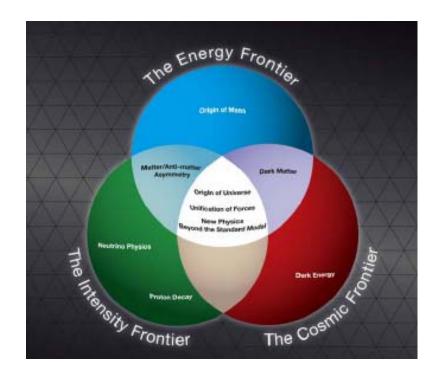
Fermilab Multi-MW Proton Source: Strategy and Status

Steve Holmes Fermilab

HEPAP Meeting November 13, 2008

Outline

- Strategic Context
- Project X Goals and Configuration
- Project X Research, Design, and Development Plan
- Relationship of Project X to other Programs


Project X website:

http://projectx.fnal.gov/

Strategic ContextFermilab Long Range Plan

- Fermilab is the sole remaining U.S. laboratory providing facilities in support of accelerator-based Elementary Particle Physics.
- The Fermilab long-term strategy is fully aligned with the P5 plan:
 - Energy and intensity frontiers share strong reliance on accelerators

Strategic Context P5 Recommendations

Energy Frontier

- "The panel recommends for the near future a broad accelerator and detector R&D program for lepton colliders that includes continued R&D on ILC ... in support of the international effort."
- "The panel also recommends R&D for alternative accelerator technologies, to permit an informed choice when the lepton collider energy is established."

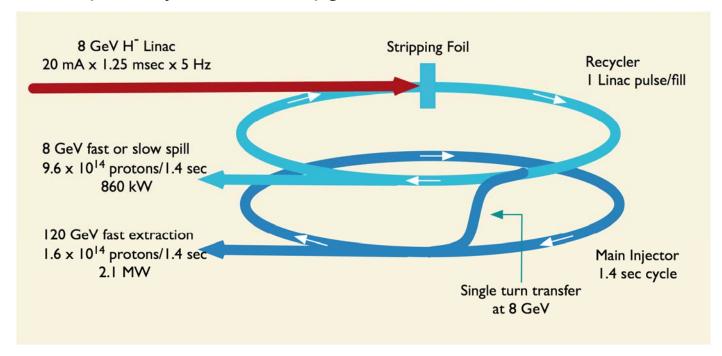
Intensity Frontier

- "The panel recommends an R&D program in the immediate future to design a multi-megawatt proton source at Fermilab and a neutrino beamline to DUSEL..."
- "The panel further recommends that in any funding scenario considered by the panel Fermilab proceed with the upgrade of the present proton source by about a factor of two, to 700 kilowatts..."

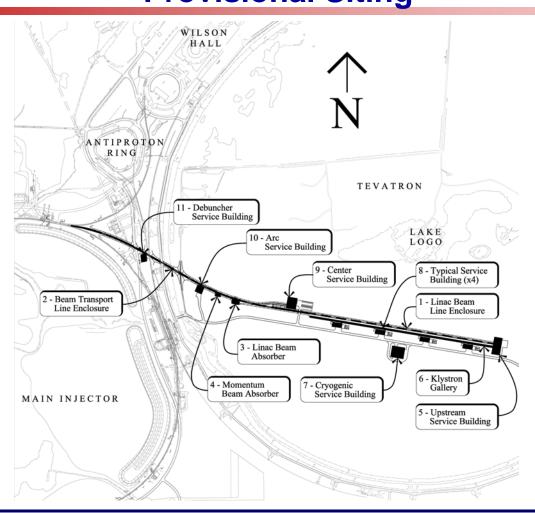
Strategic Context Evolution of the Accelerator Complex

- Energy Frontier
 - Tevatron → ILC or Muon Collider as options for the Fermilab site
- Intensity Frontier
 - NuMI→ NOvA→ very long baseline/mu2e→ multi-MW Proton Source
 - Initial stages supported by ANU (NOvA): 700 kW
- Fermilab view: Most effective implementation of a multi-MW proton facility would be based on a superconducting 8 GeV linac
 - Alignment with ILC technology development
 - Flexibility for the future
 - aka "Project X"

Project X Initial ConfigurationMission Need


- The P5 report identifies mission need based on:
 - A neutrino beam for long baseline neutrino oscillation experiments.
 - A new 2 megawatt proton source with proton energies between 50 and 120 GeV would produce intense neutrino beams, directed toward a large detector located in a distant underground laboratory.
 - Kaon and muon based precision experiments exploiting 8 GeV protons from Fermilab's Recycler, running simultaneously with the neutrino program.
 - These could include a world leading muon-to-electron conversion experiment and world leading rare kaon decay experiments.
 - A path toward a muon source for a possible future neutrino factory and, potentially, a muon collider at the Energy Frontier.
 This path requires that the new 8 GeV proton source have significant upgrade potential.

Project X Initial Configuration


Project X Design Criteria

- 2 MW of beam power over the range 60 − 120 GeV;
- Simultaneous with at least 600 kW of beam power at 8 GeV;
- Compatibility with future upgrades to 2-4 MW at 8 GeV

Project X Initial Configuration Provisional Siting

Project X Facility Overview High Level Performance Goals

Linac			
Particle Type	H⁻		
Beam Kinetic Energy	8.0	GeV	
Particles per pulse	1.6×10 ¹⁴		
Linac pulse rate	5	Hz	
Beam Power	280-1000	kW	lmitially "
Recycler			Initially: 2 linac beam
Particle Type	protons		pulses/1.4 seconds
Beam Kinetic Energy	8.0	GeV	Remaining (5) pulses
Cycle time	1.4	sec	available for
Particles per cycle to MI	1.6×10 ¹⁴		 Maintain 2 MW
Particles per cycle to 8 GeV progra			down to 60 GeV
Beam Power to 8 GeV program	140-860	kW	Future upgradesDiagnostics
. •			Diagnostics
Main Injector	100	Ca\/	
Beam Kinetic Energy (maximum)	120	GeV	
Cycle time	1.4	sec	
Particles per cycle	1.7×10 ¹⁴		
Beam Power at 120 GeV	2100	kW	

Project X RD&D Plan

- The primary goal of the Research, Design, and Development (RD&D) program is to support Critical Decision 2 in 2012, leading to a 2013 construction start.
 - Design and technical component development;
 - Fully developed baseline scope, cost estimate, and schedule;
 - Formation of a multi-institutional collaboration capable of executing both the RD&D plan and the follow-on construction project.

Secondary goals:

- Coordination of Project X and ILC scrf programs to provide maximal benefit to each;
- Retain alignment of Project X and the Neutrino Factory and Muon Collider programs to assure that Project X could serve as a stepping stone to either facility.

Resources

Current Fermilab estimate is ~\$100M (fully burdened) through CD-2

Project X RD&D Plan Near-term Strategy

- Develop an Initial Configuration Document
 - Meeting the design criteria and program goals
 - ICD subject to configuration control
 - ⇒ Released 10/31: available at http://projectx.fnal.gov/index.html
- Revise/update the current RD&D Plan
 - Based on the ICD
 - Review existing plan to emphasize reduction of risk
 - ⇒ In process, expect to have initial re-edit available for November Collaboration Meeting
- Create a preliminary cost estimate
 - Based on the ICD
 - ⇒ In process, available early 2009

Project X RD&D Plan Near-term Strategy

- Establish a multi-institutional collaboration for the RD&D phase
 - Fermilab holds overall responsibility as host laboratory;
 - Achieve maximal alignment with institutional expertise and experience;
 - Recognize it would be natural for responsibilities to carry over into the construction phase.
 - ⇒ Collaboration Meeting scheduled November 21-22, 2008 at Fermilab

CD-0 in FY2009

- Requires independent review since (we suspect) >\$750M
- Coordinated with very long baseline and mu2e
- Based on:
 - > ICD
 - > Preliminary cost estimate
 - > P5 mission definition

Project X RD&D Plan Working Timeline (technically limited)

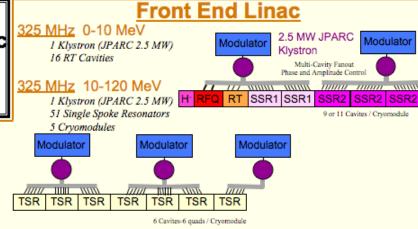
• FY2009

- Complete Initial Configuration Document (ICD)
- Develop Upgrade Concept for 2-4 MW at 8 GeV
- Form RD&D Collaboration
- Establish Project Management team
- Revise RD&D plan and initiate work
- Complete a preliminary cost estimate based on the ICD
- Complete Mission Needs Statement and Mission Need Independent Review
- Receive CD-0
- Request PED funds for FY2011
- Initiate work on Conceptual Design Report
- Develop NEPA strategy
- ⇒ This can largely be accomplished under the FY09 (half-year) CR

Project X RD&D Plan Working Timeline (technically limited)

- FY2010
 - Alternative implementations studies
 - Initiate Environmental Assessment
 - Initiate permitting documentation
 - Draft of all CD-1 documentation, including CDR
- FY2011
 - CD-1
- FY2012
 - CD-2/3a
- FY2013
 - CD-3
- ~FY2013~2017
 - Construct

Relationship to Other Programs: **Linac Technology**

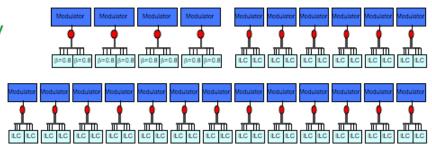


Project X 1000 kW 8GeV Linac

28 Klystrons (2 types) 461 SC Cavities 58 Cryomodules

0.12-0.42 GeV 325 MHz

- 3 Klystrons (JPARC 2.5 MW)
- 42 Triple Spoke Resonators
- 7 Cryomodules


1300 MHz

4 Klystrons (ILC 10 MW MBK) 64 Squeezed Cavities (β =0.81) 8 Cryomodules

1.3-8.0 GeV 1300 MHz

19 Klystrons (ILC 10 MW MBK) 304 ILC-identical Cavities 38 ILC-like Cryomodules

0.42-1.3 GeV 1300 MHz LINAC

Relationship to Other Programs: ILC/SRF Joint Development Strategy

- 38 ILC-like cryomodules are required for Project X. In detail they will not be identical to ILC:
 - Gradient: 25 MV/m
 - Beam current: 20 mA × 1.25 msec × 5 Hz
 - Focusing: Quadrupole element required in each CM
 - Consistent with upgrade path

```
> 1.25 \rightarrow 2.5 msec pulse length
> 5 \rightarrow 10 Hz pulse rate 4 MW at 8 GeV
```

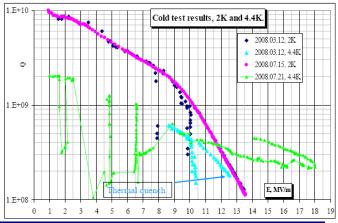
- Close coordination between Project X and GDE during development phase
 - Strategy based on ILC "plug compatibility"
 - > Retain ILC cavity spacing and primary interface dimensions
 - Cryomodule development is through the ILC program
 - CAF and ILCTA-NML are constructed via the SRF program: 1
 CM/month assembly capability and beam testing of a complete rf unit

Relationship to Other Programs: ILC/SRF Joint Development Strategy

Industrialization

- Production of 38 ILC-like (plus 8 β =0.8) CMs over a 2-3 year period is consistent with CAF capabilities in ~2013; however, the production rate remains well <u>below</u> that required by ILC
- ⇒This activity could represent the initial phase of an industrialization buildup for ILC (in the U.S.).

Relationship to Other Programs: HINS Joint Development Strategy


The HINS program is developing front end technology beyond the

requirements of Project X initial goals:

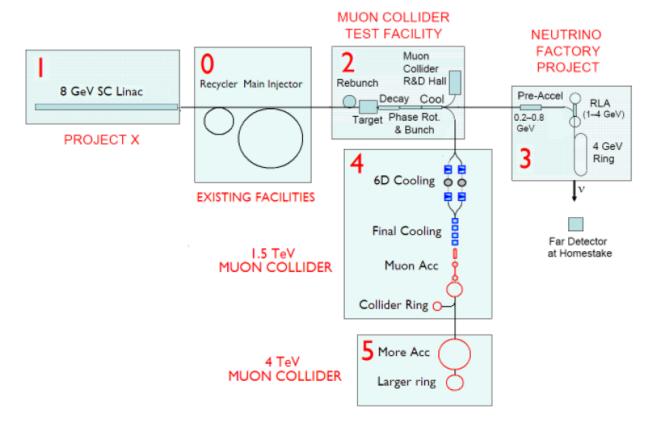
- 60 MeV front end @ 27 mA \times 1 msec \times 10 Hz

- Demonstrate novel technologies for a high intensity non-relativistic linac
 - Multiple room temperature and sc cavities driven by a single rf source (high power vector modulators)
 - ➤ High speed (nsec) beam chopping at 2.5 MeV
- Establish technical feasibility and cost basis by ~2011
- Integrate into Project X R&D effort at time of CD-0

Project X RD&D Plan Integrated SRF Plan

<u>l</u>	FY08	FY09 FY1	0 FY11	FY12 FY13
ILC C+CM	CM1	CM2		CM4 PX) rf unit sys tst
ILC RF Power		MBK F modul	PFN ator	Trume systat
SRF Infra.			NML complete	CAF complete (1 CM/month)
HINS			60 MeV beam tests	
Project X		CDR	FE decision Final gradient decision	rf unit sys tst on

Relationship to Other Programs: | Muons


- *
- Project X shares many features with the proton driver required for a Neutrino Factory or Muon Collider
 - IDS-NF shows 4 MW @ 10± 5 GeV proton energy
 - Muon Collider requires similar power, but requires charge consolidated into a single bunch
- Natural evolutionary schemes through neutrino superbeams:
 - NOvA→ Very Long Baseline→ Neutrino Factory→ Muon Collider
 - (see P5 presentations by Y-K. Kim and R. Palmer)

Relationship to Other Programs:

Muons: Possible Evolution (Palmer/P5)

A Phased Approach

Project X RD&D Plan Muon Facilities Joint Development Strategy

- Develop upgrade concept for the Project X linac aimed at 2-4 MW
 ⇒ The ICD includes such a concept (up to 4 MW)
- Develop a performance specification for a Proton Driver supporting a Neutrino Factory and Muon Collider, consistent with Project X concepts.
 - Issues: Average beam power, repetition rate, particles/bunch, bunch intensity
 - These issues are likely to require a new storage ring downstream of the linac.
- Develop a conceptual design for the NF/MC Proton Driver based on Project X linac and downstream accumulation/packaging ring(s).
- Coordinate with NFMCC, MCTF, and IDS NF

Project X RD&D Plan Collaboration Plan

- The intention is to organize and execute the RD&D Program via a multi-institutional collaboration.
 - Goal is to assign collaborators complete sub-projects ⇒
 responsibility for design, engineering, cost estimating, and potentially
 construction if/when Project X proceeds.
 - Project X R&D Collaboration to be established via a Collaboration Memorandum of Understanding (MOU) outlining basic goals of the collaboration, and the means of organizing and executing the work.
 - It is anticipated that the Project X RD&D Program will be undertaken as a "national project with international participation". Expectation is that the same structure of MOUs described above would establish the participation of international laboratories.

Project X RD&D Plan Collaboration Plan

- A draft MOU covering the period through CD-2 is currently circulating for comment among the following potential U.S. laboratory collaborators:
 - ANL
 - BNL
 - Cornell
 - LBNL
 - ORNL/SNS
 - MSU
 - TJNAF
 - SLAC
 - ILC/GDE
- Hope to finalize/sign at the initial Project X Collaboration Meeting on November 21-22, 2008 at Fermilab
 - There will be international participation in the meeting.

Summary

- Project X is central to Fermilab's strategy for future development of the accelerator complex:
 - Energy Frontier: Aligned with ILC technology development;
 preserves Fermilab as potential site for ILC or a Muon Collider
 - Intensity Frontier: Ultimate goal is 2 MW beam to very long baseline neutrino experiment and >1 MW to rare processes experiments; preserves Fermilab as potential site for a Neutrino Factory
- An initial configuration has been established meeting requirements as specified in the P5 report
 - >2 MW at 60-120 GeV, simultaneous with >600 kW at 8 GeV
- The initial configuration can be upgraded to 2-4 MW at 8 GeV
- Project X RD&D plan developed (through CD-2)
 - Integrates effort on Project X, ILC, SRF, and HINS
- Collaboration being formed