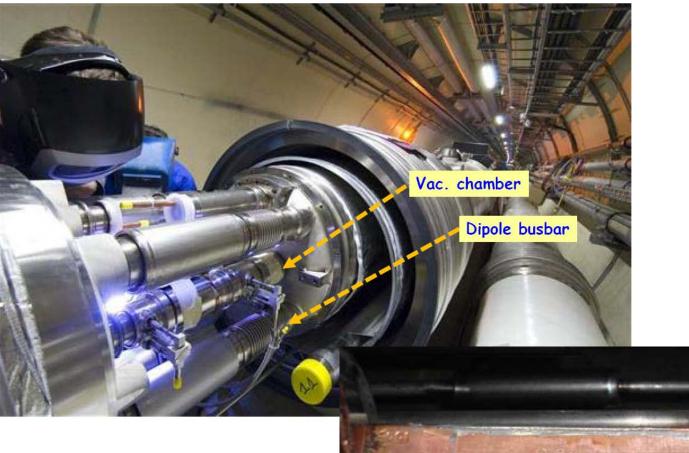
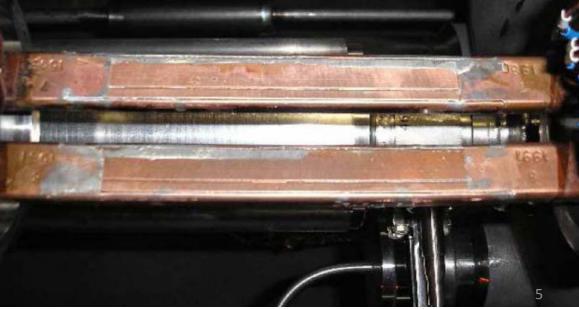
LHC Status (since September 2008)

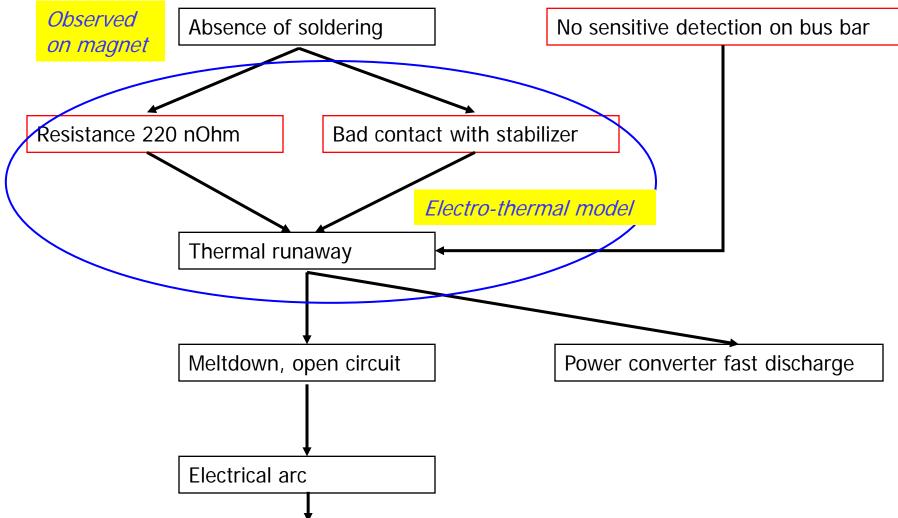
Steve Myers HEPAP 11th March 2010

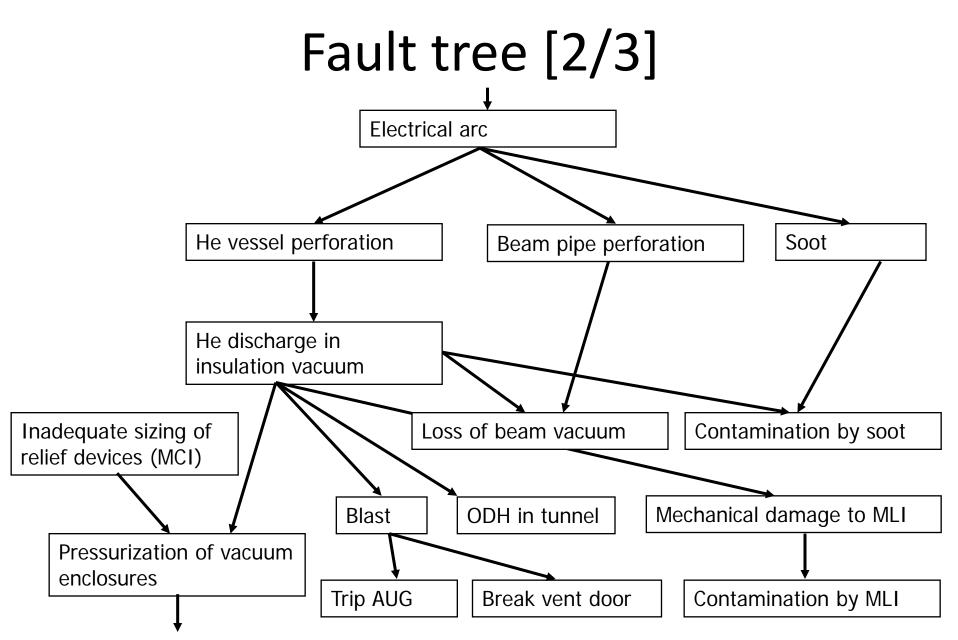
Topics

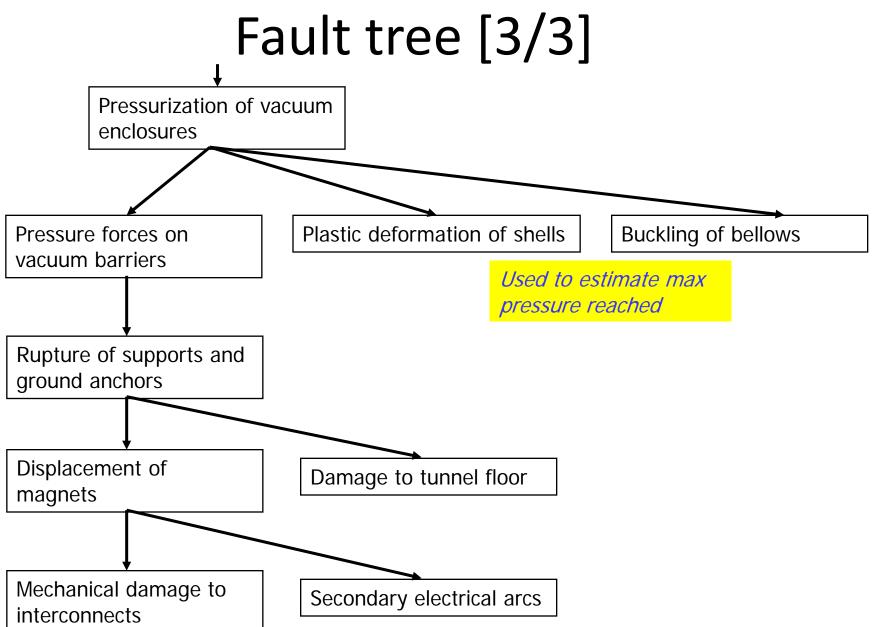

- The Accident
- ➤ The Repair and consolidation
- ➢ First beam operation at end of 2009
- Chamonix10
 - ➢Running in 2010-2011
 - ≻LHC Upgrades
- After Chamonix
- Present status with beam

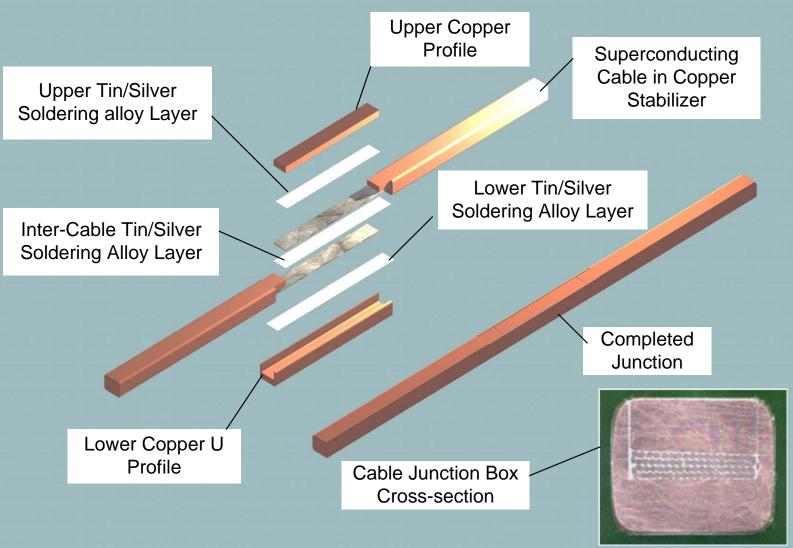

➤The Accident

- > The Repair and consolidation
- Hardware Commissioning
- First operation end 2009
- Chamonix10
 - Running in 2010-2011LHC Upgrades
- > After Chamonix
- Present status

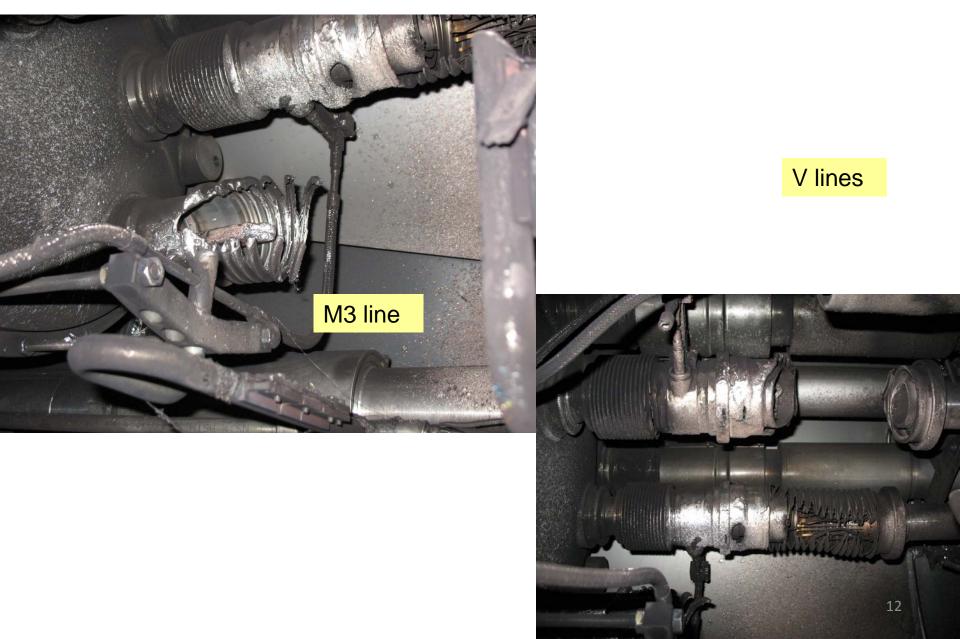

Accident of September 19th 2008


- During a few days period without beam
- Making the last step of dipole circuit in sector 34, to 9.3kA
- At 8.7kA, development of resistive zone in the dipole bus bar splice between Q24 R3 and the neighbouring dipole
- Electrical arc developed which punctured the helium enclosure

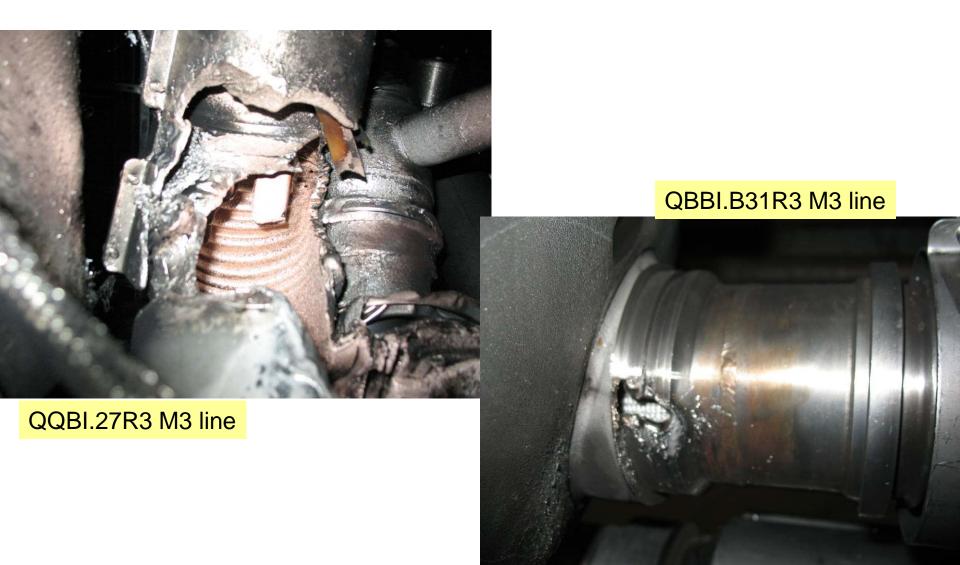


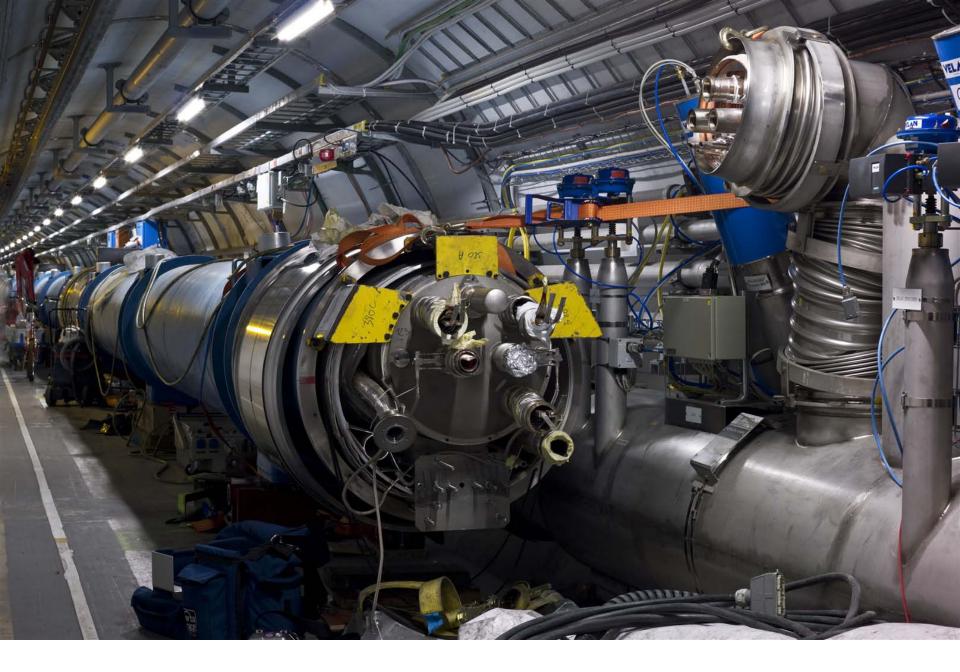

Fault tree [1/3]

Bus bar splice



Consequences

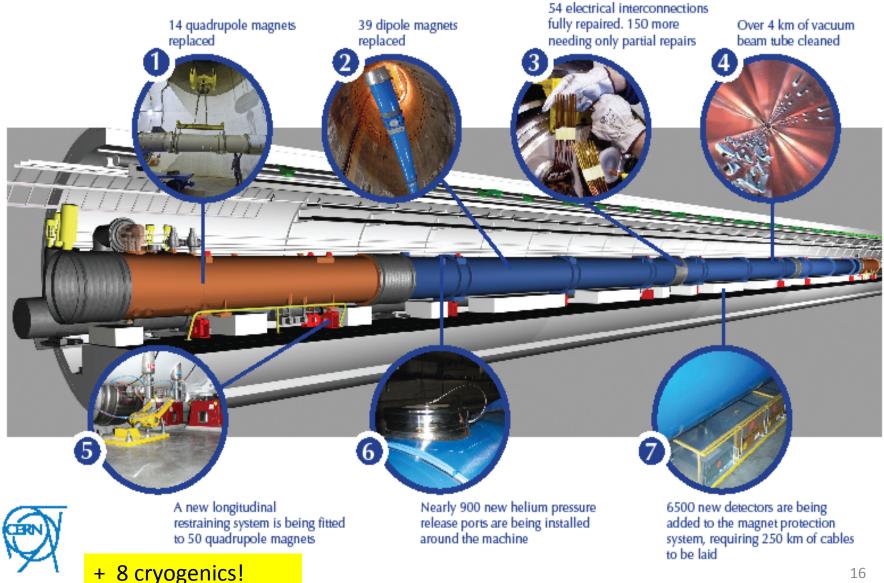




Electrical arc between C24 and Q24

Collateral damage: secondary arcs

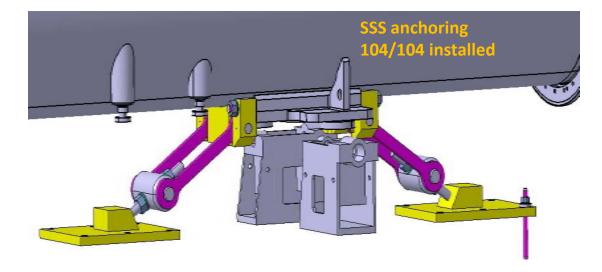
➤The Accident


The Repair and consolidation First operation end 2009 Chamonix10

Running in 2010-2011LHC Upgrades

After ChamonixPresent status

The LHC repairs in detail

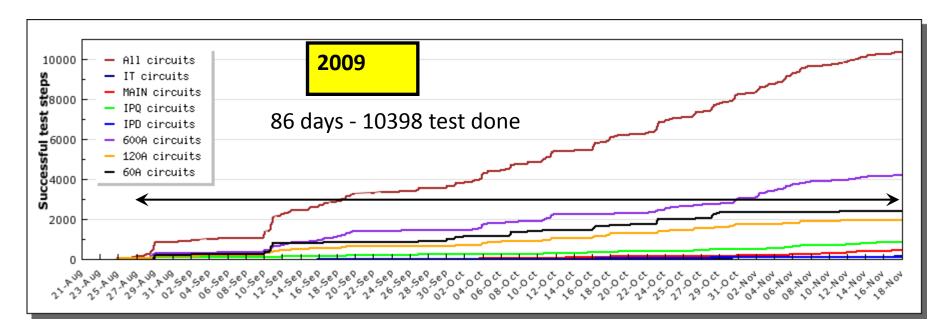

Phase 1+2

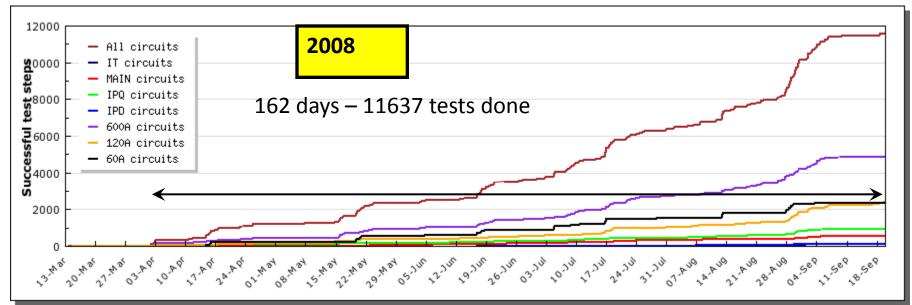
Magnet protection and anchoring

The Accident The Repair and consolidation

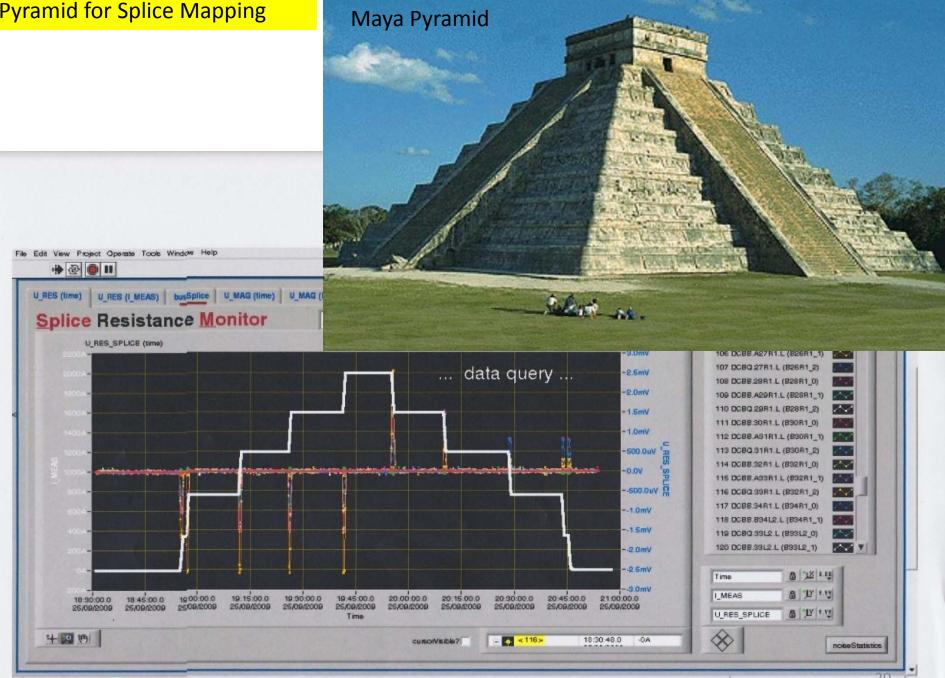
Hardware Commissioning

➢ First operation end 2009

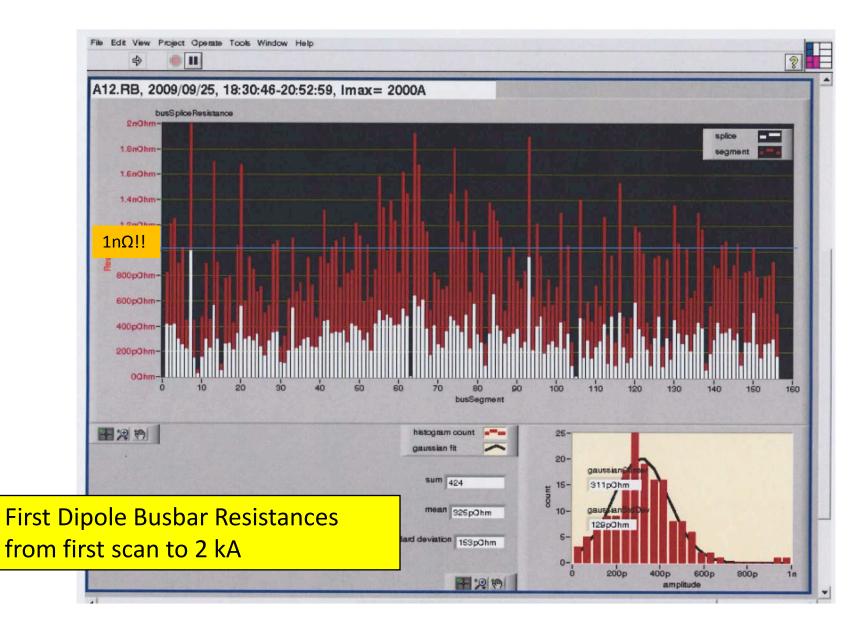

Chamonix10

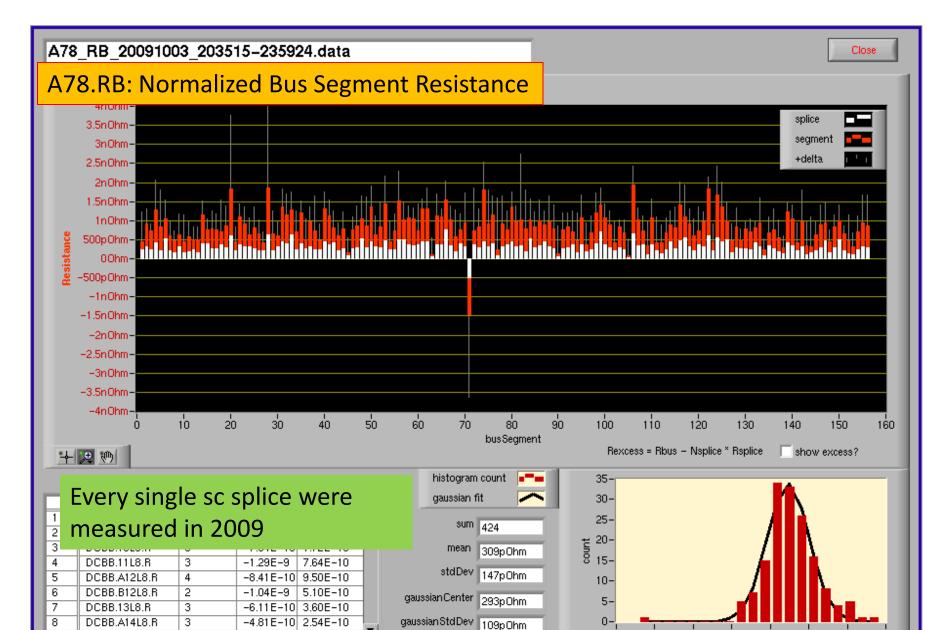

Running in 2010-2011LHC Upgrades

> After Chamonix


Present status

Powering Tests overview


Pyramid for Splice Mapping



Current in the Dinoles as function of time

20,

-626E-10 551E-10

.

2

9 **4**

DCBB B1418 B

400p resistance

600p

200p

Ó.

-400p -200p

-600p

bins

(+) 20

+ 📜 🖑

weight?

d008

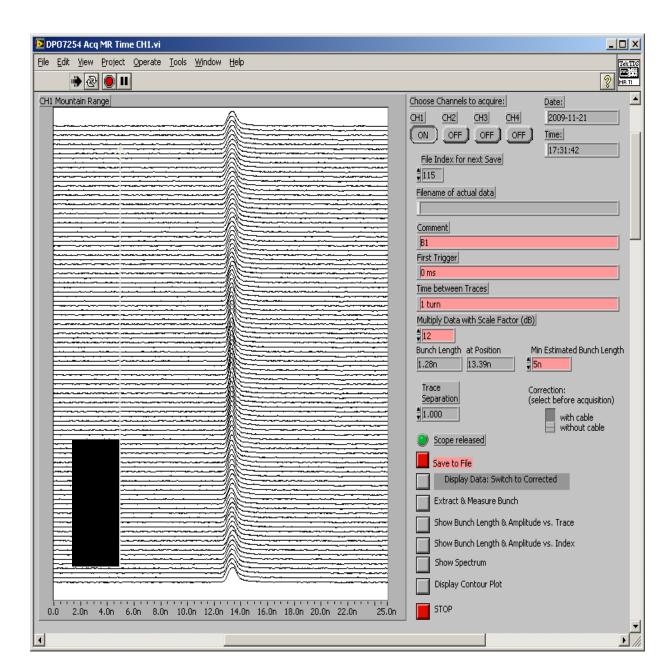
➤The Accident

The Repair and consolidation

Hardware Commissioning

First operation end 2009

Chamonix10

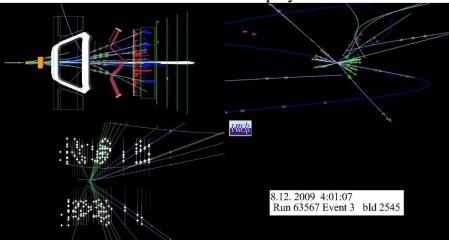

Running in 2010-2011LHC Upgrades

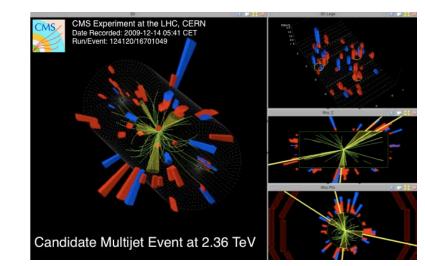
After Chamonix

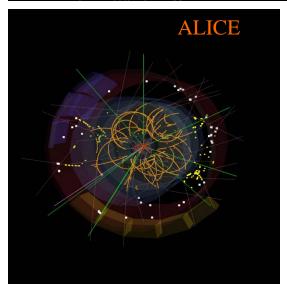
Present status

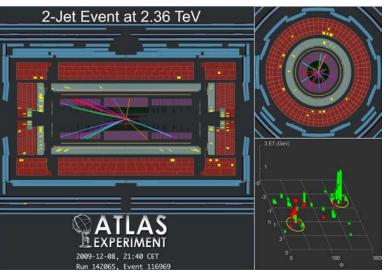
November 20, 2009 LHC back on line!

To This

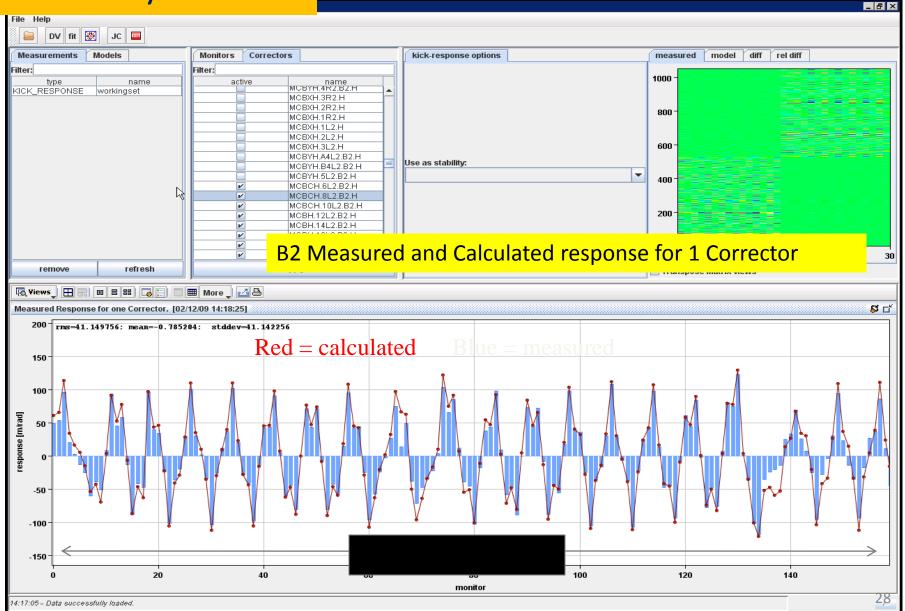

Beam is circulating and stable


- magnets
- power supplies
- vacuum
- RF
- cryogenics
- all infrastructure
- optics
- injection


And of course this


LHCb Event Display

First collisions events at 0.9 TeV and 2.36 TeV



Milestones

Date	Day	Achieved	
Nov 20	1	Each beam circulating. Key beam instrumentation working.	
Nov 23	4	First collisions at 450 GeV. First ramp (reached 560 GeV).	
Nov 26	7	Magnetic cycling established (reproducibility).	
Nov 27	8	Energy matching.	
Nov 29	10	Ramp to 1.18 TeV.	
Nov 30	11	Experiment solenoids on.	
Dec 04	15	Aperture measurement campaign finished. LHCb and ALICE dipoles on.	
Dec 05	16	Machine protection (Injection, Beam dump, Collimators) ready for safe operation with pilots.	
Dec 06	17	First collisions with STABLE BEAMS, 4 on 4 pilots at 450 GeV, rates around 1Hz.	
Dec 08	19	Ramp colliding bunches to 1.18 TeV	
Dec 11	22	Collisions with STABLE BEAMS, 4 on 4 at 450 GeV, > 10 ¹⁰ per bunch, rates around 10Hz.	
Dec 13	24	Ramp 2 bunches per beam to 1.18 TeV. Collisions for 90mins.	
Dec 14	25	Collisions with STABLE BEAMS, 16 on 16 at 450 GeV, > 10 ¹⁰ per bunch, rates around 50Hz.	
Dec 16	27	Ramp 4 on 4 to 1.18 TeV. Squeeze to 7 m.	

All systems worked beautifully

Optics Checks (2nd Dec)

LHC back on line!

26 days of highly successful beam commissioning due to

- Meticulous planning
- High availability of all accelerator and detector components

In conclusion

It was a truly remarkable 26 days.

Many firsts for the LHC and the detectors

On the longer time scale, it has been a fantastic effort, with five impressive phases: 1) repair; 2) consolidation; 3) hardware commissioning; 4) preparation for beam; and 5) beam operation.

The final phase was highly visible, and widely reported by the media, but would not have been possible without the other phases.

>The Accident

> The Repair and consolidation

- Hardware Commissioning
- ► First operation end 2009

Chamonix10

➢ Running in 2010-2011

➢ LHC Upgrades

> After Chamonix

Present status

Splices and Beam Energy: Statements

- Simulations for safe current used pessimistic input parameters (RRR.....) but have no safety margins
- For 2010, 3.5 TeV is safe
 - Measure the RRR (asap) to confirm the safety margin for 3.5TeV/beam
- Without repairing the copper stabilizers, **5 TeV is risky**
- For confident operation at 5TeV we would need
 - Repairs to the "outlier" splices
 - Better knowledge of the input parameters (RRR...)
 - With present input parameters the "limit" splice resistances are 43 μΩ (RB) and 41 μΩ (RQ)
 NOTE: these values are close to the limit of the resolution of our measurements made for the RBs at 300K

7TeV/beam Splices : Statements

- For confident operation at 14TeV we need
 - To replace all splices with new clamped shunted ones!

F. Bertinelli, A. Verweij, P. Fessia (unaminous)

For safe running around 7 TeV/beam, a shunt has to be added on all 13 kA joints, also on those with small R_{addit} . Joints with high R_{addit} or joints with large visual defects should be resoldered and shunted.

A Cu-shunt with high RRR and a cross-section of 16x2 mm² is sufficient, if soldered at short distance from the gap. Experimental confirmation by means of a test in FRESCA should be foreseen.

Two Possible Scenarios 2010-2011

- Run at 3.5 TeV/beam up to a predefined integrated luminosity with a date limit. Then consolidate the whole machine for 7TeV/beam.
 - Need to determine the needs for the shutdown (resources, coactivity etc)

Upgrades: Foreword

Studies have been launched about one year ago and are ongoing

- Performance Aim
 - To maximize the useful integrated luminosity over the lifetime of the LHC
- Targets set by the detectors are:

3000fb⁻¹ (on tape) by the end of the life of the LHC

 \rightarrow 250-300fb⁻¹ per year in the second decade of running the LHC

- Goals
 - Check the performance of the present upgrades
 - Check the coherence of present upgrades wrt
 - » Accelerator performance limitations,
 - » Detector requirements,
 - » manpower resources,
 - » shutdown planning for all activities

Performance: Injector Upgrades

• Present Peak Performance Situation

Intensity Limitations (10 ¹¹ protons per bunch)				
	Present			
Linac2/LINAC4	4.0			
PSB or SPL	3.6			
PS or PS2	1.7			
SPS	~1.2			
LHC	1.7-2.3?			

Conclusion 1: SPS is the bottleneck!

SPS Bottleneck

- Other injectors are limited by a fundamental limitation, the space charge effect ($\Delta Q_{sc} = 0.3$)
- In the SPS at injection: $\Delta Q_{sc} = 0.07!$ (no fundamental limitation)
- Actual Intensity Limitation in SPS (mitigaton)
 - Electron cloud (vacuum chamber coating)
 - Transverse Mode Coupling Instability (Impedance reduction and/or transverse feedback)
 - RF effects such as beam loading etc (redesign of existing RF or build new system)

Immediately after Chamonix a hardware task force has been set up to investigate the removal of this SPS bottleneck (led by Volker Mertens)

Injectors Performance (Availability)

- From the LINAC2 to the SPS we have ageing machines
 - We need consolidation or replacement
- Proposed scenario (White Paper, 2006) is to replace LINAC2, PSB and PS
 - LINAC4, SPL, and PS2
- Recent study shows time scale for operation of the PS2 is at earliest 2020 and likely 2022.
 - Conclusion 2: We need to aggressively consolidate the existing injector chain to allow reliable operation of the LHC until at least 2022.
 - Task force set up late last year. (Simon Baird)
- BUT: **Resources** needed for the consolidation of the existing injectors are in direct competition with those needed for the construction of SPL/PS2
- Question: What would be the LHC performance implications of not constructing SPL/PS2??

Summary of Intensity Limits

Intensity Limitations (10 ¹¹ protons per bunch)					
	Present	SPL-PS2			
Linac2/LINAC4	4.0	4.0			
PSB or SPL	3.6	4.0			
PS or PS2	1.7	4.0			
SPS	1.2	>1.7?			
LHC	1.7-2.3?	1.7-2.3?			

It would be wonderful to be able to afford these additional margins and flexibility! Also an asset to CERN for future high intensity proton project proposals

Performance Limitations without SPL/PS2

- Alternative scenario to SPL/PS2
 - Consolidate existing injectors for the life of the LHC (2030)
 - During the same consolidation, improve the performance of PSB/PS as injectors for the LHC
- New "Idea"
 - Increase the extraction energy of the PSB which allows increase of the injection energy of the PS.
 - 2GeV injection energy in the PS allows ~3x10¹¹ ppb with the same space charge tune shift (preliminary study presented in Chamonix)

"Project" set up immediately after Chamonix

Intensity Limits

Intensity Limitations (10 ¹¹ protons per bunch)							
	Present	SPL-PS2	2GeV in PS				
Linac2/LINAC4	4.0	4.0	4.0				
PSB or SPL	3.6	4.0	3.6				
PS or PS2	1.7	4.0	3.0				
SPS	1.2	>1.7?	>1.7?				
LHC	1.7-2.3?	1.7-2.3?	1.7-2.3?				

Running Present injector Chain for > 20 years

- Very detailed list of consolidation items to ensure reliable running of the present injector chain
 - Machines, experimental areas, services and infra-structure
- Points of Note
 - Consolidation programme includes all experimental areas
 - Doing this for the SPL/PS2 upgrade will incur substantial additional resources

Possible Improvements in Existing Injector Chain: Summary

- Increase PSB (PS injection) energy to 2 GeV
 - Possibility to generate LHC bunches of up to 2.7×10¹¹ p (or even up to 3×10¹¹ p) with 25 ns spacing.
- Time line for implementation of new PSB extraction energy:
 - Three to four years (design and construction of new hardware)
 - One to two shutdowns (hardware installation)

>The Accident

The Repair and consolidation

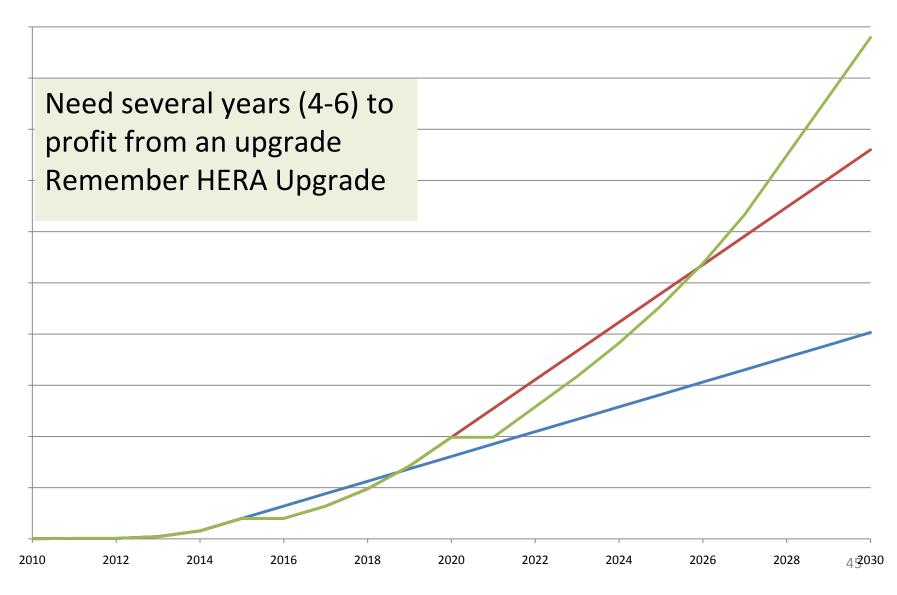
- Hardware Commissioning
- First operation end 2009

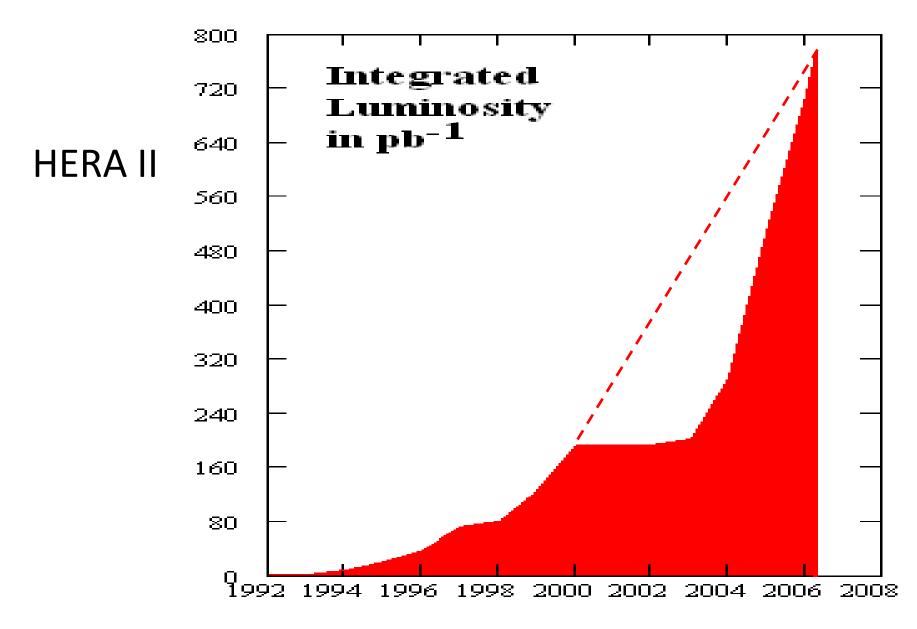
Chamonix10

➢ Running in 2010-2011

➤ LHC Upgrades

After Chamonix


Present status


IR/Optics Upgrade or not

Integrated no phase I fb-1

Integrated no phase II fb-1

Integrated fb-1

 \mathbf{YEAR}

Insertion Upgrade Plans

- IT Upgrade "phase 1"
 - Goal: reliable operation at 2x10³⁴cm⁻²s⁻¹, intensity <
 ultimate and > nominal Very similar to "ultimate"
 - ? Same resources for splice consolidation

Tough Questions:

- 1. Will the phase 1 upgrade produce an increase in useful integrated luminosity?
 - Installation time and recomissioning a new machine afterwards
- 2. Do we have the resources to complete on a time scale which is reasonable with respect to phase 2?

Task force set up immediately after Chamonix (Lucio Rossi) 4-5 weeks to answer above questions (mid-end March). Task force will then define the parameters for sLHC

Future Upgrade Scenarios "Phase 2"

- Luminosity Optimization and Levelling
 - For LHC high luminosities, the luminosity lifetime becomes comparable with the turn round time.. Low efficiency
 - Preliminary estimates show that the useful integrated luminosity is greater with
 - a peak luminosity of 5-6x10³⁴ cm⁻² s⁻¹ and luminosity levelling
 - than with 10³⁵ and a luminosity lifetime of a few hours
 - Luminosity Levelling by
 - Beta*, crossing angle, crab cavities, and bunch length

Detector people have also said that their detector upgrade would be much more complicated and expensive for a peak luminosity of 10³⁵ due to

- Pile up events
- Radiation effects

Some additional Remarks

- Collimation (highest priority after the splice repair)
- Radiation to Electronics
- We also need to study
 - How to give LHCb $5x10^{33}$ cm⁻²s⁻¹
 - Higher luminosity with lead collisions (ALICE)

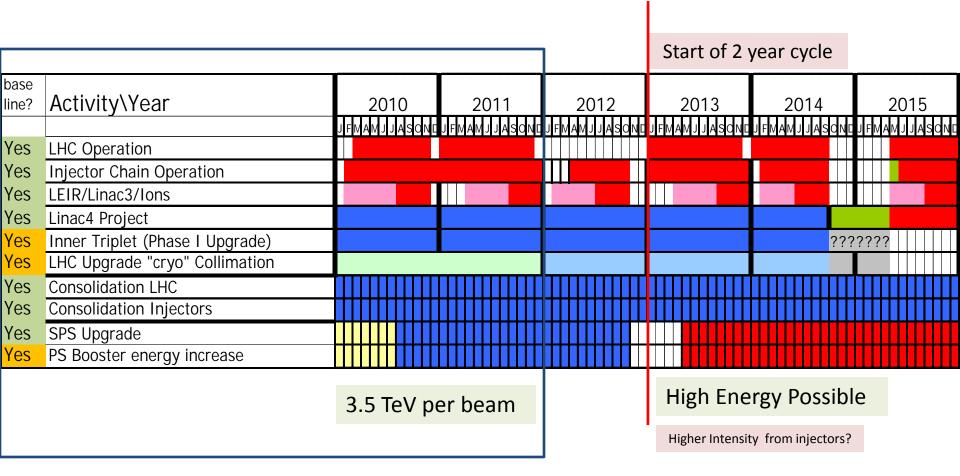
Conclusions

- The Luminosity Targets set by the detectors are:
 - 3000fb⁻¹ (on tape) by the end of the life of the LHC
 - \rightarrow 250-300fb⁻¹ per year in the second decade of running the LHC
- The Upgrades needed to attack these goals are
 - SPS performance improvements to remove the bottleneck
 - Aggressive consolidation of the existing injector chain for availability reasons
 - Performance improvement of the injector chain to allow phase 2 luminosities
 - a newly defined sLHC which involves
 - luminosity levelling at ~5-6x 10³⁴cm⁻²s⁻¹ (crab cavities etc...)
 - At least one major upgrade of the high luminosity insertions

➤The Accident

> The Repair and consolidation

- Hardware Commissioning
- ➢ First operation end 2009

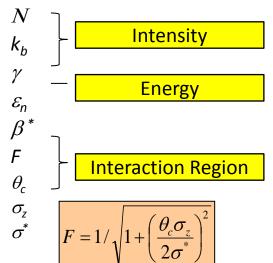

Chamonix10

Running in 2010-2011LHC Upgrades

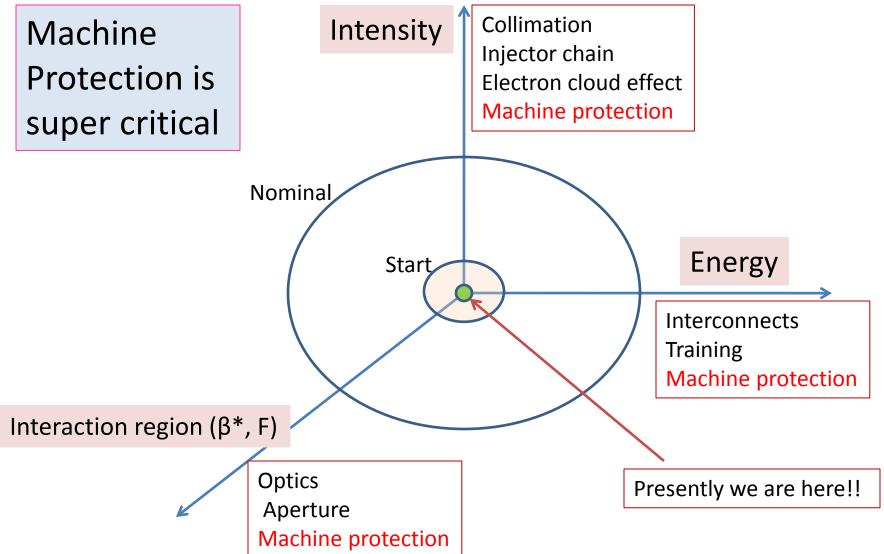
> After Chamonix

Present status

Time lines (Very Preliminary)


LHC Performance Pre-amble

- The nominal parameters of the LHC (as quoted in the LHC design report) are challenging both for the machine and the experiments. A staged approach to commissioning the LHC with proton beams was first proposed in Chamonix 2006
- This approach aimed at finding a balance between robust operations (efficiency and machine protection) and satisfying the experiments (luminosity and event pileup). The number of bunches, bunch intensity and β* are the key parameters varied throughout the period of commissioning to ensure safe and efficient operation.
- The LHC commissioning will be carried out in stages with performance being gradually increased up to the nominal parameters. The 2009 run constituted a first stage, starting with a pilot run at 0.45 and 1.18 TeV/beam and low intensities.
- In 2010 and 2011 we will be operating at 3.5TeV/beam and pushing intensities and luminosities but along a safe line.

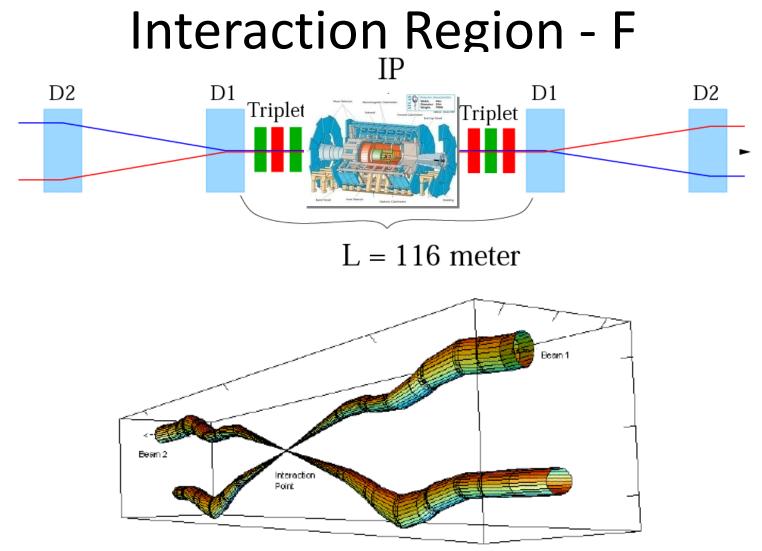

Luminosity

$$L = \frac{N^2 k_b f}{4\pi\sigma_x \sigma_y} F = \frac{N^2 k_b f \gamma}{4\pi\varepsilon_n \beta^*} F$$

- Nearly all the parameters are variable (and not independent)
 - Number of particles per bunch
 - Number of bunches per beam
 - Relativistic factor (E/m₀)
 - Normalised emittance
 - Beta function at the IP
 - Crossing angle factor
 - Full crossing angle
 - Bunch length
 - Transverse beam size at the IP

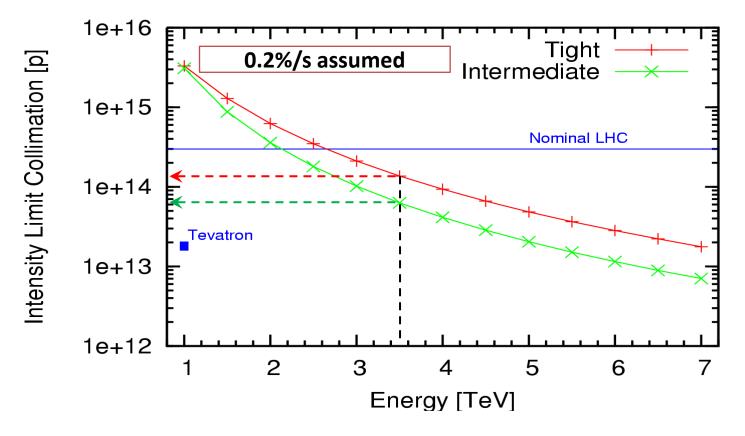
LHC performance drivers/limiters

β^* and F in 2010


- Lower energy means bigger beams
 - Less aperture margin
 - Higher β^*

 $\mathcal{E}_n = \mathcal{E}\gamma$

 $\sigma = \sqrt{1}$


- > 150 bunches requires crossing angle (beam-beam)
 - Requires more aperture
 - Higher β^*
- Targets for 3.5TeV
 - 2/2.5 m without/with crossing angle in 2010
 - 2m with crossing angle in 2011

Relative beam sizes around IP1 (Atlas) in collision

With > 150 bunches per beam, need a crossing angle to avoid parasitic collisions

"Intensity limits" Collimation (2010)

Collimator "limit" around 6 10¹³ protons per beam at 3.5TeV with "intermediate" settings (about 20% nominal intensity)

33.6 MJ stored beam energy

Soft limit, not yet well defined, 0.2%/s loss rate totally arbitrary (8 minute lifetime)

Strategy for Increasing the Beam Intensity

- The magic number for 2010/11 is 1 fb⁻¹. To achieve this, the LHC must run flat out at 2x10³² cm⁻²s⁻¹ in 2011,
 - Correspond to 8e10 ppb, 700 bunches, with a stored energy of 35 MJ (with $\beta^*=2$ m and nominal emittance).

Intensity increase – Summary

Maximum intensity increase versus stored energy:

 $_{\odot}$ Up to 0.25 MJ

typical factor ~2, max 4

o Up to 1-2 MJ

Above 1-2 MJ

≤ ~2 MJ per step

max. factor ~2

Progression (1)

Stage	Ib (protons)	Nb	Stored E (kJ)	Stored E step	Peak L (Hz cm-2)
4 pilots	5.00E+09	4	11.2	1.00	4.77E+27
4 bunches	2.00E+10	4	44.8	4.00	7.63E+28
4 bunches	5.00E+10	4	112.0	2.50	4.77E+29
8 bunches	5.00E+10	8	224.0	2.00	9.54E+29
4x4 bunches	5.00E+10	16	448.0	2.00	1.91E+30
8x4 bunches	5.00E+10	32	896.0	2.00	3.81E+30
43x43	5.00E+10	43	1204.0	1.34	5.13E+30
8 trains of 6 b	8.00E+10	48	2150.4	1.79	1.33E+31
50 ns trains	8.00E+10	96	4300.8	2.00	2.67E+31

 $\beta^* = 2 \text{ m}$, nominal emittance

2 weeks between energy steps = 10 days + margin for MD, access etc

2011 3.5 TeV: run flat out at ~100 pb⁻¹ per month

	No. bunches	ppb	Total Intensity	Beam Stored Energy (MJ)	beta*	Peak Lumi	Int Lumi per month [pb ⁻¹]
50 ns	432	7 e10	3 e13	17	2	1.3 e32	~85
Pushing intensity limit	720	7 e10	5.1 e13	28.2	2	2.2 e32	~140
Pushing bunch current limit	432	11 e10	4.8 e13	26.6	2	3.3 e32	~209

With these parameters we should be able to deliver 1 fb⁻¹

Summary

- To achieve an integrated luminosity of 1fb⁻¹ in 2010/2011 we must reach a peak of luminosity of 2x10³²cm⁻²s⁻¹ in 2010.
- To do this there must be a rapid progression in stored beam energy in parallel to a lot of commissioning activities.
 - Much faster than in previous machines, with the potential to cause damage !
 - Coupled to an excellent machine uptime.

>The Accident

> The Repair and consolidation

- Hardware Commissioning
- First operation end 2009

Chamonix10

Running in 2010-2011LHC Upgrades

> After Chamonix

Present status

- Beam is back
- Machine is highly reproducible
- Plan for first collisions at 7TeV cm by the end of March

Thank you

A Question to better define the risk

- What exactly will happen if we have exceed the "limit" values for the splices while running at 3.5TeV/beam
 - New situation with pressure release valves
 - New dump resistors
 - New QPS protection
 - Fast intermagnet splice protection
 - Asymetric quench protection
 - Evaluation of the damage
 - Evaluation of the repair time

Comparison of Scenarios

- Scenario 1 (Minimum Risk)
 - Probably the more efficient over the LHC lifetime
 - + ALARA
 - determine the needs for the shutdown (resources, coactivity etc)
 - Re-design/testing of the splices; timing is "reasonable"
- Scenario 2 (Higher Risk)
 - Reduced running in 2010, long shutdown 2010-2011, delays operation at the highest energy
 - -- ALARA
 - Urgently needs a more appreciate measurement of warm resistance (thermal amplifier) which has not yet been developed

• ?--May need nearly as much shutdown time as scenario 1 and the repair is only good for 5TeV/beam

What to do if we have an unforeseen stop e.g. S34 vacuum?

To increase the PSB extraction energy

- PSB:
 - Main magnets
 - Main power supply
 - RF
 - Septa and kickers
- Transfer and measurement line
 - Magnets
 - Septa and kickers
 - Power converters

• PS injection:

- Septum and kicker
- Injection slow bump

NB: in this proposal the extraction energy for the ISOLDE beams is unchanged.

Special criteria before any intensity increase,

- **Stability** is an issue for going above 0.25 MJ.
 - The optics stability should be better than about ~10%
 - The orbit stability should be better than <0.5 mm to 0.2 mm. (The actual tolerances would depend on the measured "n1" and on the collimator setting.)
 - 1-2 MJ of beam energy is close to 1% of nominal performance.
 - The MPS performance should be reviewed at this beam energy.
- Bunch Spacing
 - For most of the time one could operate with 50-ns trains, initially based on 6, and then 12 bunches per train (and not 36).

Procedure

- How would the green light for an intensity increase be given?
 - The minimum running time at a given intensity is about 10 days with at least 10 fills/dumps.
 - A mini-review prior to every intensity step would discuss any issue and document the decision.
 - There was the exception of requiring at least 3-4 weeks of running at an intensity around 1-2 MJ, possibly in two different configurations (43 bunches and trains).
 - The **losses** should always be small enough to avoid the risk of frequent quench.
 - A number of tests or verifications are needed after each intensity increase:
 - the **diagnostics** should be shown to be fully operational, and t
 - **beam cleaning** adequate.
 - **beam dump** would be tested at injection.
 - Optics changes like introducing a crossing angle or squeeze would require additional verifications, e.g. related to the collimation set up (to be adjusted), and to the asynchronous dump failure check