

Report & News from the Office of High Energy Physics

HEPAP Meeting

October 23-24, 2009 Washington, D.C.

Dennis Kovar Associate Director of the Office of Science for High Energy Physics

Overview

The HEP program, with input from the scientific community, has developed a long-range plan that maintains a leadership role for the U.S. at the three scientific frontiers that define the field

The main elements of this plan are to:

- Maintain a strong, productive university and laboratory research community
- Enable U.S. leadership roles in the Tevatron and LHC programs at the Energy Frontier
- Achieve the vision of a world-leading U.S. neutrino and rare decay program at the <u>Intensity Frontier</u>, building on the existing accelerator infrastructure at Fermilab
- > Deploy selected, high-impact experiments at the <u>Cosmic Frontier</u>
- Support accelerator R&D to position the U.S. to be at the forefront of <u>Advanced Technologies</u> for next-generation facilities.

Need to design and construct new research capabilities,

- > while maintaining a world-leading scientific program and
- supporting targeted long-range R&D for the future.

- Projects under construction
 - Dark Energy Survey (Cosmic)
 - Daya Bay (Intensity)
 - NOvA (Intensity)
 - MINERvA (Intensity)
 - SuperCDMS-Soudan (Cosmic)
- Projects in design
 - BELLA (Accelerator R&D)
 - FACET (Accelerator R&D)
 - Accelerator Project for the Upgrade of the LHC (Energy)

- Projects seeking Mission Need
 - Long Baseline Neutrino Experiment (Intensity)
 - Muon to Electron Conversion Experiment (Intensity)
 - MicroBoone (Intensity)
- Large Projects considered for the future
 - Joint Dark Energy Experiment (Cosmic)
 - LHC detector upgrades (Energy)
 - Large Synoptic Survey Telescope (Cosmic)
 - Project X (Intensity)

Budgets

FY 2009 & FY 2010

Change the Prevailing Funding Trends

- ▶ HEP FY 2009 funding is + 10% compared to FY 2008 and above OMB Cost-of-Living (COL) from FY 2007
- HEP received \$236.5 million in Recovery Act funding
- ▶ HEP FY 2010 Appropriations is about OMB COL compared to FY 2009

FY 2009 Budget Overview

			Diff		Diff	Diff
HEP Functional Categories	FY 2007	FY 2008	vs FY08	FY 2009	vs FY08	vs FY07
Fermilab Accelerator Complex Operations	145.1	151.0	11.8	162.8	7.8%	12.2%
LHC Detector Support/Operations	56.8	65.6	3.8	69.4	5.8%	22.1%
SLAC Accelerator Complex Operations	79.0	36.5	-21.2	15.3	-58.0%	-80.6%
Facility Operations	280.9	253.1	-5.6	247.5	-2.2%	-11.9%
EPP Research	249.1	264.5	20.2	284.7	7.6%	14.3%
Advanced Technology R&D	167.7	138.1	29.0	167.2	21.0%	-0.3%
Core Research	416.8	402.6	49.2	451.9	12.2%	8.4%
Project - NOvA	12.5	12.0	15.7	27.8		
Project - Minerva	4.0	7.2	-2.3	4.9		
Project - T2K	0.6	2.5	-1.5	1.0		
Daya Bay	1.0	6.9	7.1	14.0		
LHC Detectors	3.2	0.0	0.0	0.0		
LHC Accelerator Upgrade Phase I	0.0	0.0	2.5	2.5		
DES	1.4	5.5	4.2	9.7		
Super CDMS	0.0	0.0	1.0	1.0		
FACET	0.0	0.0	0.0	0.0		
BELLA	0.0	0.0	8.0	8.0		
Projects	22.6	34.1	34.7	68.9	101.8%	204.4%
Other (GPP/GPE/SBIR/STTR)	31.5	31.5	-4.0	27.5	-12.8%	-12.7%
High Energy Physics	751.8	721.3	74.4	795.7	10.3%	5.8%

HEP Funding by Budget Categories

Office of Science

	(millions) FY 2009			
Budget Categories	HEP Research	HEP Research, Projects and Operations		
Proton Accelerator-Based Physics	125.7	401.4		
Electron Accelerator-Based Physics	16.5	32.0		
Non-Accelerator Physics	62.4	101.1		
Theoretical Physics	64.8	66.1		
Advanced Technology R&D	77.7	195.1		
High Energy Physics	347.1	795.7		

Research Funding

Total Funding

FY 2009 American Recovery and Reinvestment Act (ARRA)

Office of Science

	FY 2009 ARRA		
Fermilab Accelerator Complex Operations	15.0		
Facility Operations	15.0		
Proton Research	6.6		
Electron Based Research	0.3		
Non-Accelerator	1.4		HEP ARRA Projects
Theory	2.9		
EPP Research	11.2	15.0	University Enhancement & Infrastructure
Accel Science	0.4	52.7	SRF Infrastructure (Fermilab & Industry)
General Accel Development	6.0	20.0	Advanced Technologies (Universities & Labs)
Superconducting RF	52.7		
Advanced Tech SRF R&D	9.0	15.0	Long Baseline Neutrino Experiment (LBNE) R&D
Detector Development	8.4	55.0	NOvA (Univ. Minnesota and Fermilab)
Advanced Technology R&D	76.5	33.7	Advanced Plasma Accelerator Facilities (LBNL/SLAC)
Core Research	87.7	25.0	GPP Fermilab
		3.6	SBIR/STTR
Project - NOvA	55.0	220.0	
FACET	13.0		
BELLA	20.7		
Projects	88.7		
Other (GPP/GPE/SBIR/STTR)	28.6		
High Energy Physics	220.0		

FY 2010 HEP Budget

FY 2010 Funding Status

(budget authority in thousands of dollars)

	FY 2009							
	Base Approp.	Recovery	Enacted Approp. ^{a/}	Request	Req. vs. 09 Base Approp.	Conf.	Conf. vs. Request	
						·		
Basic Energy Sciences	1,571,972	+555,406	2,127,378	1,685,500	+113,528	1,636,500	-49,000	4.1%
Advanced Scientific Computing	368,820	+161,795	530,615	409,000	+40,180	394,000	-15,000	6.8%
Biological and Environmental Research	601,540	+165,653	767,193	604,182	+2,642	604,182		0.4%
High Energy Physics	795,726	+232,390	1,028,116	819,000	+23,274	810,483	-8,517	1.9%
Nuclear Physics	512,080	+154,800	666,880	552,000	+39,920	535,000	-17,000	4.5%
Fusion Energy Sciences	402,550	+91,023	493,573	421,000	+18,450	426,000	+5,000	5.8%
Science Lab Infrastructure	145,380	+198,114	343,494	133,600	-11,780	127,600	-6,000	-12.2%
Science Program Direction	186,695	+5,600	192,295	213,722	+27,027	189,377	-24,345	1.4%
Workforce Development	13,583	+12,500	26,083	20,678	+7,095	20,678		52.2%
Safeguards and Security	80,603		80,603	83,000	+2,397	83,000		3.0%
Subtotal, Science	4,678,949	+1,577,281	6,256,230	4,941,682	+262,733	4,826,820	-114,862	3.2%
ARPA-E	15,000		15,000		-15,000			
Safeguards and Security (reimbursable	_							
Congressionally-directed projects	93,687		93,687		-93,687	76,890	+76,890	
SBIR/STTR		+18,719	18,719					
Use of prior year balances	-15,000		-15,000		+15,000			
Unallocated		+4,000	4,000					
Total, Science	4,772,636	+1,600,000	6,372,636	4,941,682	+169,046	4,903,710	-37,972	2.7%

^{a/} FY 2009 Enacted Appropriation is prior to the Small Business Innovation Research/Technology Transfer reprogramming and appropriations b/ \$15,000,000 appropriated under for Science prior appropriation Acts for the Advanced Research Projects Agency--Energy is to be transferred to

FY 2010 Budget Overview

				Diff	FY 2010	Diff
HEP Functional Categories	FY 2007	FY 2008	FY 2009	vs FY09	Conference	vs FY09
Fermilab Accelerator Complex Operations	145.1	151.0	162.8	-4.3	158.5	-2.6%
LHC Detector Support/Operations	56.8	65.6	69.4	1.1	70.5	1.6%
SLAC Accelerator Complex Operations	79.0	36.5	15.3	-3.3	12.1	-21.3%
Facility Operations	280.9	253.1	247.5	-6.4	241.1	-2.6%
EPP Research	249.1	264.5	284.7	2.4	287.0	0.8%
Advanced Technology R&D	167.7	138.1	167.2	-4.7	162.5	-2.8%
Core Research	416.8	402.6	451.9	-2.3	449.6	-0.5%
Project - NOvA	12.5	12.0	27.8	31.2	59.0	
Project - Minerva	4.0	7.2	4.9	-4.1	0.8	
Project - T2K	0.6	2.5	1.0	-1.0	0.0	
Daya Bay	1.0	6.9	14.0	-3.0	11.0	
LHC Detectors	3.2	0.0	0.0	0.0	0.0	
LHC Accelerator Upgrade Phase I	0.0	0.0	2.5	5.5	8.0	
DES	1.4	5.5	9.7	-1.1	8.6	
Super CDMS	0.0	0.0	1.0	0.5	1.5	
FACET	0.0	0.0	0.0	0.0	0.0	
BELLA	0.0	0.0	8.0	-8.0	0.0	
Projects	22.6	34.1	68.9	20.0	88.9	29.1%
Other (GPP/GPE/SBIR/STTR)	31.5	31.5	27.5	3.4	30.9	12.4%
High Energy Physics	751.8	721.3	795.7	14.8	810.5	1.9%

Subprograms Activities: Science for Discovery

Energy Frontier Facilities

Energy Frontier Recent Activities

Tevatron Program

With the delay in the LHC there is an increasingly strong case for running the Tevatron in FY 2011. OHEP now plans to request funding in FY 2011 to run the Tevatron

LHC Program

- > CERN has a Working Group on possible geographic and scientific enlargement of CERN
- > U.S (DOE and NSF) provided input the CERN WG deliberations on September 3, 2009
- > U.S. proposes that its relations with CERN remain basically the same as now
 - Project stakeholder/CERN-Observer (not CERN Member State)
 - Will participate in the LHC program until end of US-CERN MOU (2017)
 - Includes detector/accelerator "replacement"/"modest upgrades" (Phase I LHC upgrades)
 - Will decide what its role might be for LHC major upgrade (sLHC or Phase II)
 - CERN has not yet made a decision on Phase II proposed x10 upgrade
 - U.S. position is that we will not pay LHC facility operating costs

Next generation TeV Facility

- An international "ILC decision" awaits results from LHC and commitments of interested participants
- > This had been envisioned to happen ~ FY 2012, but most now believe it will happen later
- OHEP plans to support ILC R&D thru FY 2012 and has asked U.S. ILC Team to articulate the options and needed funding for beyond FY 2012.

Intensity Frontier Facilities Fermilab Neutrino Program

Office of Science

ENERGY Proton Accelerator Based Intensity Frontier Office of Science Recent Activities

HEPAP envisioned "world-class" intensity frontier program entails evolution of Fermilab program

- > MINOS/Minerva \rightarrow NOvA (700kW) \rightarrow LBNE (700kW) \rightarrow SLBNE (2000 kW) --> Energy Frontier ?
- > The accelerator infrastructure allow: SLBNE \rightarrow neutrino factory \rightarrow muon collidier
- > Option for the Energy Frontier

Envisioned "world-class" intensity frontier program entails development of an underground detector

- > LBNE needs a large underground detector (~100-300 ktons)
- > A large detector (~300 kton) at the right depth (~5000 ft) detector can also do proton decay
- > Physics goals: searches for CP violation and proton decay at factors of 10-100 greater sensitivity

Goals are ambitious and will take significant combined (DOE, NSF, other countries) resources

- NSF is proposing a Deep Underground Science and Engineering Laboratory (DUSEL) with a suite of experiments that includes a large detector (for neutrino oscillations and proton decay)
- > Europeans have a large underground detector in their strategic planning
- > Japanese are also interested in the science

DOE and NSF have had discussion with OMB and OSTP on how to coordinate planning

- > NSF is supporting the conceptual design of the DUSEL facility and a suite of experiments
- DOE HEP is seeking Mission Need (CD-0) approval for the Long Baseline Neutrino Experiment (LBNE) that includes the neutrino beam and a large underground detector
- > DOE and NSF are working to coordinate their efforts, avoid duplication, and optimize their investments
- > Joint DOE/NSF Statement submitted by DOE (Koonin) and NSF (Bement)

ENERGY Electron Accelerator Based Physics Intensity Frontier Office of Science Recent Activities

B-Factory / BaBAR

- > BaBAR data need to be analyzed and archived
- > D&D activities confronted with DOE orders preventing disposal of waste with metals
- > Disposal of PEP II components await Italian decision on proposed SuperB

Proposed SuperB Facility (Italy)

- > Italians (INFN) proposing a next generation ~10 GeV electron-positron collider facility
 - Decision by Italian government is expected by the end of calendar 2009.
 - CERN Council recognized that this project is in agreement with the European Strategy for Particle Physics
- > INFN has requested that all the PEP II components be provided for this facility
 - No significant U.S. need for components foreseen
 - U.S. scientists are interested in participating
 - The estimated value is 130 million Euros
- > OHEP will need to make a decision in FY 2010
 - OHEP is requesting that SLAC do an assessment of options (costs, benefits, etc.) for U.S. involvement before the end of the calendar year.

Cosmic Frontier Projects

Gamma-ray Astrophysics

Cosmic Ray Astrophysics

Anti-matter, Dark Matter

Dark Matter (WIMPs)

Dark Matter (axions)

Dark Energy (ground-based)

DES

LSST - proposed

Dark Energy (space-based)

JDEM - proposed

Non-Accelerator Physics Recent Activities

DOE and NASA have been working on identifying the path forward on a JDEM

- > Two concepts (IDECS and OMEGA) have been presented to Astro2010.
 - The cost of both of these missions is large and current budget projections show that large-class missions may not be possible.
- > NASA and DOE have agreed to examine a "probe class" \$650-capped mission concept
 - We are asking the Project Offices at GSFC and LBNL to develop these concepts
 - Directors of GSFC and LBNL have committed to facilitating these efforts

We are looking for guidance from HEPAP (PASAG)

- > The findings and recommendations are important:
 - they will help define the HEP "particle astrophysics" program
 - they will be used in setting priorities and articulating the scientific deliverables

We are looking for guidance from Astro2010.

- > The findings and recommendations are important:
 - they will influence the opportunities for HEP participation
 - they will inform OHEP on scientific/technical aspects of particle astrophysics (e.g.; optimum dark energy strategy with available resources)

Advanced Technology

WIII The US Particle Accelerator School

Advanced Technology Recent Activities

Historically the U.S. has been a leader in the development of advanced accelerators. The developments have been largely driven by the HEP program, and supported by the DOE OHEP, in the quest for higher energies and intensities and more demanding beam properties.

- U.S. leadership in this area is being challenged by other regions/countries
 - > Investments have been made and are being made in new forefront HEP accelerator facilities
 - There appears to be recognition by governments of the importance of accelerator competency and infrastructure
 - Industrial capabilities have been nurtured in Europe/Japan and are now preferred vendors for specialized accelerator components
- OHEP has begun to address this technology gap
 - Started in FY 2007 to nurture the development critical accelerator capabilities (e.g.; SRF cavities) in the U.S.
 - > Participating in the international ILC R&D effort
 - Significant Recovery Act funding is being directed towards accelerator R&D and in particular industrialization" BELLA, FACET, and SRF infrastructure and industrialization
- OHEP sponsoring a Symposim/Workshop in Accelerator R&D
 - To make a more direct connection between fundamental accelerator technology and applications
 - > To obtain guidance on the needs of federal programs and the private sector

Accelerators for America's Future

Symposium, October 26, 2009

- Examine the challenges for developing and deploying accelerators to meet the nation's needs in
 - Discovery Science
 - Medicine and Biology
 - Energy and Environment
 - National Security
 - Industrial Applications and Production
- Poster session and white papers will solicit views from a broad range of stakeholders

Workshop, October 27-28, 2009

- Invited experts in the above areas will meet to draft a report to the Office of Science and the Office of High Energy Physics
- Report to be used as planning document for possible future OHEP activities

For more information

www.acceleratorsamerica.org

DOE Early Career Research Program

- A new funding opportunity for early career researchers in universities and DOE national laboratories.
 - Five-year awards : approx. \$500k/yr for lab researchers, \$150k/yr for universities
 - Competitive peer-reviewed proposals, replaces Outstanding Junior Investigator (OJI) program in HEP starting in FY 2010.
 - Expect ~12 awards in HEP in 1st year from ~150 proposals (about 3X typical OJI pool)
 - Supported by Recovery Act funds in the first year, will be adopted by SC programs over the following 4 years.
- Proposals were due September 1.
 - Proposals are no longer being accepted. All proposals are currently under review within our program offices. We need peer reviewers!
 - Current plan is to make awards in Spring 2010. Due to overwhelming response to this program, it will be challenging to meet this goal.
 - Please be advised that our program managers cannot discuss specific pending proposals.
- Questions? See : http://www.science.doe.gov/SC-2/early_career.htm

HEP Organization Chart

Positions Available

Currently have 13 Federal employees who are physicists, six visiting physicists, and eight administrative employees.

Research and Technology Division

- Positions advertised (close 10/30/09)
 - Theory Program Manager
 - Non-Accelerator Program Manager
- Near Future
 - Interdisciplinary Computer Scientist/Physicist (Computational HEP)
- Facilities Division
 - Positioned advertised (closes 10/30/09)
 - Interdisciplinary General Engineer/Physicist (Instrumentation & Major Systems)
 - Near Future
 - FNAL Program Manager