CLEO Collaboration: Status Report & Physics in the Completion Period

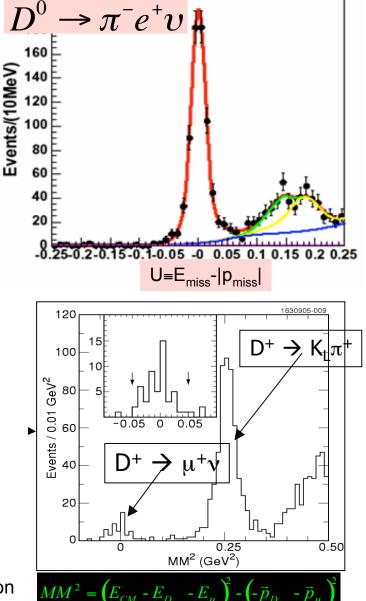
David Asner Co-Spokesman CLEO Collaboration

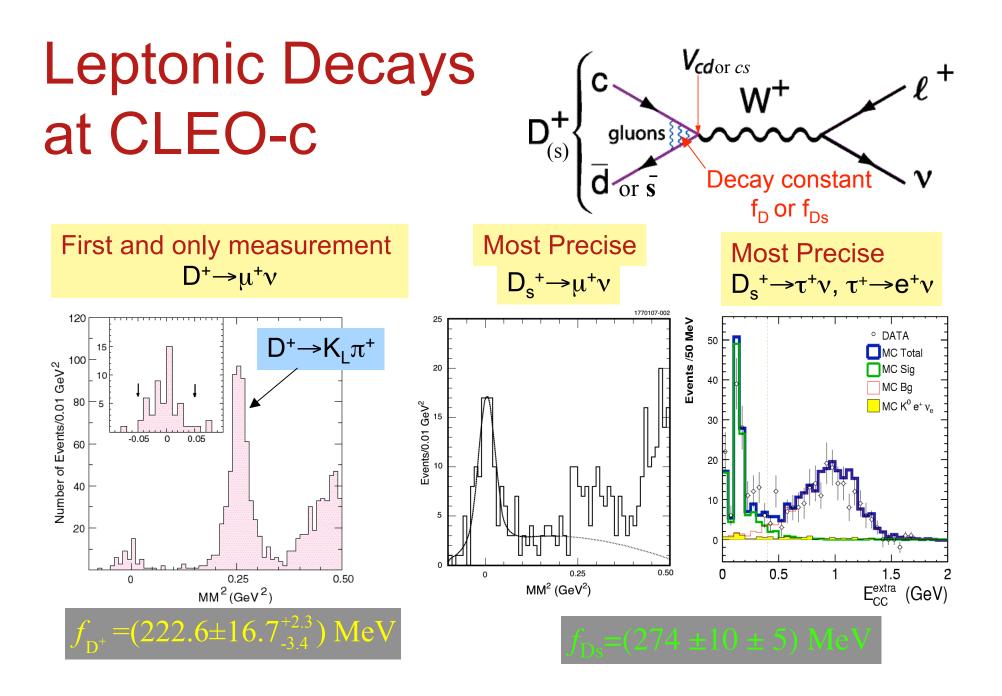
HEPAP Meeting November 29-30, 2007

Why I am here

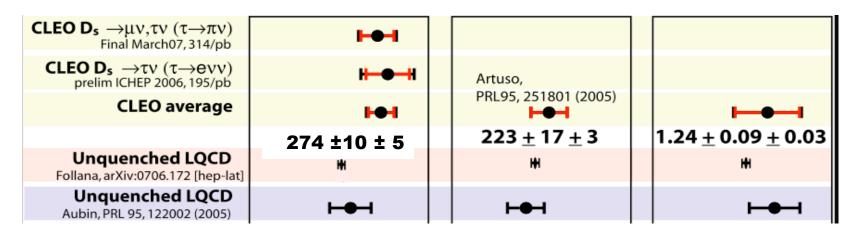
- CLEO-c begins its final data run Dec 7
- Data taking ends on March 31, 2008
- CLEO-c collaborators will need support
 - To complete analyses, Ph.D. theses, publish papers
 - For graduate students and post-docs
- Today I am here to report on the status of the broad CLEO-c physics program and to share with you our excitement for the future of CLEO

CLEO-c data sample is unique


- High precision, low-energy probe of charm quark physics
- Charm production at threshold is ideal for many important measurements
 - Some cannot be done elsewhere
 - OR cannot be done nearly as precisely


Advantages of Threshold Production

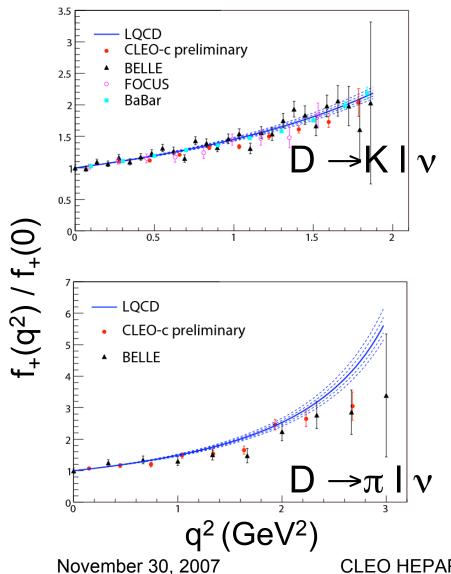
- $e^+e^- \rightarrow DD \text{ or } D_s^+D_s^{*-} (E_D^-=E_{beam})$
 - no additional particles produced
- Important for final states with one missing particle
 - neutrino in (semi)leptonic decays
 - -~ K_L in K_L π or K_L $\pi\pi$
- CLEO-c detector covers 93% of 4π
 - First detector at 4 GeV with RICH for particle ID and CsI for EM Calorimetry
- Enables 'reconstruction' of
 - (Missing mass)²
 - U= E_{miss} |p_{miss}|

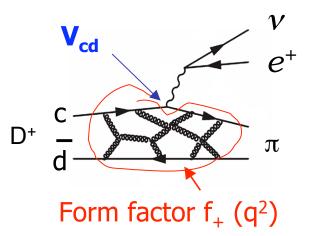

November 30, 2007

CLEO HEPAP Presentation

CLEO-c Leptonic Results Confront LQCD

• Recent LQCD - Follana et al.

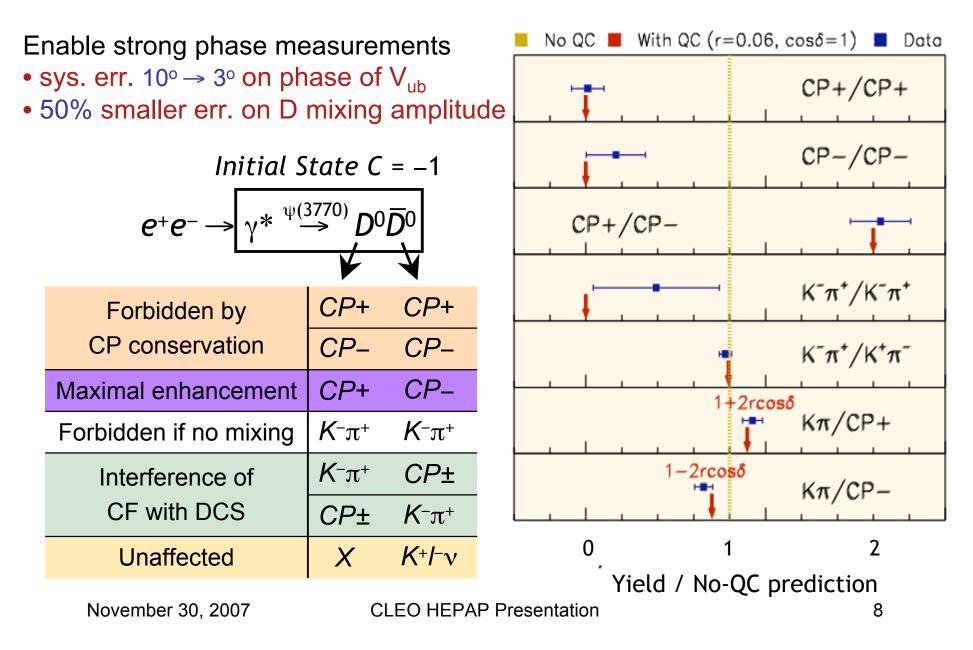

 $- f_{Ds} = 241 \pm 3 \text{ MeV}$


• Experimental average (CLEO-c + Belle)

 $- f_{Ds} = 274 \pm 10 \text{ MeV}$

3.2 sigma discrepancy between data and LQCD! Expect factor of two more CLEO-c data

Semileptonic Decays and form factors



Generally good agreement between experiments

LQCD πev points a bit high

Theory prediction more precise than experiment

Quantum Correlations at CLEO-c

Impact of CLEO Physics

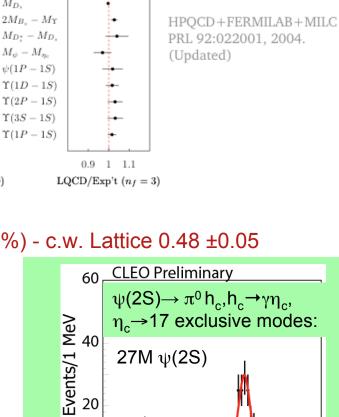
- Broad impact on heavy flavor physics and QCD
- Focused and crisp challenges to theoretical techniques for QCD calculations - particularly techniques for nonperturbative QCD
 - Important if New Physics observed at LHC has strongly coupled sector
- Leptonic Decays
 - Measure decay constants f_D , f_{Ds} stringent test of LQCD
 - Validated LQCD provides f_B , f_{Bs} important for V_{ts} , V_{td}
- Semileptonic Decays + validated LQCD
 - Provide V_{cs}, V_{cd}, test CKM unitarity
 - Decay rates, q² dependence stringent tests of LQCD
 - Improved V_{ub} only with validated LQCD q² dependence calculation

Flavor Physics and the LHC

- Measurements of CKM angles and other CP violating and rare processes, should show effects of any new particles found directly by ATLAS/CMS
- Precision Electroweak results imply New Physics ~ 1 TeV
- Precision Flavor results imply New Physics ~ 10-100 TeV
- CERN is studying the relationship between New Physics observed at the LHC and flavor physics through a pair of Workshop series
 - CERN Workshop Series "Flavor in the Era of the LHC"
 - <u>http://mlm.home.cern.ch/mlm/FlavLHC.html</u>
 - Follow-up workshop series "Interplay of Collider and Flavour Physics"
 - https://twiki.cern.ch/twiki/bin/view/Main/ColliderAndFlavour
- Validating QCD calculations is important for use in a wide variety of measurements that will elucidate the nature of this New Physics
 - Proven techniques especially important if New Physics observed at LHC has strongly coupled sector

Charmonia and Bottomonia

 f_{π} f_K


 M_{Ω} $3M_{\Xi} - M_N$

 M_D $M_{D_{c}}$

1)

- LQCD single formalism relatts D/B to ψ/Υ ullet
 - Independent calibration in D/B
 - Form factors, decay constants, etc...
- >30 gold-plated quantities where • few % LQCD calculations possible
 - Masses, Mass differences
 - Decay widths, Ratios of decay widths
 - Decay dynamics
- Υ(nS) data "oldest"
 - Most stringent lattice test
 - CLEO Γ_{ee} (Υ(2S))/ Γ_{ee}(Υ(1S)=0.457 ±0.006 (1.2%) c.w. Lattice 0.48 ±0.05
 - Search for h_b , η_b
- $\psi(2S)$ data 89% recorded in 2006 •
 - Additional stringent LQCD tests
 - Precision h_c mass
 - Hyperfine splitting uncertainty $\Delta M(1P)=1.0\pm0.6\pm0.4$ MeV dominated by h_c
 - $-\Gamma_{ee}$ (J/ ψ , ψ (2S), ψ (3770))

• CLEO Γ_{ee} ($\psi(2S)$)/ $\Gamma_{ee}(J/\psi) = 0.45 \pm 0.02$ (5%) November 30, 2007 CLEO HEPAP Presentation

27M ψ(2S)

3.50

3.48

3.52

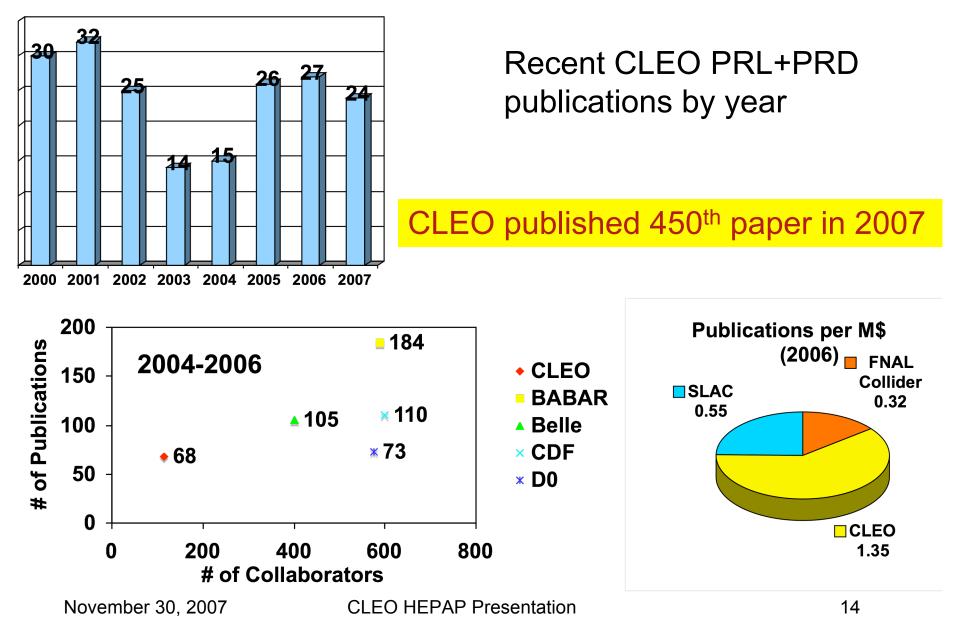
h_mass (GeV)

3.54

The CLEO Collaboration

- ~110 Scientists (60 FTE), 22 Institutions
 - Bristol, Buffalo, Carleton, Chicago, Carnegie Mellon, Cornell, Florida, George Mason, Illinois, Indiana, Kansas, Luther, NWU, Minnesota, Oxford, Pittsburgh, Puerto Rico, Purdue, Rochester, RPI, Syracuse, Wayne State
 - Supported by NSERC (1), PPARC (2), DOE (10), NSF (9)

Manpower Projections


Nov 2005: 81 FTE's Nov 2006: 72 Nov 2007: 60 (109 Authors 33 grad students, 21 post-docs) --- Mar 31 2008 --- data taking ends Nov 2008: 44

Enough manpower for data taking until March 31, 2008 Enough manpower to continue physics analyses until 2011

30+ Ph.D. theses over next 3 years

November 30, 2007

CLEO Publication Record

CLEO Completion

- The Collaboration plans to analyze the unique CLEO-c data sample for 3 years (the completion period) after the end of data taking March 31, 2008
- Current CLEO results based on a fraction of the data
- Anticipate 70-90 publications and ~30 theses during the CLEO completion period on the full data sample
- Cornell has submitted a grant proposal to the NSF requesting support to maintain the computing infrastructure necessary for this analysis effort
- CLEO groups need base support for physics

CLEO Physics

CLEO completion proposal features

	Precision	Full Data Precision
B(D→Kπ)	2.0%	Syst. limited
B(D→Kππ)	2.2%	Syst. limited
B(D _s →KKπ)	5.3%	4%
B(D⁺→μν)	15%	9%
$B(D_s^+ \rightarrow \mu \nu)$	11%	7%
B(D _s ⁺ →τν)	10%	7%
f _D /f _{Ds}	8.4%	5.1%
V _{cd} , V _{cs} (Excl LQCD err.)	3.7%, 1.3%	~2%, ~1%
D(anti-D)→Kπ phase diff.	cosδ ±0.19±0.08	±0.08 ±0.??
D(anti-D)→K _S ππ phase diff.	No public result	V_{ub} phase γ 3° sys. err.

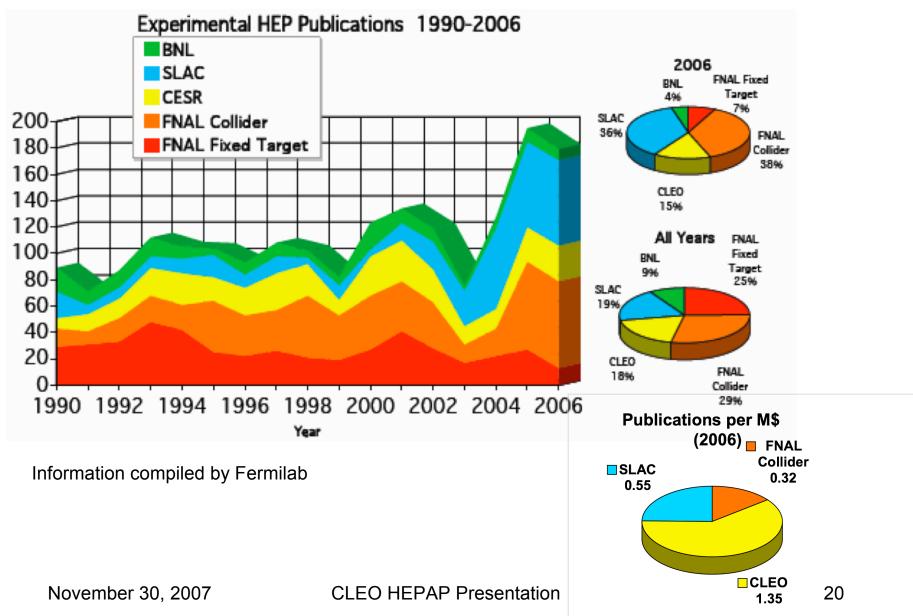
Closing Remarks

- CLEO-c has an important physics program and has done great work (with high yield per dollar)
- The collaboration is strong and will remain strong enough to continue into the completion era.
- Physics to be done in the completion era is important & will significantly improve many results.
 - Anticipate ~30 Ph.D. theses and 70-90 publications in 2008-11 (c.w. 100 pubs since 2003)
 - Mature software & experienced collaboration make this physics output possible with the expected decline in FTE's.
- Excited about strong finish to CLEO physics program

Backup Slides

CLEO data samples and publications

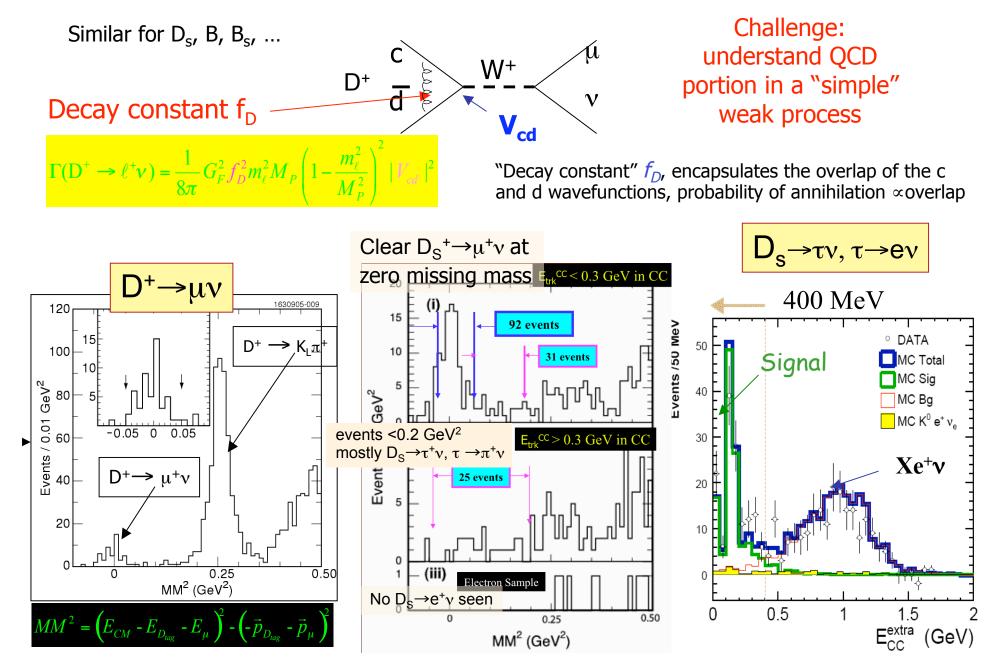
Large data samples + excellent detector New observations


Precision measurements
Systematic surveys

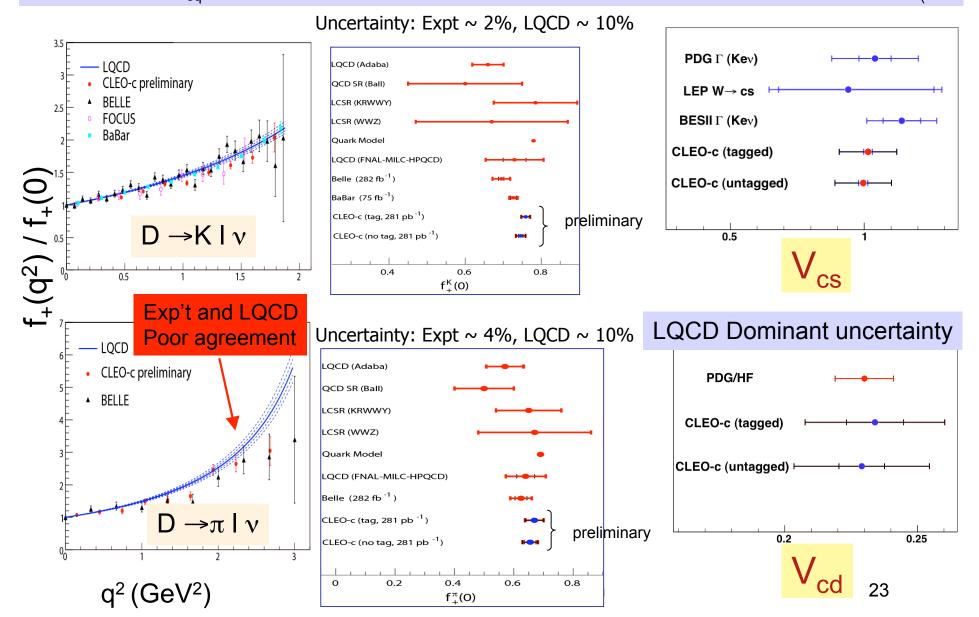
CLEO Data Sets	Luminosity (pb ⁻¹)	Events (x10 ⁶)	Comment	~20 PRL/PRD published 56 or 281 pb ⁻¹
ψ(3770)	800	5.2	D^0, D^+	25-30 more to come
E _{cm} = 4170	315 (630)	2.8 (5.7)	D _s +D _s *-	4 PRL/PRD published
ψ(2S)	54	27M	14M (BES)	195 or 325 pb ⁻¹
Below ψ(2S)	21			15-20 more to come
Scan ~4GeV	60			~25 PRL/PRD published, 80% on 3M ψ (2S)
Υ(1S)	1100	22M		25-30 more to come
Υ (2S)	1200	9M		~20 PRL/PRD published
Υ (3S)	1200	6M	11M (Belle)	5-10 more to come

November 30, 2007

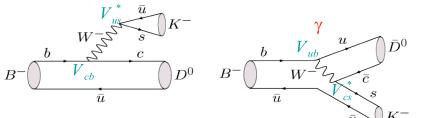
CLEO HEPAP Presentation


U.S Experimental Particle Physics

Impact of CLEO Physics


- Intellectual Merit of CLEO Physics program stems from its broad impact on heavy flavor physics and QCD
- Results from CLEO provide
 - Focused and crisp challenges to theoretical techniques for QCD calculations particularly techniques for non-perturbative QCD
 - Leptonic and semileptonic provide unique tests on theoretical calculations
 - Such as unquenched lattice gauge calcuations
 - Important if New Physics observed at LHC as strongly coupled sector
 - Reliable calculations maximize worldwide investment in heavy flavour physics
 - CLEO-c, BESIII, BaBar, Belle, CDF, D0, LHCb
 - Determination $f_B,\,f_{Bs}\,,\,V_{ub},\,V_{cb},\,V_{td},\,V_{ts}$, γ depend on charm + theory
 - Overconstraining quark mixing matrix probes New Physics and CPV
 - Charm Sector Measurements D, D_s, and charmonium
 - f_D , f_{Ds} , V_{cd} , V_{cs}
 - Leptonic, Semileptonic, Hadronic Decays
 - Strong Phases, Dalitz Plots
 - Rare D_(s) processes: Oscillations, CP violation, Rare Decay
 - New observations, masses, widths, rates, dynamics in charmonium

Leptonic Decays, Decay Constants, LQCD tests

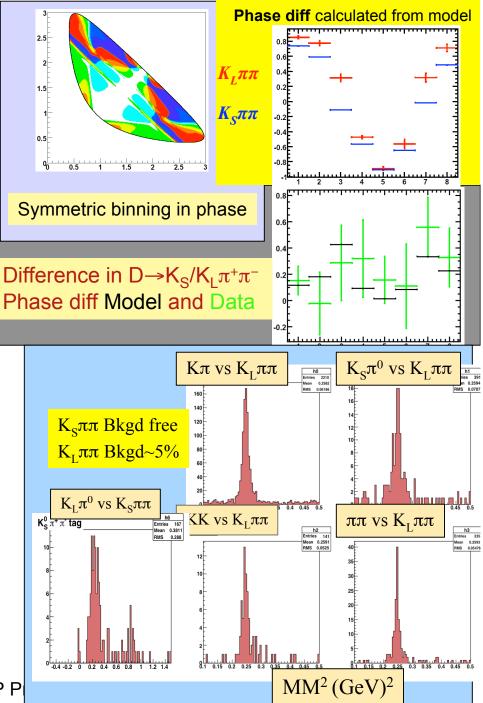


CLEO-c Semileptonic Results Confront LQCD

Recall BR is $\propto |V_{cq}|^2 \times |f_{+}^{\pi,K}(0)|^2$, use Becher-Hill parameterization & FNAL/MILC/HPQCD for $f_{+}(0)$

CLEO-c and CKM Angle γ

CKM angle γ determined from asymmetry in B⁻ \rightarrow DK⁻, D \rightarrow K_S $\pi^{+}\pi^{-}$ decays Amplitude ratio and D \rightarrow multibody phase difference required

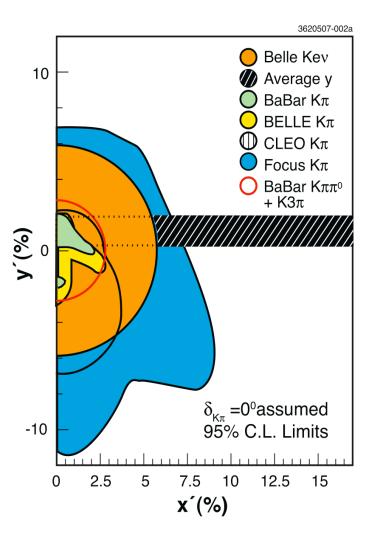

 Can be included in B-factory fit at expense of large statistical errors OR D model can be assumed but then dominates systematic uncertainty

CLEO exploits quantum correlations to directly measure phase difference

- Count events in bins on $D \rightarrow K_S \pi^+ \pi^-$ Dalitz plot (CP tagged & flavor tagged)
 - CLEO-c CP tagged sample unique
- Enhance statistics (factor of 3) by using $D \rightarrow K_{L}\pi^{+}\pi^{-}$ and $D \rightarrow K_{L}\pi^{0}$ (CP+ tag)
 - $D \rightarrow K_L \pi^+ \pi^-$ not identical to $D \rightarrow K_S \pi^+ \pi^-$ Dalitz plot but difference is understood
- Full data sample will reduce systematic uncertainty on γ from 10° \rightarrow 3°
 - Anticipate stat. err. from B-factories ~6°

November 30, 2007

CLEO HEPAP P

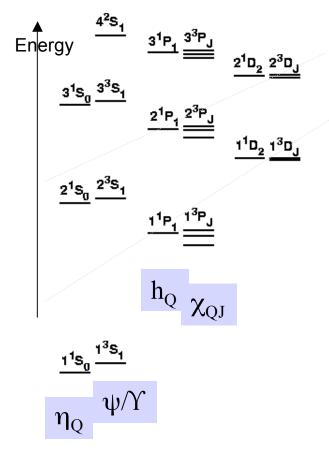


Strong Phases & Charm Mixing

- Following method D. Asner & W. Sun Phys. Rev. D 73, 034024 (2006)
- Charm mixing results from B-factories
 - − $y \sim \Delta \Gamma$ from $\Gamma(D^0 \rightarrow K^+K^-, \pi^+\pi^-)$
 - − y' = ycosδ xsinδ from $D^0 \rightarrow K^+ \pi^-$
- Quantum correlations Sensitive to $cos\delta$
 - asymmetry in CP vs $K\!\pi$
 - Difference in e⁺ and K⁻ π^+ tagged Dalitz plots (K_S $\pi^+\pi^-$)
- CLEO (preliminary) result improves World Average on y by factor of 1.5

 $\cos\delta = 1.03 \pm 0.19 \pm 0.08$

• Anticipate final stat. err. ± 0.08

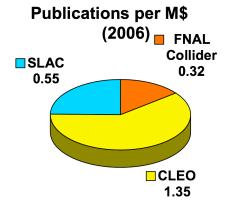

Quarkonium Studies

• Charmonium and bottomonium samples from running "on resonance"

-Run on ψ (2S), Y(4260), Y(1S), Y(2S), Y(3S)

- CLEO-c measures masses, widths, dynamics providing stringent tests of LQCD
 - Discovery of $\Upsilon(1D)$ and mass measurement
 - Leptonic (e, μ , τ) width of Y(1S), Y(2S), Y(3S)
 - $\, \Gamma_{ee}$ is most stringent test of LQCD
 - \bullet Ongoing searches for \textbf{h}_{b} and η_{b}
 - \bullet Discovery of $\rm h_{c}$ and mass measurement
 - Γ_{ee} of J/ ψ , ψ (2S), ψ (3770)
 - Extend ψ (2S) results from 11% \rightarrow full sample
- LQCD single formalism relates D/B to ψ/Υ
 - Independent calibration of techniques in D/B
 - form factors, decay constants, etc...

CLEO Publications


2006: 27
2007: 22
CLEO published 450 th paper in 2007

2007 on track to be another good year

- published in PRL/PRD(22), accepted for publication (2)
- submitted to journal (1), collaboration approved (10)

Comparison 2004-2006 average (by journal date)

_	CDF	37	(30+44+36)	~600 Authors	
_	D0	24	(19+20+34)	~575 Authors	
_	BaBaR:	61	(57+62+65)	575-600 Authors	
_	Belle:	35	(30+43+32)	~400 Collaborators	
_	CLEO-c	23	(15+26+27)	~115 Authors	

CLEO-c compares favorably with much larger efforts
November 30, 2007
CLEO HEPAP Presentation