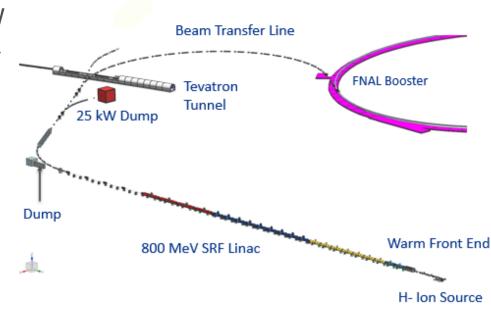
Fermilab (ENERGY Office of Science

PIP-II Status

Lia Merminga HEPAP Meeting 2 November 2021 A Partnership of: US/DOE India/DAE Italy/INFN UK/STFC UKRI France/CEA, CNRS/IN2P3 Poland/WUST

PIP-II Mission

PIP-II is an essential upgrade to Fermilab accelerator complex to enable the world's most intense beam of neutrinos to LBNF/DUNE, and a broad physics research program for decades to come.


PIP-II Capabilities

Beam Power

- 1.2 MW proton beam
- Upgradeable to multi-MW
- Flexibility, multi-user capability
 - CW-compatible
 - Customized beams
 - Multi-user delivery

Reliability

Modernizes Fermilab
accel complex

PIP-II Scope

800 MeV H- SRF linac

CW RF Operations

Linac-to-Booster transfer line

Accelerator Complex Upgrades

Booster

Recycler

Main Injector

Conventional Facilities

Space reserved for two CMs for 1 GeV Upgrade

 \sim

The PIP-II scope enables the accelerator complex to reach 1.2 MW proton beam on LBNF target

PIP-II Scope

PIP-II will provide a highly capable, reliable, upgradeable and expandable scientific infrastructure with significant savings to DOE

PIP-II International Partners, Expertise and Capabilities

India, Department of Atomic Energy (DAE) (started 2009) BARC, RRCAT, VECC; also IUAC

Substantial engineering / manufacturing experience; Superconducting magnets for LHC; 2 GeV synch light source

Italy, INFN (started 2016)

Internationally recognized leader in superconducting RF technologies SRF cavity and cryomodule fabrication for XFEL; SRF cavities for ESS


UK, STFC UKRI (started 2017)

Substantial engineering and manufacturing experience; Construction, operation of synch light & neutron sources SRF cavity processing and testing for ESS

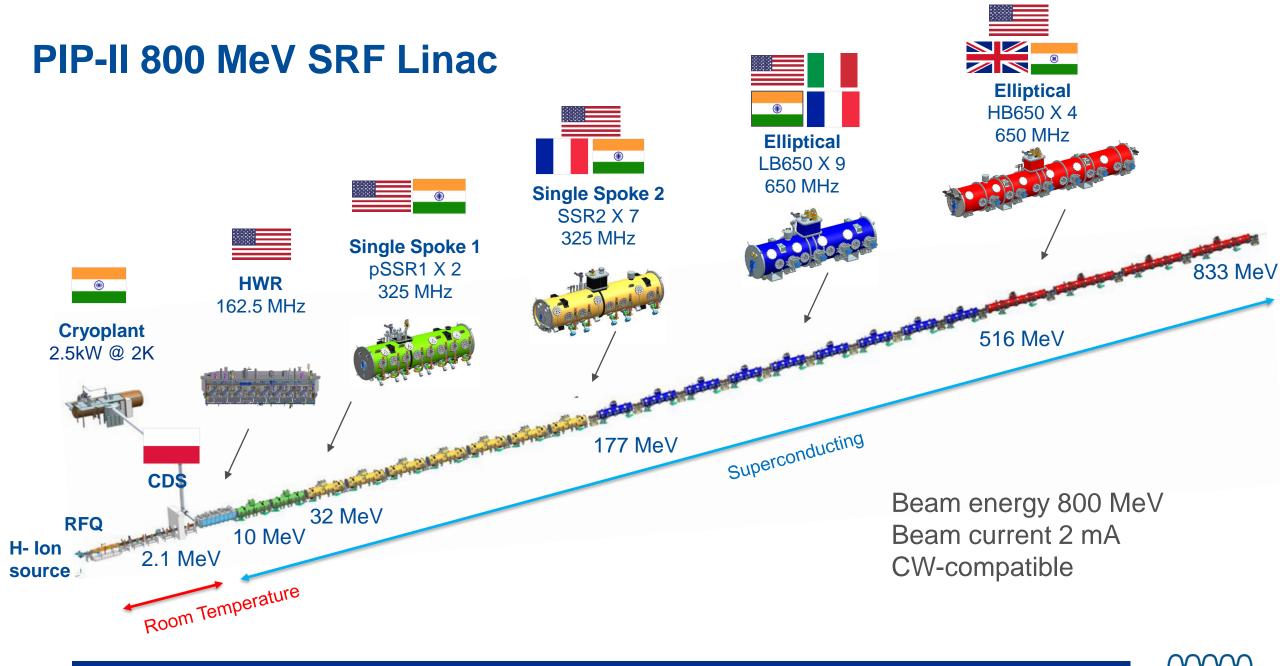
France, CEA, CNRS/IN2P3 (started 2017)

Internationally recognized leader in large-scale CM assembly CM assembly for European XFEL and ESS; SSR2 cavities and couplers for ESS

Poland, WUST, WUT, TUL (started 2018)

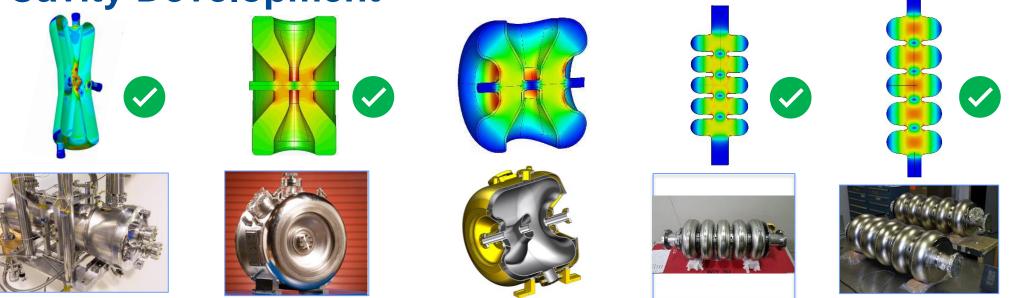
Substantial engineering / manufacturing experience; CDS, LLRF, QC for XFEL, ESS

PIP-II is the U.S. first accelerator project to be built with major international contributions; benefits from world-leading expertise, capabilities.


Bottom Line Up Front – PIP-II Status

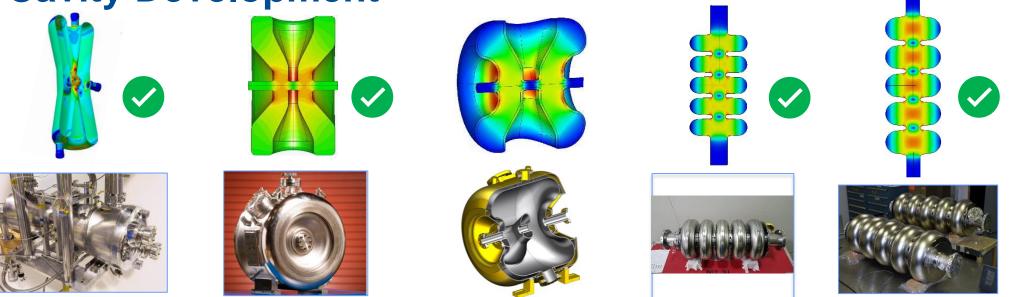
- ► In the past ~year, three Critical Decisions (CD) were approved
 - CD-2/3 of Early Conventional Facilities (ECF) subproject Jul 2020
 - ► CD-2 Performance Baseline Dec 2020: TPC \$978M (+\$310M IKC), Early CD-4 Dec 2028
 - CD-3a for Long Lead Procurements Mar 2021
- Beam tests at PIP2IT successfully completed, critical technologies demonstrated
- Cryogenic plant building construction is 85% complete
- International partners strongly engaged: DAE/BARC cryogenic plant contract under execution
- Developing a diverse workforce and engineering pipeline: ASPIRE Fellowship launched
- CD-3 DOE review Start of Construction/Execution: date set 1-3 March 2022
 - Project is ready for execution: Exceptional team incl. partners complete, ensuring stability of requirements and interfaces, maturing technical designs, streamlining processes

IKC: In-Kind Contributions


PIP-II is blazing a new trail in major accelerator projects in DOE/SC with international partners

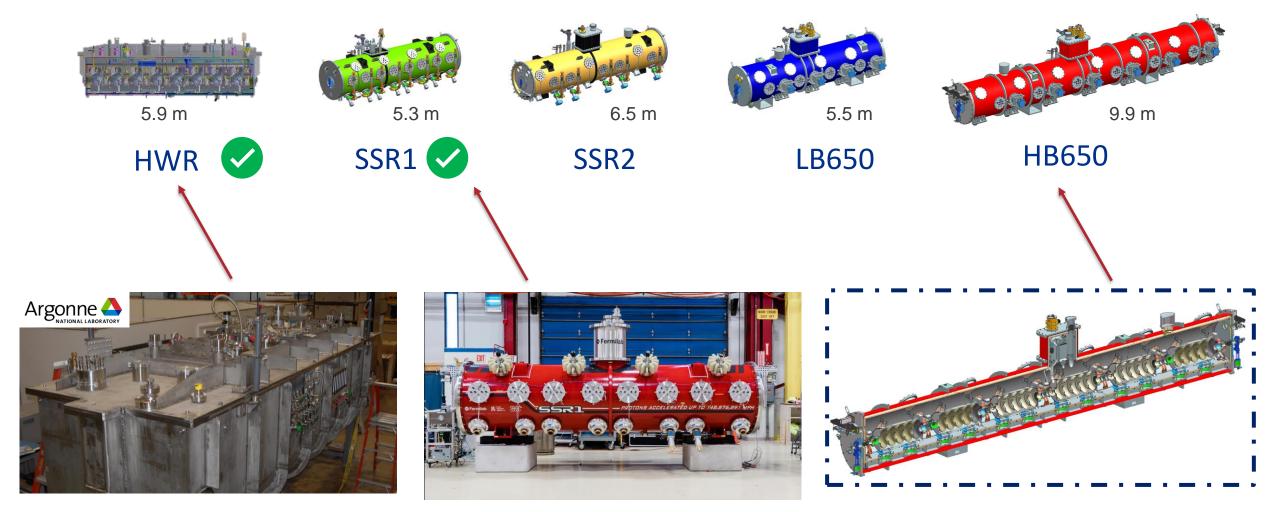
PIP-II is the world's highest energy CW RF proton linac

PIP-II Cavity Development



Name (Qty.)	HWR (8)	SSR1 (16)	SSR2 (35)	LB650 (36)	HB650 (24)	Units
Туре	Half-Wave	Single Spoke	Single Spoke	Elliptical	Elliptical	
β	0.11	0.22	0.47	0.61	0.92	
Frequency	162.5	325	325	650	650	MHz
Q_0	$8.5 \cdot 10^{9}$	$8.2 \cdot 10^{9}$	$8.2 \cdot 10^{9}$	$2.4 \cdot 10^{10}$	$3.3 \cdot 10^{10}$	
Gradient	9.7	10	11.5	16.8	18.7	MV/m
N-doped	No	No	No	Yes	Yes	

PIP-II Cavity Development



Name (Qty.)	HWR (8)	SSR1 (16)	SSR2 (35)	LB650 (36)	HB650 (24)	Units
Туре	Half-Wave	Single Spoke	Single Spoke	Elliptical	Elliptical	
β	0.11	0.22	0.47	0.61	0.92	
Frequency	162.5	325	325	650	650	MHz
Q ₀	State of	$8.2 \cdot 10^9$	8.2 · 10 ⁹	$2.4 \cdot 10^{10}$	$3.3 \cdot 10^{10}$	
Gradient	the art	10	11.5	16.8	18.7	MV/m
N-doped		No	No	Yes	Yes	

PIP-II Cryomodule Development: HWR, SSR1 Prototypes Demonstrated, HB650 Prototype in Fabrication

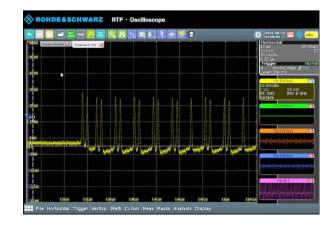
Merminga | PIP-II | HEPAP

PIP-II Injector Test (PIP2IT) – Testbed for PIP-II Technologies

- PIP2IT was a near full-scale Front End of PIP-II, incl. first two cryomodules and IKC from partners
- Last April a very successful multi-year beam test program concluded
- Conversion to a PIP-II 2-Cryomodule Test Stand in progress - new cryo distribution, RF amplifiers, fully EPICS
- Test Stand on track to enable RF testing of proto HB650 cryomodule

Merminga | PIP-II | HEPAP

DAE Solid-State Amplifiers Powered Beam Tests


ECIL/BARC 7 kW 325 MHz amplifiers powered SSR1 cavities during beam testing at PIP2IT

RRCAT 40 kW 650 MHz prototype amplifiers under testing at Fermilab. Will power 650 MHz cryomodule testing at PIP2IT

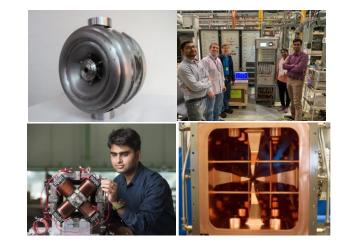
PIP2IT Tests Successfully Completed

Energy = 16 MeV Pulse beam cur = 2 mA Pulse length = 550 μ s Pulse rep rate = 20 Hz Chopped beam pattern

11/1/2

Bunch-by-bunch chopping pattern required for LBNF demonstrated

MEBT chopper is critical for PIP-II operations, capable of removing individual bunches, provides arbitrary bunch pattern capability


Critical technologies demonstrated

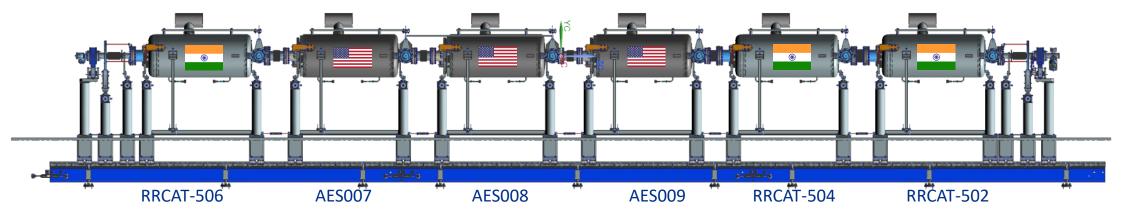
Beam accelerated to 17 MeV HWR and SSR1 Prototype cryomodules performance validated with beam ML algorithm applied successfully to align orbit

Energy along PIP2IT line

H\/R

18

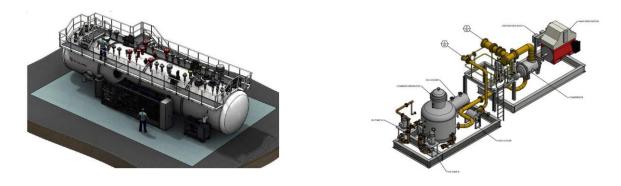
Partner deliverables seamlessly integrated Eight 7 kW amplifiers SSR1 Cavity RF MEBT magnets Radio frequency quadrupole Half Wave Resonator cryomodule



PIP-II ushers in new era of SRF proton acceleration at Fermilab

HB650 Prototype Cryomodule Integration

- HB650 proto cryomodule integration/testing a major FY21-22 technical goal
 - First High Beta CW cryomodule ever built!
- All six cavities qualified for string assembly
 - Excellent SRF cavity manufacturing capability at RRCAT



Merminga | PIP-II | HEPAP

DAE-provided Cryogenic Plant Design Launched

- PIP-II Cryogenic Plant is the single largest in-kind contribution from DAE/India
- DAE/ALAT contract execution has started, Kickoff Meeting in October launched design

ALAT: Air Liquide Advanced Technologies

 \odot

PIP-II Cryogenic Plant Building construction is 85% complete

STATE RAD

https://app.truelook.com/?u=fc1599677013#tl_live https://app.truelook.com/?m=16002500832205565503647

Inside of Cold Box Station

Linac Complex Design is Complete – Ready to Execute Civil Construction

Linac Complex design enables PIP-II multi-user capability and upgrade/expansion to 2 GeV linac in support of 2.4 MW program

i

International Partners are Strongly Engaged

- Legally binding agreements with all PIP-II International Partners are signed.
- Project Planning Documents (PPDs) in progress.

WUST/Poland PPDs approved

ASPIRE Fellowship

<u>A</u>ccelerator

Science

Program to

Increase

Representation in

Engineering

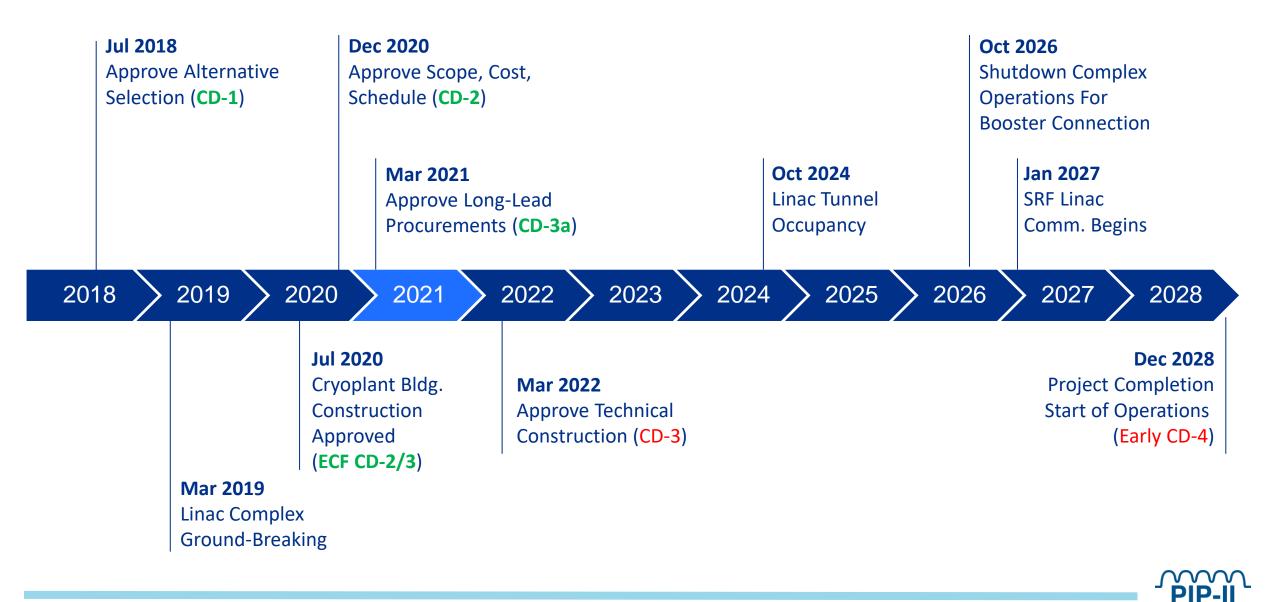
- ... is a Fermilab Fellowship for undergraduate and graduate (masters) students who are underrepresented in STEM disciplines, to develop the next generation of particle accelerator engineers.
- aims to further diversify PIP-II and Fermilab workforce and to meet the hiring needs in accelerator engineering disciples.
-is a partnership between Fermilab and Midwest colleges and universities.

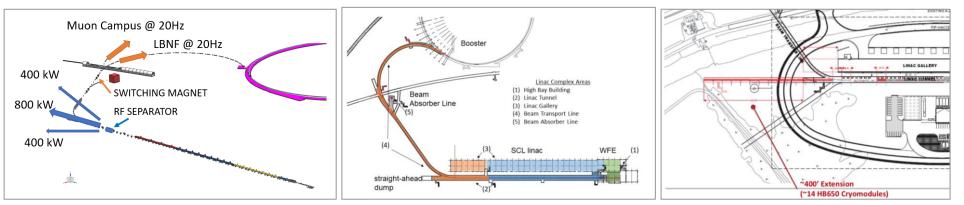
¹⁸ 11/1/2021

Thanks to Fermilab EDI Office for guidance and collaboration

Major FY22 Milestones

- Complete HB650 prototype cryomodule assembly and RF, transportation testing
- Complete Cryogenic Plant Building Construction
- Receive CD-3 DOE approval Start of Construction/Execution
 - ► CD-3 IPR date is set: March 1-3, 2022
- Award Linac Complex Construction Contract





PIP-II Major Milestones

PIP-II Design Is Compatible With Future Science-Driven Upgrades

- PIP-II is designed for >1 MW over 60 120 GeV and 1.2 MW at 120 GeV
- Provides platform for upgrade to >2 MW
- Linac beam power of 1.6 MW (CW), programmable bunch patterns
- Facility enables multi-user, simultaneous, high beam power operations
 - Switch yard to provide beams to Muon Campus in multi-user mode with LBNF
- Linac tunnel includes space and infrastructure to reach 1 GeV and space to add RF separator for beam sharing
- Tunnel extension (by 120 m) compatible with energy ~2 GeV
- Beam current can be increased by a factor of ~4-5 by upgrading amplifiers

Summary: Excellent Progress – Ready for Execution

A compelling mission

- PIP-II addresses the need for the most intense neutrino beam in the world, next 50 years of accelerator-based particle physics in the US
- A unique capability to execute an ambitious project
 - We have assembled a uniquely talented team across the laboratory and around the world
 - We are utilizing Fermilab's world leading expertise in SRF technology, accelerator science
- State-of-the-art technology
 - · Excellent progress on state-of-the-art technology validation, civil construction, infrastructure
- An international collaboration
 - Outstanding, experienced international team is ready for execution
 - We are leveraging expertise and contributions of international partners to build a highly capable accelerator which secures US leadership in a key element of the global particle physics program

PIP-II is a successful model for ambitious DOE accelerator mega-projects. We greatly appreciate the commitment and strong support from the physics community, Fermilab, DOE, and our International Partners!

