Frascati Super-B Factory

John Seeman

For the Super-B Accelerator Collaboration Accelerator Systems Division SLAC National Accelerator Laboratory

SLAC May 21, 2009

HEPAP Meeting

Outline

- * Overview
- * Project TDR organization
- * Super-B parameters
- * Frascati DAFNE crab waist results
- * Beam-beam interaction
- * Interaction region
- * Lattice
- * Polarization
- * PEP-II reusable components
- * April MiniMAC
- * Conclusions

Super-B Project

- * Super-B aims at the construction of a very high luminosity (1x 10³⁶ cm⁻² s⁻¹) asymmetric e⁺e⁻ flavor factory with a possible location on or near the campuses of the University of Rome at Tor Vergata or the INFN Frascati National Laboratory.
- * Aims:
 - Very high luminosity (~10³⁶)
 - Flexible parameter choices.
 - High reliability.
 - Longitudinally polarized beam (e-) at the IP (>80%).
 - Ability to collide at the Charm threshold.

How Super-B accelerator fits in the Super-B Project

May 21, 2009

HEPAP Meeting

Super-B Accelerator CDR Contributors (2008)

- M. E. Biagini, R. Boni, M. Boscolo, T. Demma, A. Drago, S. Guiducci, M. Preger, P. Raimondi, G. Sensolini, S. Tomassini, C. Vaccarezza, M. Zobov (INFN/LNF, Italy)
- K. Bertsche, M. Donald, A. Fisher, S. Heifets, A. Novokhatski, M. Pivi, J. Seeman, M. Sullivan, U. Wienands, W. Wittmer, G. Yocky (SLAC, US)
- I. Koop, S. Nikitin, E. Levichev, P. Piminov, D. Shatilov (BINP, Russia)
- * G. Bassi, A. Wolski (Cockroft Institute, UK)
- * M. Venturini (LBNL, US)
- * S. Bettoni (CERN, Switzerland)
- * A. Variola (LAL/Orsay, France)
- * E. Paoloni, G. Marchiori (Pisa University, Italy)
- * K. Ohmi (KEK, Japan)

Super-B Accelerator Contributors for the TRD (~Fall 2010)

- * D. Alesini, M. E. Biagini, R. Boni, M. Boscolo, A. Clozza, T. Demma, A. Drago, M. Esposito, A. Gallo, S. Guiducci, V. Lollo, G. Mazzitelli, C. Milardi, L. Pellegrino, M. Preger, P. Raimondi, R. Ricci, C. Sanelli, G. Sensolini, M. Serio, F. Sgamma, A. Stecchi, A. Stella, S. Tomassini, C. Vaccarezza, M. Zobov (INFN/LNF, Italy)
- * K. Bertsche, A. Brachmann, Y. Cai, A. Chao, A. DeLira, M. Donald, A. Fisher, D. Kharakh, A. Krasnykh, N. Li, D. MacFarlane, Y. Nosochkov, A. Novokhatski, M. Pivi, J. Seeman, M. Sullivan, U. Wienands, J. Weisend, W. Wittmer, G. Yocky (SLAC, US)
- * A. Bogomiagkov, S.Karnaev, I. Koop, E. Levichev, S. Nikitin, I. Nikolaev, I. Okunev, P. Piminov, S. Siniatkin, D. Shatilov, V. Smaluk, P. Vobly (BINP, Russia)
- * G. Bassi, A. Wolski (Cockroft Institute, UK)
- * S. Bettoni (CERN, Switzerland)
- * M. Baylac, J. Bonis, R. Chehab, J. DeConto, Gpmez, A. Jaremie, G. Lemeur, B. Mercier, F. Poirier, C. Prevost, C. Rimbault, Tourres, F. Touze, A. Variola (CNRS, France)
- * A. Chance, O. Napoly (CEA Saclay, France)
- * F. Bosi, E. Paoloni (Pisa University, Italy)
- * At present approximate totals:
 - 10 FTEs from LNF Frascati
 - 4.5 FTEs from SLAC
 - 3 FTEs from BINP Novosibirsk
 - 2.5 FTEs from France
 - 0.5 FTEs from Pisa

AC May 2

May 21, 2009

HEPAP Meeting

Super-B Accelerator Oversight

- * Accelerator collaboration:
 - J. Seeman
- * Scientific-Technical:
 - P. Raimondi
 - S. Tomassini
 - U. Wienands
- * Regional coordinators:
 - M. Biagini Italy
 - M. Sullivan US
 - G. Bassi UK
 - E. Levichev Russia
 - A. Variola France

Luminosity Equation for a Circular e⁺e⁻ Collider

 $\begin{aligned} \xi_y \text{ is the beam-beam parameter (~0.09)} \\ I_b \text{ is the bunch current (~3 mA)} \\ n \text{ is the number of bunches (~2500)} \\ \beta_y^* \text{ is the IP lattice optics function (vertical beta) (<1 mm)} \\ E \text{ is the beam energy (4 and 7 GeV)} \\ \text{Luminosity (10^{36} cm^{-2} s^{-1})} \end{aligned}$

$$L = 2.17 \times 10^{34} \frac{n\xi_y EI_b}{\beta_y^*}$$

AC May 21, 2009

HEPAP Meeting

Number of Bunches and Beam Currents

- 5	\mathbf{x}	

Collider	Bunches	e+ current	e- current
		(mA)	(mA)
DORIS-II	1	42	42
VEPP-4M	1	12	12
CESR	5x9=45	375	375
PEP-II	1722	3210	2070
KEKB	1585	1662	1340
Super-B (future)	2500	2800	2800

Bunch Length, βy^* , and Horizontal Emittance

Collider	Bunch length	β_y^*	٤ _× *
	(mm)	(mm)	(nm)
DORIS-II	36	40	571
VEPP-4M	50	50	1333
CESR	18	18	211
PEP-II	11	9	23-48
KEKB	7	6	20-23
Super-B (2008 design)	6	0.25/0.35	2-3

SLAC May 21, 2009

Crossing Angles, Beam-Beam Parameter, Luminosity

Collider	Crossing Angle	ξ _y *	Luminosity
	(mrad)	(mm)	X 10 ³² /cm ² /s
DORIS-II	0	0.026	0.33
VEPP-4M	0	0.059	0.2
CESR	0	0.068	12.8
PEP-II	0	0.065	121.
KEKB	22	0.09	192.
Super-B (future)	60	0.09	10000

SLAC May 21, 2009

*

HEPAP Meeting

Key technical advances for Super-B

- * Crossing angle IR with large Piwinski angle (DAFNE,KEKB)
- * Crab waist scheme (Frascati, DAFNE)
- * Very low IR vertical and horizontal beta functions (ILC)
- * Low horizontal and vertical emittances (Light sources)
- * Ampere beam currents (PEP-II, KEKB)

Super-B Parameter Options

LER/HER	Unit	June 2008	Jan. 2009	March 2009	LNF site
E+/E-	GeV	417	417	417	417
L	cm ⁻² s ⁻¹	1x10 ³⁶	1x10 ³⁶	1x10 ³⁶	1x10 ³⁶
1+/I·	Amp	1.85 /1.85	2.00/2.00	2.80/2.80	2.70/2.70
Nport	x10 ¹⁰	5.55 <i>1</i> 5.55	6/6	4.37/4.37	4.53/4.53
N _{bun}		1250	1250	2400	1740
Ibunch	mA	1.48	1.6	1.17	1.6
6/2	mrad	25	30	30	30
₿ _x *	mm	35/20	35/20	35/20	35/20
β _y *	mm	0.22 /0.39	0.21 <i>I</i> 0.37	0.21 <i>I</i> 0.37	0.21 /0.37
ε _x	nm	2.8/1.6	2.8/1.6	2.8/1.6	2.8/1.6
€ _y	pm	714	714	714	714
$\overline{\mathbf{Q}}_{\mathbf{x}}$	μm	9.9/5.7	9.9/5.7	9.9/5.7	9.9/5.7
α _y	nm	39 <i>1</i> 39	38/38	38/38	38/38
Ω_{ϵ}	mm	5/5	5/5	5/5	5/5
ξx	X tune shift	0.007/0.002	0.005/0.0017	0.004/0.0013	0.004/0.0013
₿ _y	Y tune shift	0.14 /0.14	0.125/0.126	0.091/0.092	0.094/0.095
RF stations	LER/HER	5/6	5/6	5/8	6/9
RF wall plug power	MW	16.2	18	25.5	30.
Circumference	m	1800	1800	1800	1400

*

SLAC May 21, 2009

SuperB Interaction Region Layout View (Jan 2009)

Crab Waist Scheme (Raimondi)

Figure 3-1. Large Piwinski angle and crabbed waist scheme. The collision area is shown in yellow.

SLAC May 21, 2009

HEPAP Meeting

Beam distributions at the IP

New Crab-Waist Interaction Region for DAFNE at Frascati

May 21, 2009

SLAC

DAFNE BEAM PROFILES at the IP AND NEW PARAMETERS

	DAΦNE (KLOE run)	DAΦNE Upgrade
I _{bunch} (mA)	13	13
N _{bunch}	110	110
β _y * (cm)	1.8	0.85
β _x * (cm)	160	26
σ _y * (μm)	5.4 low curr	3.1
σ _x * (μm)	700	260
σ _z (mm)	25	20
Horizontal tune shift	0.04	0.008
Vertical tune shift	0.04	0.055
θ _{cross} (mrad) (half)	12.5	25
Ф _{Piwinski}	0.45	2.0
L (cm ⁻² s ⁻¹)	1.5x10 ³²	>5x10 ³²

3 times more luminosity obtained with 3 times smaller vertical beam

SLAC May 21, 2009

HEPAP Meeting

DAFNE Luminosity versus Ib²: Very positive! Congratulations to the DAFNE team!

Luminosity vs Current Product

*

SLAC May 21, 2009

HEPAP Meeting

DA\PhiNE Results

Crab ON (blue, red) & OFF (green) luminosity versus product of beam currents

SLAC May 21, 2009

HEPAP Meeting

Beam-Beam Simulation of DAFNE (K. Ohmi)

• Measured luminosity= 4.5×10^{32} cm⁻²s⁻¹.

*

Super-B Site: Tor Vergata University and Frascati LNF Locations

SLAC May 21, 2009

HEPAP Meeting

Tor Vergata Site

*

SLAC May 21, 2009

HEPAP Meeting

Potential Frascati LNF Location

SLAC May 21, 2009

*

HEPAP Meeting

SuperB Interaction Region Layout View (Jan 2009)

SC Quadrupoles at the IP (E. Paoloni, S. Bettoni)

- * Studies on the SuperB lattice have continued since the CDR completion for optimization of:
 - Dynamic aperture

May 21, 2009

- Chromaticity correction
- Rings circumference for sites matching
- Final Focus properties (in close collaboration with the IR and backgrounds studies)
- Spin rotator matching in the HER for polarization manipulation
- * The design is flexible: emittance and momentum compaction can be easily tuned and the ring circumference can scale down maintaining the design emittances. The Super-B lattice is now being looked at for the ILC DR 3Km long option (M. Biagini).
- * For the longer circumference (Tor Vergata site), beam dynamics and emittance tuning studies are ongoing.

Arc Lattice

- * Arc cell: flexible solution is based on decreasing the natural emittance by increasing μ_x /cell, and simultaneously adding weak dipoles in the cell drift spaces to decrease synchrotron radiation
- * All cells have: $\mu_x=0.75$, $\mu_y=0.25 \rightarrow$ about 30% fewer sextupoles
- * Better DA since all sextupoles are at -I in both planes (although x and y sextupoles are nested)
- * Distances between magnets compatible with PEP-II hardware
- * All quads-bends-sextupoles in PEP-II range

	E (GeV)	C (m)	γ	ε _x (nm)	γε _x (μm)	ε _y (pm)	γε _y (nm)
Spring-8	8	1430	15656	6	94	5	78
ILC-DR	5	6400	9785	1	10	2	20
Diamond*	3	561	5871	2.7	16	2	29
ATF*	1.28	138	2524	1	2.5	4	10
SLS*	2.4	288	4700	6	28	3.2	15
SuperB LER	4	1800	7828	2.8	22	7	55
SuperB HER	7	1800	13699	1.6	22	4	55

Emittance tuning techniques and algorithms have been tested in simulations and experiments on the ATF and on the other electron storage rings to achieve such small emittances (ex. CesrTA as an ILC-DR test facility has a well established one).

Simulations for SuperB

SLAC May 21, 2009

HEPAP Meeting

Luminosity and Dynamic Aperture Scans

Piminov, Shatilov, Zobov

Tune point optimization is done together with bb simulations and luminosity and lifetime optimization

- * Polarization of one beam is included in *SuperB*
 - Either energy beam could be the polarized one.
 - The LER would be less expensive, the HER easier.
 - HER was chosen for now.
- * Longitudinal polarization times and short beam lifetimes indicate a need to inject vertically polarized electrons.
 - The plan is to use a polarized e- source similar to the SLAC SLC source.
- * There are several possible IP spin rotators:
 - Solenoids look better at present (vertical bends give unwanted vertical emittance growth).
- * Expected longitudinal polarization at the IP of about 87%(inj) x 97%(ring)=85%(effective)
- * Polarization section implementation in lattice: in progress with strong success

W. Wittmer

Polarization versus Energy of HER (Wienands)

PPA Particle Physics B Astrophysics

Possible layout with spin rotators near IR (Wienands, Wittmer)

UW, 2/13/09

RF Plan: Use PEP-II RF system and cavities

PEP-II RF Cavities match Super-B needs.

BR_049

HER Cavities Region 12

8-19-97

SLAC May 21, 2009

HEPAP Meeting

Super-B RF: power required

S. Novokhatski Jan. 2009

		S	.R. ener	·gy		Total	Zero I		Max	Number	r		Total	Total	Total	Power for	LER
Lumi	Beam	Beam	loss	Momen-	Momen-	RF	Bunch	Bunch	voltage	of	S.R.	ном	cavity	reflected	forward	one	Total
	energy	curren	per turi	tum com	tum	oltag	length	pacing	er cavit	cavities	power	power	loss	power	power	cavity	forward
	GeV	A	MeV	paction	spread	MV	mm	nsec	MV	klystro	MW	MW	MW	MW	MW	MW	MW
1E+36	7	2	1.95	3.8E-04	5.8E-04	8	5.1	4.2	0.65	12	3.9	0.386	0.702	0.5912	5.58	0.46	8.98
										6							
1E+36	7	2.82	1.95	3.8E-04	5.8E-04	10	4.5	2.1	0.65	16	5.499	0.4901	0.822	1.2384	8.05	0.50	12.73
										8							
1E+36	7	4	1.95	3.8E-04	5.8E-04	16	3.6	2.1	0.7	22	7.8	1.517	1.531	1.2733	12.12	0.55	19.63
										11							
																	HER+
LER	LER	LER	LER	LER	LER	LER	LER	LER	LER	LER	LER	LER	LER	LER	LER	LER	LER
		S	.R. ener	.gy		Total	Zero I		Max	Number	r		Total	Total	Total	Power for	Supply
Lumi	Beam	Beam	loss	Momen-	Momen-	RF	Bunch	Bunch	voltage	of	S.R.	HOM	cavity	reflected	forward	one	Power
	energy	curren	per turi	tum com	tum	voltag	length	pacing	er cavit	cavities	power	power	loss	power	power	cavity	eff.~50%
	GeV	A	MeV	paction	spread	MV	mm	nsec	MV	klystro	MW	MW	MW	MW	MW	MW	MW
1E+36	4	2	1.16	3.2E-04	8.0E-04	6	5.6	4.2	0.65	10	2.32	0.3205	0.474	0.2863	3.40	0.34	17.96
										5							
1E+36	4	2.82	1.16	3.2E-04	8.0E-04	7	5.2	2.1	0.65	10	3.2712	0.3569	0.645	0.4038	4.68	0.47	25.45
										5							
1E+36	4	4	1.16	3.2E-04	8.0E-04	9	4.5	2.1	0.65	14	4.64	0.9391	0.761	1.1691	7.51	0.54	39.26
										7							

(A. Drago)

SuperB feedback parameters

477.0		1
476	MHz	I
2850		
~ 6	us	
~1250 (2500)	Ph-1 (Ph-2)	
~2	ns]
1.26 (.63)	m	1
0.0141/0.0133]
~2.35/2.2	kHz]
~20	ms	
0.52/.54 (???)		
86.8/90.2	kHz	
40	ms	
>120	us	
(> 20 turns)		
4x250	W]
2x500	W	
2-ports	Stripline type	
4-ports	Cavity type	
	 476 2850 ~6 ~1250 (2500) ~2 1.26 (.63) 0.0141/0.0133 ~2.35/2.2 ~20 0.52/.54 (???) 86.8/90.2 40 >120 (> 20 turns) 4x250 2x500 2-ports 4-ports 	476 MHz 2850 us ~6 us ~1250 (2500) Ph-1 (Ph-2) ~2 ns 1.26 (.63) m 0.0141/0.0133

SLAC May 21, 2009

*

New feedback Kicker design (A. Krasnykh)

Electrodynamic Structure with:

- Regular Kicker Part
- Two Matched Transition Regions at the Kicker Ends
- Ground Fenders
- Broadband Constant Impedance Feedthrough

*

Locations of Fast Dipoles for Luminosity Feedback

K. Bertsche

SLAC May 21, 2009

Layout: PEP-II magnets reuse

All PEP-II magnets can be used, dimensions and fields are in range RF requirements are met by the present PEP-II RF system

PEP-II D&D Review (March 2009)

- DOE conducted a two day review of removing and disposing PEP-II components.
- * Table was made of component weights, volumes, and areas.
- * ES&H studies have been done and are ongoing.
- Many parts could go to a future Super-B in Frascati.
 ~350 shipping containers
- Some parts could go to a future Project-X at FNAL.
 ~60 shipping containers
- * Some parts would stay at SLAC for a future PEP-X.
- * The remainder goes to disposal.

PEP-II Magnets and RF Components

*

bw_001 Installation of the First HER Straight Section Quad Raft (730) 8-19-97

BR_044

8-19-97

SLAC May 21, 2009

HEPAP Meeting

INFN Requests for PEP-II Components

SLAC for PEP-II and Linac Compone	ents for Super-B		5-Mar-08
Component description	Number	Replacement	Total
	requested	value per	replacement
		unit (kEuro)	value (kEuro)
Dipole (0.5 m)	144	10	1440
Dipole (0.5 m) supports	144	4	576
Dipole (5.4 m)	176	15	2640
Dipole (5.4 m) supports	176	2	352
Dipole (2 m)	4	10	40
Dipole (2 m) supports	4	2	8
Quadrupole (0.43m)	341	10	3410
Quadrupole (0.43m) supports	341	1	341
Quadrupole (0.5)	70	10	700
Quadrupole (0.5) supports	70	1	70
Quadrupole (0.56)	287	10	2870
Quadrupole (0.56) supports	287	1	287
Quadrupole (0.73)	138	10	1380
Quadrupole (0.73) supports	138	1	138
Sextupole (0.25m)	452	7.5	3400
Sextupole (0.25m) supports	452	0.5	226
Sextupole (0.6m)	8	4	32
Sextupole (0.6m) supports	8	1	8
Dipole correctors	836	1	836
Dipole corrector supports	836	0.5	418
	SLAC for PEP-II and Linac Component Component description Dipole (0.5 m) Dipole (0.5 m) supports Dipole (0.5 m) supports Dipole (5.4 m) Dipole (2 m) Dipole (2 m) Quadrupole (0.43m) Quadrupole (0.5) Sextupole (0.25m) Sextupole (0.25m) Sextupole (0.6m) Sextupole (0.6m) Dipole correctors Dipole correctors Dipole corrector supports	SLAC for PEP-II and Linac Components for Super-B Component description Number Component description requested Dipole (0.5 m) 144 Dipole (0.5 m) supports 144 Dipole (0.5 m) supports 144 Dipole (5.4 m) 176 Dipole (2 m) 4 Dipole (2 m) supports 144 Dipole (2 m) supports 44 Dipole (2 m) 4 Quadrupole (0.43m) supports 341 Quadrupole (0.43m) supports 70 Quadrupole (0.5) supports 70 Quadrupole (0.5) supports 287 Quadrupole (0.56) supports 287 Quadrupole (0.73) supports 138 Sextupole (0.73) supports 138 Sextupole (0.25m) supports 452 Sextupole (0.25m) supports 452 Sextupole (0.6m) 8 Sextupole (0.6m) supports 8 Dipole correctors 836	SLAC for PEP-II and Linac Components for Super-BComponent descriptionNumberReplacementcoupsedrequestedvalue perImage: Image: Imag

Page 45 Particle Physic

SLAC May 21, 2009

*

INFN Requests (cont)

PEP-II	Skew quadrupoles	24	5	120
PEP-II	Skew quadrupoles supports	24	1	24
PEP-II	Vacuum chambers	1500	10	15000
PEP-II	Vacuum chamber supports	1500	1	1500
PEP-II	RF station	15	4000	60000
PEP-II	Transverse feedback system	2	2000	4000
PEP-II	Longitudinal feedback system	2	3000	6000
PEP-II	Injection kickers	4	250	1000
PEP-II	Injection transport lines	2	5000	10000
PEP-II	Synchrotron light monitor	2	500	1000
PEP-II	Bunch current monitor	2	100	200
PEP-II	Beam loss monitors	300	1	300
PEP-II	Luminosity monitor	1	200	200
PEP-II	IP orbit fast feedback	1	400	400
PEP-II	Bunch length monitor	2	300	600
PEP-II	Temperature monitors	2000	0.5	1000
PEP-II	Power supplies	1000	10	10000
PEP subtotal				130516

46 PPA Particle Physic & Astrophysics

SLAC May 21, 2009

*

HEPAP Meeting

Component	Number	Width	Length	Height	Weight	Weight	Stacking	Volume	Total	Area	Total	Shipping	Shipping	INFN	INFN	FNAL
Unit					per unit	total	factor		Volume		Area	containers	container	containers	containers	containers
		Ft	Ft	Ft	Lb	Lb		Ft^3	Ft^3	Ft^2	Ft^2	needed	needed	Full reques	FNAL out	Full reques
												(weight)	(area)			
Suspension components												31000 lbs	(150 sq-ft)			
HER quadrupole-sext raft arc	200	3	7	4	8000	1600000	1	84.0	16800.0	21.0	4200.0	51.6	28.0	52	52	0
HER dipoles	196	2.3	19	1.5	15338	35277	1	65.6	12847.8	43.7	8565.2	97.0	57.1	72	48	50
HER dipole supports	388	3.5	2	1.5	500	194000	3	10.5	4074.0	7.0	905.3	6.3	2.0	7	3	4
HER IR dipoles and supports	10	4	2	4	4000	40000	1	32.0	320.0	8.0	80.0	1.3	0.5	2	2	(
HER quadrupole raft straight	120	3	4.5	1.5	6500	780000	1	20.3	2430.0	13.5	1620.0	25.2	10.8	25	13	12
HER dipole vacuum chamber	192	1	20	0.5	685	131520	3	10.0	1920.0	20.0	1280.0	4.2	2.8	4	4	
HER straight vacuum chamber	130	0.5	16	0.5	300	39000	5	4.0	520.0	8.0	208.0	1.3	0.3	2	2	(
HER misc vacuum parts	200	2	2	2	100	20000	3	8.0	1600.0	4.0	266.7	0.6	0.6	1	1	(
LER quad-dipole-sext raft arc	200	3	10.5	3	10000	2000000	1	94.5	18900.0	31.5	6300.0	64.5	42.0	65	65	(
LER quadrupole raft straight	120	3	3.5	1.5	7000	840000	1	15.8	1890.0	10.5	1260.0	27.1	8.4	27	27	(
LER IR dipoles and supports	10	4	2	4	4000	40000	1	32.0	320.0	8.0	80.0	1.3	0.5	2	2	(
LER raft vertical supports	320	2	5	5.5	5000	1600000	2	55.0	17600.0	10.0	1600.0	51.6	5.3	0	0	(
LER arc pumping vac chamber	200	1.7	18	2	1500	300000	2	61.2	12240.0	30.6	3060.0	9.7	10.2	0	0	(
LER misc vacuum parts	200	2	2	2	100	20000	3	8.0	1600.0	4.0	266.7	0.6	0.6	1	1	(
Power cables in tunnel remove	7000	4	1	0.2	30	210000	15	0.8	5600.0	4.0	1866.7	6.8	0.8	0	0	0
njection magnets	100	2	1	1	400	40000	2	2.0	200.0	2.0	100.0	1.3	0.3	1	1	(
Injection supports	100	1	1	6	300	30000	4	6.0	600.0	1.0	25.0	1.0	0.0	1	1	(
lnj kicker magnets & pulsers	6	4	4	4	400	2400	2	64.0	384.0	16.0	48.0	0.1	0.2	0	0	(
RF cavities+ support	36	3	5	4	2000	72000	1	60.0	2160.0	15.0	540.0	2.3	3.6	4	4	(
Diagnostics <i>-Coll-lum-SLM</i>	50	2	1	1	100	5000	2	2.0	100.0	2.0	50.0	0.2	0.2	1	1	(
Controls in tunnel	50	2	4	2	300	15000	2	16.0	800.0	8.0	200.0	0.5	0.7	1	1	(
Base grout and bolts	1000	2	3	0.2	50	50000	12	1.2	1200.0	6.0	500.0	1.6	0.3	0	0	C
Release components																
Power supplies	1000	2	2	5	400	400000	1	20.0	20000.0	4.0	4000.0	12.9	26.7	27	27	
Power cables outside remove	3000	4	1	0.2	30	90000	15	0.8	2400.0	4.0	800.0	2.9	0.4	3	3	(
Controls outside tunnel	200	2	1	1	100	20000	3	2.0	400.0	2.0	133.3	0.6	0.3	1	1	(
RF klystron and raft	15	3	12	4	6000	90000	1	144.0	2160.0	36.0	540.0	2.9	3.6	8	8	C
RF circulator and support	15	5	6	10	3000	45000	1	300.0	4500.0	30.0	450.0	1.5	3.0	4	4	C
RF power waveguide	1000	1.5	1	1	50	50000	3	1.5	1500.0	1.5	500.0	1.6	1.1	2	2	(
RF power supplies	16	12	10	10	64000	1024000	1	1200.0	19200.0	120.0	1920.0	33.0	12.8	33	33	(
Suspension totals						8064197			104105.8		33021.5	356.0	175.3	268	228	68
Release totals						1719000			50160.0		8343.3	55.5	47.8	78	78	(
Overall totals						9783197			154265.8		41364.9	411.4	223 1	346	306	66

SuperB Injector layout

Highlights from the MAC Committee April 23-24, 2009

- Committee: Klaus Balewski (DESY), John Corlett (LBNL), Jonathan Dorfan (SLAC, Chair), Stuart Henderson (ORNL), Tom Himel (SLAC), Claudio Pellegrini (UCLA), Daniel Schulte (CERN), Ferdi Willeke (BNL), Andy Wolski (Liverpool), Frank Zimmermann (CERN)
- * "The MAC now feels secure in enthusiastically encouraging the SuperB design team to proceed to the TDR phase, with confidence that the design parameters are achievable." Recent strong progress:
 - Crab waist tests at DAFNE
 - Beam-beam measurements (DAFNE) and simulations
 - IR design
 - Lattice
 - Polarization spin rotators
- * "Nonetheless, much detailed work remains to bring the design to the level where (a) *ground-breaking,* (b) *final engineering of accelerator components* can commence." Further needed work areas:
 - Emittance tuning and evaluate tolerances
 - Dynamic aperture calculations
 - IR and arc vacuum systems
 - Injection system
 - Vibration studies
 - Polarization lattice

TDR Topic List

•Injection System •Polarized gun •damping rings •spin manipulators •linac •positron converter •beam transfer systems •Collider design •Two rings lattice •Polarization insertion •IR design •beam stay clear •ultra-low emittance tuning detector solenoid compensation •coupling correction •orbit correction •stability •beam-beam simulations •beam dynamics and instabilities •single beam effects •operation issues •injection scheme

•RF System •RF specifications •RF feedbacks •Low level RF •Synchronization and timing •Site •Civil construction

Civil construction
Infrastructures & buildings
Power plants
Fluids plants
Radiation safety

•Magnets

Design of missing magnets
Refurbishing existing magnets
Field measurements
QD0 construction
Power supplies
Injection kickers

•Mechanical layout and alignment •Injector •supports Vacuum system
Arcs pipe
Straights pipe
IR pipe
e-cloud remediation electrodes
bellows
impedance budget simulations
pumping system

Diagnostics

Beam position monitors
Luminosity monitor
Current monitors
Synchrotron light monitor
R&D on diagnostics for low emittance

Feedbacks
Transverse
Longitudinal
Orbit
Luminosity
Electronics & software

•Control system •Architecture •Design •Peripherals

SLAC May 21, 2009

HEPAP Meeting

- * The Super-B parameters are being optimized around 1×10^{36} .
- * The team is addressing the Accelerator MAC suggestions from the April meeting.
- * IR present design is a solid basis; now start adding engineering features.
- * IR polarization (spin) rotators have now been added to the HER lattice. Polarization has changed the geometrical layout.
- * Beam-beam and lattice dynamic aperture calculations are continuing. The new lattice layouts show improvement.
- * Beam loading and RF parameters have taken the next solid step. Looks acceptable.
- * Organizing and planning for the Technical Design Report aiming at Fall 2010.

Back-up slide: Super-KEKB options (Ohnishi April 2009)

* **Table 1:** Machine parameters for SuperKEKB. Left is LER and right is HER. The parenthesis indicates a half finite-crossing angle for a crab crossing. ^{*1}beam-beam simulation. ^{*2}geometrical calculation.

Parameter LER/HER	Unit	2008	Travel Waist	Super- bunch(T)	Super- bunch(H)
Energy	GeV	3.5/8.0			
Circumference	m	3016			
Current	Α	9.4/4.1		2.70/1.55	2.65/1.55
No of bunches		5018		2500	1200
No of particles (x10 ¹⁰)		11.8/5.13		6.78/3.89	13.9/8.11
Horizontal emittance	nm	12/12	24/18	1/10	1/10
Vertical emittance	pm	60/60	240/90	3.5/25	3.5/25
Horizontal beta	mm	200/200	200/200	35/20	35/10
Vertical beta	mm	3/3	3/6	0.35/0.22	0.35/0.22
Bunch length	mm	3/3	5/3	6/6	6/6
Half crossing angle	mrad	0 (15)	0 (15)	30	30
Piwinski angle		0/0 (0.92/0.92)	0/0 (1.1/0.75)	30/13	30/18
Horizontal beam-beam		0.272/0.272	0.182/0.138	0.003/0.001	0.006/0.002
Vertical beam-beam		0.295/0.295	0.295/0.513	0.067/0.068	0.139/0.139
Luminosity (x1035)	$cm^{-2}s^{-1}$	5.5*1	5.3*1	5.0*2	10^{*2}

May 21, 2009

SI A

HEPAP Meeting