Professor Roberto Battiston President

II National Committee of INFN on Astroparticle Physics.

This Committee is responsible for reviewing, approving, and funding of experiments in astroparticle physics:

Neutrino: Opera, Borexino, ICARUS....

Space Born: Fermi, Pamela, AMS, LISA....

Direct Dark Matter: Dama, Warp, Xenon...

Ground based: Argo, Magic,....

A statistical procedure for the identification of positrons in the PAMELA experiment

O. Adriani^{a,b}, G. C. Barbarino^{c,d}, G. A. Bazilevskaya^e, R. Bellotti^{f,g,*}, M. Boezio^h, E. A. Bogomolovⁱ, L. Bonechi^{a,b}, M. Bongi^b, V. Bonvicini^h, S. Borisov^{j,k,l}, S. Bottai^b, A. Bruno^{f,g}, F. Cafagna^g, D. Campana^d, R. Carbone^{j,d}, P. Carlson^m, M. Casolino^k, G. Castelliniⁿ, L. Consiglio^d, M. P. De Pascale^{j,k}, C. De Santis^k, N. De Simone^{j,k}, V. Di Felice^{j,k}, A. M. Galper^l, W. Gillard^m, L. Grishantseva^l, P. Hofverberg^m, G. Jerse^{h,o}, S. V. Koldashov^l, S. Y. Krutkovⁱ, A. N. Kvashnin^e, A. Leonov^l, V. Malvezzi^k, L. Marcelli^k, W. Menn^p, V. V. Mikhailov^l, E. Mocchiutti^h, A. Monaco^{f,g}, N. Mori^b, N. Nikonov^{j,k,i}, G. Osteria^d, P. Papini^b, M. Pearce^m, P. Picozza^{j,k}, M. Ricci^q, S. B. Ricciarini^b, L. Rossetto^m, M. Simon^p, R. Sparvoli^{j,k}, P. Spillantini^{a,b}, Y. I. Stozhkov^e, A. Vacchi^h, E. Vannuccini^b, G. Vasilyevⁱ, S. A. Voronov^l, J. Wu^m, Y. T. Yurkin^l, G. Zampa^h, N. Zampa^h, V. G. Zverev^l, D. Marinucci^r

^a University of Florence, Department of Physics, Via Sansone 1, I-50019 Sesto Fiorentino, Florence, Italy.

^bINFN, Sezione di Florence, Via Sansone 1, I-50019 Sesto Fiorentino, Florence, Italy. ^cUniversity of Naples "Federico II", Department of Physics, Via Cintia, I-80126 Naples,

Italy.

^dINFN, Sezione di Naples, Via Cintia, I-80126 Naples, Italy.

^eLebedev Physical Institute, Leninsky Prospekt 53, RU-119991 Moscow, Russia.

^fUniversity of Bari, Department of Physics, Via Amendola 173, I-70126 Bari, Italy.

⁹INFN, Sezione di Bari, Via Amendola 173, I-70126 Bari, Italy.

^hINFN, Sezione di Trieste, Padriciano 99, I-34012 Trieste, Italy.

ⁱIoffe Physical Technical Institute, Polytekhnicheskaya 26, RU-194021 St. Petersburg, Russia.

^jUniversity of Rome "Tor Vergata", Department of Physics, Via della Ricerca Scientifica 1, I-00133 Rome, Italy.

^kINFN, Sezione di Roma "Tor Vergata", Via della Ricerca Scientifica 1, I-00133 Rome, Italy.

¹Moscow Engineering and Physics Institute, Kashirskoe Shosse 31, RU-11540 Moscow, Russia.

^mKTH, Department of Physics, and the Oskar Klein Centre for Cosmoparticle Physics, AlbaNova University Centre, 10691 Stockholm, Sweden.

arXiv:1001.3522v1 [astro-ph.HE] 20 Jan 2010

^{*}Corresponding author. Tel: +390805443173

Email address: roberto.bellotti@ba.infn.it (R. Bellotti)

A statistical procedure for the identification of positrons in the PAMELA experiment

arXiv:1001.3522v1 [astro-ph.HE] 20 January 2010

Figure 8: The distribution of positively charged particles for the rigidity bin 28-42 GV showing 3 pdf fits.

Rigidity at	Percent	Percent	Percent error
spectrometer (GV)	(beta)	(wavelets)	(kernelwith wavelets)
1.5-1.8	3.2%	2.6%	2.6%
1.8-2.2	2.6%	2.9%	2.6%
2.2-2.7	2.7%	2.6%	2.6%
2.7-3.3	2.9%	3.1%	3.1%
3.3-4.1	3.1%	3.9%	3.9%
4.1-5.0	3.6%	3.8%	4.3%
5.0-6.1	3.9%	5.7%	5.3%
6.1-7.4	4.7%	4.8%	4.4%
7.4-9.1	4.9%	4.9%	5.0%
9.1-11.2	4.7%	5.7%	5.9%
11.2-15.0	5.3%	5.0%	5.6%
15.0-20.0	6.1%	5.4%	6.3%
20.0-28.0	8.1%	7.5%	8.2%
28.0-42.0	10.1%	9.5%	11.2%
42.0-65.0	13.4%	12.4%	13.0%
65.0-100.0	25%	29.5%	25.3%

Table 1: Statistical errors on the positron fraction R for all rigidity bins.

မှု

New Measurement of the Antiproton-to-Proton Flux Ratio up to 100 GeV in the Cosmic Radiation

O. Adriani,^{1,2} G. C. Barbarino,^{3,4} G. A. Bazilevskaya,⁵ R. Bellotti,^{6,7} M. Boezio,⁸ E. A. Bogomolov,⁹ L. Bonechi,^{1,2} M. Bongi,² V. Bonvicini,⁸ S. Bottai,² A. Bruno,^{6,7} F. Cafagna,⁷ D. Campana,⁴ P. Carlson,¹⁰ M. Casolino,¹¹ G. Castellini,¹² M. P. De Pascale,^{11,13} G. De Rosa,⁴ D. Fedele,^{1,2} A. M. Galper,¹⁴ L. Grishantseva,¹⁴ P. Hofverberg,¹⁰ A. Leonov,¹⁴ S. V. Koldashov,¹⁴ S. Y. Krutkov,⁹ A. N. Kvashnin,⁵ V. Malvezzi,¹¹ L. Marcelli,¹¹ W. Menn,¹⁵ V. V. Mikhailov,¹⁴ M. Minori,¹¹ E. Mocchiutti,⁸ M. Nagni,¹¹ S. Orsi,¹⁰ G. Osteria,⁴ P. Papini,² M. Pearce,¹⁰ P. Picozza,^{11,13} M. Ricci,¹⁶ S. B. Ricciarini,² M. Simon,¹⁵ R. Sparvoli,^{11,13} P. Spillantini,^{1,2} Y. I. Stozhkov,⁵ E. Taddei,^{1,2} A. Vacchi,⁸ E. Vannuccini,² G. Vasilyev,⁹ S. A. Voronov,¹⁴ Y. T. Yurkin,¹⁴ G. Zampa,⁸ N. Zampa,⁸ and V. G. Zverev¹⁴

(PAMELA Collaboration)

Rigidity at spectrometer GV	Mean Kinetic Energy GeV	Observed number of events \bar{p}	p	Extrapolated $\frac{\bar{P}}{p}$ at top of payload
2.23-2.58	1.64	39	1198039	$(3.92 \pm 0.63) \times 10^{-5}$
2.58-2.99	1.99	48	114 401 4	$(4.92 \pm 0.71) \times 10^{-5}$
2.99-3.45	2.41	55	107 177 8	$(5.91 \pm 0.80) \times 10^{-5}$
3.45-3.99	2.89	60	988 666	$(6.89 \pm 0.89) \times 10^{-5}$
3.99-4.62	3.46	74	903 708	$(9.2 \pm 1.1) \times 10^{-5}$
4.62-5.36	4.13	71	827 521	$(9.6 \pm 1.1) \times 10^{-5}$
5.36-6.23	4.91	93	738 028	$(1.40 \pm 0.14) \times 10^{-4}$
6.23-7.27	5.85	78	653736	$(1.31 \pm 0.15) \times 10^{-4}$
7.27-8.53	6.98	69	573 172	$(1.32 \pm 0.16) \times 10^{-4}$
8.53-10.1	8.37	67	505 503	$(1.44 \pm 0.18) \times 10^{-4}$
10.1-12.0	10.1	94	449 261	$(2.27 \pm 0.23) \times 10^{-4}$
12.0-14.6	12.3	58	405 583	$(1.54 \pm 0.20) \times 10^{-4}$
14.6-18.1	15.3	58	301 314	$(2.05 \pm 0.27) \times 10^{-4}$
18.1-23.3	19.5	46	270 068	$(1.80 \pm 0.27) \times 10^{-4}$
23.3-31.7	25.9	39	211 249	$(1.94 \pm 0.31) \times 10^{-4}$
31.7-48.5	37.3	24	136858	$(1.82 \pm 0.37) \times 10^{-4}$
48.5-100.0	61.2	6	57 613	$(1.07^{+0.58}_{-0.39}) \times 10^{-4}$

TABLE I. Summary of proton and antiproton results.

Acceptance 21.5 cm²sr Astroparticle Physics 27 (2007) 296–315

Exposure (5yrs) 2006-2011

