

JDEM Update

Neil Gehrels NASA/GSFC

JDEM Project Scientist

HEPAP February 25, 2009

JDEM BASELINE

- JDEM is envisioned as a medium-class space observatory
- Objective: Determine nature of dark energy
- Method: Measure expansion history and growth of structure in Universe to unprecedented accuracy
- Orbit: L2
- Launch date: Mid-decade
- Ops concept: 5 year prime dark energy mission, with potential for extended mission with observations determined by peer review
- Website http://jdem.gsfc.nasa.gov

JDEM Science

- Potential for order of magnitude improvement in figure-of-merit for joint errors on equation of state parameters w & w_a (plotted against each other) compared to current experiments
- Measurements of growth factor exponent to distinguish Einstein's theory of general relativity from alternate theories
- JDEM designed for greatest leverage to determine what dark energy is.
- Profound implications on understanding the universe:
 - Universe density (DE is 73% of the mass-energy density of the universe)
 - Existence of cosmological constant
 - Signal of new gravitational physics
 - Relation to dark matter, inflation, neutrino mass
 - Connections to superstring theories and extra dimensions

- High-sensitivity large-scale visible and NIR galaxy surveys
- Weak lensing (WL) dark energy probe
 - precision shape measurement of galaxy shapes
 - photo-z redshifts
 - 1-2 x 10⁹ galaxies mapped
- Baryon acoustic oscillations (BAO) dark energy probe
 - spectroscopic redshift survey
 - emission line galaxies positioned in 3D
 - few x 10⁸ galaxies mapped with spectroscopic redshifts
- Supernova (SN) dark energy probe
 - Type Ia supernovae detected into NIR
 - color and lightcurve parameters for standard candles

- Precision measurements of dark energy probes are necessarily systematics limited
- Space provides
 - broadband NIR coverage
 - no blur from atmospheric scintillations
 - accessibility of low background sky regions
 - stable systematics control at L2

(e.g. psf over large fov)

- all sky available day and night
- precise repetition of measurements
- JDEM focuses on space-unique capabilities that are complementary with ground

- Enabling technologies
 - Large format CCDs and HgCdTe detectors
 - Wide-field broad-band diffraction-limited telescopes
 - Ground processing with high-speed processors with large data storage
- Diffraction-limited sensitive wide-field sky coverage in NIR available for first time
- All JDEM technologies are high Technology Readiness Level (TRL) and ready-to-go
 - -- Heritage from HST, JWST, other missions
- JDEM can be built today

JDEM History

- 1998-99: Discovery via SN la that expansion of space is accelerating
- 2003: Quarks to Cosmos (Turner) study highlights importance of understanding DE and endorses a spacebased mission
- 2005-6: Multi-agency IWG and DETF panels recommended joint NASA/DOE JDEM mission
- 2007: NRC BEPAC committee commissioned by NASA and DOE recommends JDEM as first Beyond Einstein mission to fly
- 2008: JDEM formulated as a strategic agency-led mission
- summer-fall 2008: Figure of Merit Science Working Group
- fall 2008: Science Coordination Group

- Dark Energy Task Force 2005
- Figure of Merit Science Working Group Summer 2008 Chair: Rocky Kolb
 Fisher Matrix Approach
 Principal Component Analysis
 FoMSWG report published
 (http://jdem.gsfc.nasa.gov)
 Emphasis on combination of methods

JDEM Science Coordination Group

- Formed by NASA and DOE in September 2008 for community input on JDEM
- Charge:
 - develop level 1 & 2 requirements
 - review reference mission developed by the JDEM project office and comment on capabilities
 - define reference observing program
- 17 members chosen from community
- 5 meetings and several telecons held
- Final report to be completed by mid-March

- SCG deliberations start with findings of Dark Energy Task Force (DETF - 2006) and Figure-of-Merit Science Working Group (FoM SWG - 2008)
- BAO and WL are most powerful techniques from FoM viewpoint. SNe provide direct "simple" measure of luminosity distance
- FoMSWG and SCG support enabling all 3 techniques (plus growth of structure) with JDEM
- Primary strength of space measurement is NIR coverage, observations over full sky at any time and tight systematics control

- Large area BAO and WL surveys will be a legacy of JDEM
- Hundreds of millions of galaxies will be mapped in 3D
- Large NIR sky survey will be a boon for ancillary science
 - large-scale structure
 - galaxy clusters
 - high redshift AGN
 - galaxy evolution/structure/formation
 - stellar populations
 - star formation history
 - solar system objects

- Project Office formed at NASA GSFC supported by DOE project at LBNL
- Discussions in progress with ESA about possible participation
- Near-term schedule:
 - Mission Concept Review to start Phase A (conceptual design) in
 March 2009
 - Announcement of Opportunity (AO) to select science investigations
 - AO release in Spring 2009
 - Science Working Group made up of science investigation leads
 - Phase B (preliminary design) starts in early 2010