?



Energy gain/cavity in IC-2

- 1300 MHz section is not an efficient accelerator (for protons)
- Primary culprit is transit factor
  - also, number of cells per cavity
- Maximal gain at zero synchronous phase is 17 MeV (for β=1) but for a 2-GeV proton beam it is close to 15 MeV

#### Several 3-GeV linac schemes analyzed TSR SSR1 SSR2 #1 SSR0 $\beta = 0.8$ $\beta = 0.9$ 650 MHz, 0.47-3 GeV 325 MHz, 2.5-470 MeV SSR1 #2 SSR0 SSR2 TSR $\beta = 0.8$ ILC $\beta = 0.9$ 325 MHz, 2.5-470 MeV 650 MHz 1.3 GHz 0.47-2 GeV 2-3 GeV #3 SSR0 SSR1 SSR2 $\beta = 0.6$ $\beta = 0.9$ 325 MHz, 2.5-160 MeV 650 MHz, 0.16-3 GeV SSR1 SSR2 #4 SSR0 $\beta = 0.6$ ILC $\beta = 0.9$ 325 MHz, 2.5-160 MeV 650 MHz, 1.3 GHz 0.16-2 GeV 2-3 GeV







 Option 4: a 3-GeV CW linac with a 650 MHz intermediate system, based on 5-cell cavities.



Note: 650 MHz,  $\beta$ =0.9, 5-cell cavities are same physical length as 1300 MHz,  $\beta$ =1.0, 9-cell cavities







#### Energy gain/cavity in IC-2v2.0









Total number of cavities in each configuration:

IC-2v1.0:316 cavities(to 3 GeV)IC-2v2.0:250 cavities(less if  $\beta$ =0.95)

- Total linac length is reduced by ~20% (for 3 GeV)
  - Or, 3 GeV linac (option 4) is ~20% longer than the 2 GeV linac in IC-2v1.0
- Early analysis of cost trade-offs indicate that 1300 MHz cavity becomes more cost effective than 650 MHz somewhere in the range of 2 GeV
- Development of IC-2v2.0 (option 4) will allow us to explore issues related to introduction of a third frequency, and variations on the 1300 MHz cavity shape



Short Term Strategy (Next 6 months)



- Develop an estimate for a 3 GeV CW linac operating at 1.5-2 MW
  - Identify (cost) break points (with respect to beam power) on the rf system and cryogenics distribution system
  - Establish a better optimized (i.e. reduced cost) linac configuration: cavity types, cavity frequencies, and transition points
- Retain RCS within the estimate but limit work to critical issue(s)
  - Injection
- Investigate options for pairing a 3-8 GeV pulsed linac to CW front end
- Update RD&D Plan to cover CW linac
- Archive ICD-1 and associated cost estimate
- Proposed strategy for CD-0
  - Attempt to get cost of 3 GeV linac at or below \$1.0 B
  - Conduct a Director's Review to validate a cost range that extends below \$1.0 B



Short Term Plan (Next 6 months)



- Goals of the Director's Review:
  - Validate the cost estimate for IC-2
  - Validate a cost range proposed by the project
- Upper end of range = IC-2v1.0, with linac at 3.0 GeV/1.0 mA. RCS, Recycler, MI
  - Release ICD-2V1.0 as is (2.0 GeV) after final edit
  - Update the estimate with the incremental cost of adding 1 GeV of CW linac
- Lower end of range = IC-2v2.0, with linac at 3.0 GeV/0.5 mA, no RCS, Recycler, MI
  - Update to ICD-2V2.0 based on "Option 4" configuration
  - Update the cost estimate based on "Option 4" configuration



## **Collaboration plan**



- A multi-institutional collaboration has been established to execute the Project X RD&D Program.
  - Organized as a "national project with international participation".
    - Fermilab as lead laboratory
    - International participation via in-kind contributions, established through bi-lateral MOUs. (First MOU with India in place)
  - Collaboration MOU for the RD&D phase outlines basic goals, and the means of organizing and executing the work. Signatories:

| ORNL/SNS |
|----------|
| MSU      |
| TJNAF    |
| SLAC     |
| ILC/ART  |
|          |

 Collaborators to assume responsibility for components and sub-system design, development, cost estimating, and potentially construction.







- The configuration for Project X has evolved to maximize physics outcome since the initial proposal in 2007
  - At every step we have improved the performance
  - A new approach to high-duty factor beams and rare processes
  - Not another rendition of JPARC
  - x10 beam power of the IC-1 rare-process program, x7 goal of JPARC
  - Capture leadership in intensity frontier
- We now know what we want to build!
- We propose to build Project X based on a 3-GeV CW linac.
  - Could be constructed in a 5-year time period
  - Multi-user facility concurrent with LBNE
  - An rf splitter sends beam to 3 users (muon, kaon and nuclear physics), but technology is not limited to 3 users.



#### Backup: Potential cost reductions



- Extend cost range further downward by establishing a set of potential cost reductions that can be applied to either configuration
  - Reoptimization of linac configuration
  - Review of CM estimate to identify cost reduction opportunities
  - Identify rf infrastructure that is frequency independent vs dependent
  - Review of rf power and distribution system to identify breakpoints (with respect to beam current)
  - Review the cryo estimate to identify breakpoints with respect to segmentation, and complete G vs Q vs T
  - Identify potential in-kind contributions from international partners
  - Remove space offset budgets
  - Develop a reduced overhead model
  - Update R&D plan to configuration IC-2
  - $\Rightarrow$  Consolidate all of the above into a cost opportunities spreadsheet



#### Backup: Project management



- We have assembled a senior management team (3 people part-time)
  - assempled a team of level-2 managers (all part-time)
- We are preparing an integrated SCRF plan
  - includes our commitments to the ILC program (1.3 GHz, pulsed)
- The FY2010 budget for Project X is \$10.3M. Of this \$1.6M is set aside for work at the collaborating institutions.



#### Integrated SRF Plan Cryomodules



| U.S. Fiscal Year                  |   | 20(        | 08              |    | F       | Y09   |        |                   | FY1         | 0                       |               | F`               | (11             |         |                | F             | Y12              |                  |       | F١             | Y13             |                  |                   | F١           | ′14              |                 |                   | F    | Y15           |  |
|-----------------------------------|---|------------|-----------------|----|---------|-------|--------|-------------------|-------------|-------------------------|---------------|------------------|-----------------|---------|----------------|---------------|------------------|------------------|-------|----------------|-----------------|------------------|-------------------|--------------|------------------|-----------------|-------------------|------|---------------|--|
| 1.3 GHz                           |   |            |                 |    |         |       |        |                   |             |                         |               |                  |                 |         |                |               |                  |                  |       |                | 1               | <br>             |                   |              |                  |                 |                   |      |               |  |
| CM1 (Type III+)                   |   |            |                 | СМ | l Ass'y |       | Ì      | Install<br>CM     |             | СМ Те                   | st            |                  |                 |         |                |               |                  |                  |       |                | 1               |                  |                   |              |                  |                 |                   |      |               |  |
| CM2 (Type III+)                   |   | On<br>E    | nnibus<br>Delay |    | Р       | roces | s & V1 | ſS/Dress/         | нтя         | S СМ /                  | Ass'y         | sw ap            |                 |         |                |               |                  |                  |       |                |                 |                  |                   | C<br>Cor     | Operat<br>nplete | e<br>RF         |                   |      |               |  |
| СМЗ (Туре IV)                     |   | l          |                 | De | esign   | Or    | der C  | av & CM           | Par         | ts                      |               |                  |                 |         | 2/3<br>CM      |               |                  |                  |       |                |                 |                  |                   | Unit<br>Pa   | @ De<br>ramet    | esign<br>ers    |                   |      |               |  |
| CM4 (Type IV)                     |   |            |                 |    |         | ļ     |        |                   |             |                         |               |                  |                 |         |                |               |                  | <u> </u>         | sw ap |                |                 |                  |                   |              |                  |                 |                   |      |               |  |
| CM5 (Type IV)                     |   | .          |                 |    |         |       |        |                   |             |                         |               |                  | -               |         |                |               |                  |                  | sw ap |                |                 |                  |                   |              |                  |                 |                   |      |               |  |
| CM6 (Type IV+) CW Design          |   |            |                 |    |         |       | <br>   |                   |             |                         |               |                  |                 |         |                | Desi<br>1.3 C | ign CM<br>8Hz CW |                  | T     |                |                 | T                |                   |              | Insta<br>CN      | all in<br>ITF   |                   | 1    |               |  |
| NML Extension Building            | l |            |                 |    | 1       |       | Desig  | n <mark>Co</mark> | nstr        | uction                  |               |                  |                 |         |                |               |                  |                  |       | 1              | 1<br>           | 1<br>            |                   |              |                  |                 |                   |      |               |  |
| NML Beam                          |   |            |                 |    | 1       |       |        |                   |             |                         |               | Mov<br>bea       | e inje<br>m con | ctor/ii | nstall<br>ents |               |                  | Beam             | Avai  | lable<br>(cont | to RF<br>inger  | Unit :<br>Unit : | test ex<br>n cryo | cept<br>geni | durin<br>c Ioad  | g ins<br>I/capa | tallati<br>acity) | on p | eriods        |  |
| CMTF Building                     |   |            |                 |    |         |       |        | Desi              | ign         | Cons                    | tructi        | on               |                 |         |                | _             |                  |                  |       |                |                 |                  |                   |              |                  |                 |                   |      |               |  |
| 650 MHz                           |   | , <b> </b> |                 |    |         |       |        |                   |             |                         |               |                  |                 |         |                |               |                  |                  |       |                |                 |                  |                   |              |                  |                 |                   |      |               |  |
| Single Cell Design & Prototype    |   |            |                 |    |         |       | 1      |                   |             |                         |               | -                |                 |         |                |               |                  | İ                |       |                |                 |                  |                   |              |                  |                 |                   |      |               |  |
| Five Cell Design & Prototype      |   |            |                 |    |         |       |        |                   |             |                         |               |                  |                 |         |                |               |                  |                  |       |                |                 |                  |                   |              |                  |                 |                   |      |               |  |
| СМ650_1                           |   |            |                 |    | 1       |       |        |                   |             |                         |               | De               | sign            |         | Orde           | er 65<br>P    | 0 Cav<br>arts    | & CM             | v     | Proc<br>FS/Dr  | ess&<br>ess/H   | TS               | 650<br>As         | CM<br>s'y    |                  |                 |                   |      |               |  |
| 325 MHz                           |   |            |                 |    |         |       |        | İ                 | İ           | İ                       |               |                  |                 |         |                |               |                  |                  |       |                | 1               | <br>             |                   |              |                  |                 |                   |      | İİ            |  |
| SSR0/SSR2 Design & Prototype      |   |            |                 |    |         |       |        |                   | Desi        | ign (RF &<br>Sp         | Mech<br>oke F | anical<br>Reonat | ) all va<br>ors | rieties | of             |               | Prot<br>(as re   | otype<br>equired | )     | Pi             | roces<br>(as re | s & Te<br>quired | st<br>)           |              |                  |                 |                   |      |               |  |
| SSR1 Cavities in Fabrication (14) |   |            |                 |    |         |       |        | (a                | Pr<br>Iread | rocuremen<br>dy in prog | it<br>ress)   |                  | Р               | roces   | s & V          | TS/D          | ress/H           | ITS              |       |                |                 |                  |                   |              |                  |                 |                   |      |               |  |
| СМ325_1                           |   |            |                 |    |         |       |        |                   | T           |                         | De            | sign             | 1               |         | Proc           | ure 3         | 25 CN            | l Part           | s     | 325<br>As      | 5 CM<br>ss'y    |                  |                   |              |                  |                 |                   |      | │ ──┤<br>╂──┼ |  |

| <br>   |         |             |          |         |            |         |
|--------|---------|-------------|----------|---------|------------|---------|
| Design | Procure | Process &   | Assemble | Install | Commission |         |
|        |         | VTS         |          |         | & Operate  |         |
|        |         | Dress & HTS |          |         |            | Page 27 |



Integrated SRF Plan Infrastructure



| U.S. Fiscal Year                      | 2008    |       | FY        | 09           |               |          | FY    | ′10            |               |                    | FY         | '11           |               |               | F١              | Y12       |                 |             | F             | Y13    |              |                | F١           | (14            |               |               | FY                                           | ′15        |
|---------------------------------------|---------|-------|-----------|--------------|---------------|----------|-------|----------------|---------------|--------------------|------------|---------------|---------------|---------------|-----------------|-----------|-----------------|-------------|---------------|--------|--------------|----------------|--------------|----------------|---------------|---------------|----------------------------------------------|------------|
|                                       |         |       |           | Upg          | rade          |          | 1     |                |               |                    |            | $\vdash$      |               |               |                 |           |                 |             |               |        |              |                |              |                |               | $\square$     | <u> </u>                                     |            |
| Nb Scan/Dress Cavity Facility Upgrade |         |       |           | Com          | olete         |          |       |                | <br>          |                    |            |               |               |               |                 |           |                 |             |               |        |              | Com            | iplete       |                |               |               | ا ا<br>ا                                     |            |
| 325/650 MHz Cavity Facility Upgrade   |         |       |           |              |               |          | <br>  |                | T             |                    | P          |               |               | Upg<br>Com    | rade<br>plete   |           |                 |             |               |        |              |                |              |                |               |               | ı  <br>                                      |            |
| CAF Assembly Upgrade                  |         |       |           | Upgi<br>Comj | rade<br>plete |          |       |                |               |                    |            |               |               |               |                 |           |                 |             |               |        |              |                | <br>+        | <br>           |               |               | <u> </u>                                     |            |
| 325/650 MHz CAF Upgrade               |         |       |           |              |               |          |       |                |               |                    |            |               |               |               |                 | Up<br>Con | grade<br>nplete |             |               |        | <br>         |                | ∣<br>∔       |                |               |               | Ļ'                                           |            |
| VTS 2 & 3 Upgrade                     |         |       |           |              |               |          | Proc  | VTS2<br>cure F | NAL           | VTS2               | VT<br>Com  | S2<br>plete   |               | Pro           | VTS3<br>cure lr | ndia      | VTS3            | V<br>Com    | TS3<br>iplete |        | <br>         |                |              |                |               |               | <u> </u>                                     |            |
| 325/650 MHz VTS Upgrade               |         |       |           |              |               |          |       |                |               |                    |            | Upgr<br>Comp  | rade<br>plete |               |                 |           |                 |             | 1             |        |              |                |              |                |               |               | <u>                                     </u> | <u>   </u> |
| HTS 2 Construction                    |         |       |           |              |               |          |       |                | De            | sign               |            | Pi            | rocur         | e Indi        | ia              |           | HT<br>Com       | S2<br>plete |               | İ      | Ì            |                | Ĺ            |                |               |               |                                              | <u>   </u> |
| NML Beam Line                         |         | Desig | jn        |              |               | F        | Procu | re             |               |                    |            | I             | nstall        | I             |                 | N<br>Con  | IML<br>nplete   |             | ļ             |        | ]            |                |              |                |               |               |                                              |            |
| NML Refrigerator                      |         |       |           |              |               | I        | Desig | n              |               |                    |            |               |               | Р             | rocu            | reme      | nt              |             |               |        |              |                | Оре          | erate N<br>Ref | IML           |               |                                              |            |
| NML Cryo Distribution System          | Omnibus |       |           |              |               |          | <br>  |                |               |                    |            |               |               |               |                 |           |                 |             |               |        |              | CI<br>Corr     | DS<br>hplete |                |               |               | <br>                                         |            |
| SLAC Refrigerator                     | Delay   |       |           |              |               |          | <br>  | Desig          | n SLAC<br>(as | Ref Inte<br>req'd) | erface     |               |               |               |                 |           |                 |             | SLAC<br>O     | Refrig |              |                |              |                |               |               | ı  <br>                                      | 1 I<br>I I |
| CMTF CM Test Stand (1.3 GHz)          |         |       |           |              |               |          | 1     |                | 1             |                    |            |               |               |               |                 |           |                 |             |               | P      | rocur        | e FN/          | AL           |                |               | 1.3 C<br>Com  | MTS                                          |            |
| 650 MHz CM Test Stand                 |         |       |           |              |               |          |       |                |               |                    |            |               |               |               |                 |           | Р               | rocur       | e Ind         | ia     |              |                | 650 (<br>Com | CMTS<br>plete  |               |               | 1                                            |            |
| CMTF Cryo Distribution System         |         |       |           |              |               |          |       |                |               |                    |            |               |               |               |                 |           |                 |             | F             | Procu  | e FN/        | AL             |              |                | CMTF<br>Compl | Dist<br>ete   |                                              |            |
| MDB Spoke Test Cryostat 2k Upgrade    |         |       |           |              |               |          |       |                |               |                    |            |               |               | 325<br>Upgra  | HTS<br>aded     |           |                 |             |               |        |              |                |              |                |               |               |                                              |            |
| 325 MHz CM Test Stand @ MDB           |         |       |           |              |               |          |       |                |               |                    |            |               |               |               | Р               | rocu      | re FN/          | ۹L          |               |        | 325 C<br>Com | CM TS<br>plete |              |                |               |               |                                              |            |
| 325 Cryo Distribution Upgrade         |         | ĺ     |           |              |               |          |       |                |               |                    | Upg<br>325 | TL to<br>HTS  |               |               |                 |           | TL to           | 325 C       | CMTS          |        | 325 C<br>Com | DDS<br>plete   | Ī            |                |               |               |                                              |            |
| MDB Cryo Upgrade (FY15 & beyond)      |         |       |           |              |               |          |       |                |               |                    |            |               |               |               |                 |           |                 |             |               |        |              |                | ļ            |                |               | Des/<br>4th F | /add<br>Refrig                               |            |
| ANL & JLAB EP upgrades                |         |       | ANL<br>Op | EP<br>er     | JLab<br>De    | Upg<br>s | Р     | rocu           | re            |                    | Upg<br>Com | rade<br>plete |               |               |                 |           |                 |             |               | 1      |              |                | Ī            |                |               |               |                                              |            |
| 325/650 MHz Proc. Upgrade             |         |       |           |              |               |          | U     | ANL<br>pg D    | es            |                    |            |               | Upgi<br>Comj  | rade<br>plete |                 |           |                 |             |               |        |              |                |              |                |               |               |                                              |            |

| Design | Procure | Process &   | Assemble | Install | Commission |
|--------|---------|-------------|----------|---------|------------|
|        |         | VTS         |          |         | & Operate  |
|        |         | Dress & HTS |          |         |            |