INTENSITY FRONTIER SCIENCE STATUS: EXPLORING THE UNKNOWN

> JURE ZUPAN U. OF CINCINNATI

> > HEPAP 2019, Nov 22 2019

THE UPSHOT

- baryon asymmetry implies more CP violation than in the SM
- flavor measurements a way to probe such required new CPV sectors
 - high energy scales and / or small couplings
- probes also other puzzles: dark matter, strong CP problem,...

FROM FLAVOR PHYSICS TO NEW PHYSICS

3

- SM@tree level: no Flavor Changing Neutral Currents
 - all FCNC processes loop suppressed
 - e.g., meson mixing
- can be modified by NP
- NP contribs.
 - scale as

 depends on couplings and NP masses

LARGE SCALES PROBED

Physics Briefing Book, 1910.11775

HIGH ENERGY VS. FLAVOR EXPERIMENTS

• at low energies probe off-shell states

$$Br(i \to f) \propto \left(\frac{g_i g_f}{m^2}\right)^2$$

- at high energies on-shell production
 - *s*-channel

$$\sigma(i \to X) \times Br(X \to f) \propto \mathcal{L}_i(m) \left(\frac{g_i g_f}{m^2}\right)^2 \frac{1}{\Gamma_{\text{tot}}}$$

• other options: *t*-channel, pair production,

probe different combinations of couplings and masses*

*small print caveats: at high eng. could also still be off shell; which couplings probed depend on which prod/decay channel, etc

J. Zupan ... Exploring the unknown

HEPAP 2019, Nov 22 2019

5

B PHYSICS ANOMALIES

- two quark level transitions show
 ~3σ deviations from the SM*
- lepton flavor universality violating transitions

DIRECT SEARCHES IN TT

- $b \rightarrow c \tau v$ implies a $1/V_{cb}$ enhanced $b\bar{b} \rightarrow \tau^+ \tau^-$
- severe bounds from LHC

• for instance for vector triplet: W', Z'

DIRECT

- $b \rightarrow c \tau v$ implies a 1/Venhanced $b \bar{b} \rightarrow \tau^+ \tau^-$
- severe bounds from LHC

unitarity bound

 $m_{W'} < 6.5 \text{TeV}$

di Luzio, Nardecchia,

for $b \rightarrow c \tau v$ need:

1706.01868

J. Zupan ... Exp

for instance for vect

[Z'/MZ' [%]

PROGRESS

- significant improvements both in theory and experiment
 - achieved and expected
- for theory just two very recent examples
 - charm contrib. to ε_K
 - hadronic light-by-light to $(g-2)_{\mu}$

- *K*- \bar{K} mixing parameter ε_K one of the most sensitive probes of new CPV
- the main th. uncertainty due to charm can be dramatically reduced
 - by using CKM unitarity and re-grouping perturb. corrections
- lattice QCD inputs very important

- *K*- \bar{K} mixing parameter ε_K one of the most sensitive probes of new CPV
- the main th. uncertainty due to charm can be dramatically reduced
 - by using CKM unitarity and re-grouping perturb. corrections
- lattice QCD inputs very important

- *K*- \bar{K} mixing parameter ε_K one of the most sensitive probes of new CPV
- the main th. uncertainty due to charm can be dramatically reduced
 - by using CKM unitarity and re-grouping perturb. corrections
- lattice QCD inputs very important

- *K*- \bar{K} mixing parameter ε_K one of the most sensitive probes of new CPV
- the main th. uncertainty due to charm can be dramatically reduced
 - by using CKM unitarity and re-grouping perturb. corrections
- lattice QCD inputs very important

$$(g-2)_{\mu}$$

• first determination of hadronic light-bylight contrib. to $(g-2)_{\mu}$ from Lattice QCD

$$(g-2)_{\mu}$$

• first determination of hadronic light-bylight contrib. to $(g-2)_{\mu}$ from Lattice QCD

	>		$a_{\mu} imes 10^{10}$	Lin@Brookhaven Forum 2019
	ξ	QED 5-loops	11658471.8853 ± 0.0036	Aoyama, et al, 2012
	(TTT)	Weak 2-loops	15.36 ± 0.10	Gnendiger et al, 2013
	N/M	HVP (LO)	692.5 ± 2.7	RBC-UKQCD and FJ17 combined
	5 7 3		693.26 ± 2.46	KNT18
	$\langle \zeta \rangle \langle \zeta \rangle \langle \zeta \rangle$		693.9 ± 4.0	DHMZ19
		HVP (NLO)	-9.93 ± 0.07	Fred Jegerlehner, 2017
		HVP (NNLO)	1.22 ± 0.01	Fred Jegerlehner, 2017
		HLbL	10.3 ± 2.9	Fred Jegerlehner, 2017
$7.20(3.98)_{\rm stat}(1.65)_{\rm sys}$			10.5 ± 2.6	Glasgow Consensus, 2007
HLbL from Lattice QCD		SM Theory	11659181.3 ± 4.0	
-		BNL E821 Exp	11659208.9 ± 6.3	
		Exp – SM	27.6 ± 7.5	

leaves little room for this notoriously difficult hadronic contribution to explain the difference between the Standard Model and the BNL experiment. Blum et al, 1911.08123

EXPERIMENTAL PROGRESS -UPSHOT

- LHCb Upgrade 2+Belle II: a factor of 2x 3x improvement in reach for NP scale
 - ~ like going from LHC (13 TeV) to HE-LHC (27 TeV)
 - more precise measurements + expected theory advance: lattice QCD improvements
- many other experiments also significant improvements in the reach
 - Mu3e, Mu2e, MEG II, eEDM, rare kaon decays,...

EXPERIMENTAL PROGRESS

- example: mini-split SUSY
 - *O*(1-10*TeV*) gauginos at LHC or future collider; PeV sfermions from low energy precision probes

EXPERIMENTAL PROGRESS

• and will improve dramatically in the future

EXPERIMENTAL PROGRESS

Physics Briefing Book, 1910.11775

 further orders of magnitude experimental progress expected in CLFV transitions

Searches for Charged-Lepton Flavor Violation in Experiments using Intense Muon Beams Mu2e Mu2e-II with PIP-II $\mu^-N \rightarrow e^-N$ (7 x 10⁻¹³) **COMET Phase-I COMET Phase-II** PRISM -10⁻¹⁷ Sensitivity: 10-15 10-18 10⁻¹⁹ $\mu^{+} \rightarrow e^{+}e^{-}e^{-}$ Mu3e Phase-I Mu3e Phase Pursue options for further improvement (1×10^{-12}) 10⁻¹⁵ 10 10⁻¹⁷ or smaller Sensitivity: 10 $\mu^+ \rightarrow e^+ \gamma$ MEG II Pursue options for a follow-up experiment (4.2×10^{-13}) 10-14 Sensitivity: 10¹⁵ or smaller 2025 2020 2030 2035 Data Taking Proposed Future Running (Approved Experiments) assumed sensitivies in the previous slide J. Zupan Flavor & CPV in dark sectors 14 ESPP, Granada, May 14 2019

LFUV OBSERVABLES

Akar et al., 1812.07638

• example: LHCb after Upgrade II

LFUV OBSERVABLES

B2TiP, 1808.10567

J. Zupan

da, May 14 2019

LFUV OBSERVABLES

• example: LHCb+ATLAS+CMS, from $B_s \rightarrow \mu^+\mu^-$, $B^0 \rightarrow K^{*0}\mu^+\mu^-$

J. Zupan

da, May 14 2019

Akar et al., 1812.07638

RARE KAON DECAYS

• Br($K \rightarrow \pi \nu \bar{\nu}$) theoretically very clean

RARE KAON DECAYS

• Br($K \rightarrow \pi \nu \bar{\nu}$) theoretically very clean

LIGHT NEW PHYSICS

- flavor observables also probe light NP
- example: $(g-2)_{\mu}$ NP models of two types
- chirality flip on SM fermion leg
 - NP need to be light, example: Z'
- chirality flip can be on the NP fermion leg
 - NP can be much heavier
 - example: minimal models with DM

DARK MATTER IN RARE DECAYS

see, e.g., Bird et al, hep-ph/0401195; Kamenik, Smith, 1111.6402

- DM could be produced at tree level, if FV couplings
- for flavor diagonal couplings DM can be produced at 1 loop
- X can be (pseudo-)scalar, (axial-) vector mediator

• can decay to DM or visible

DARK PHOTON

• *U*(1)_D can have kinetic mixing with hypercharge

$$\mathcal{L}_{\text{vector}} = \mathcal{L}_{\text{SM}} + \mathcal{L}_{\text{DS}} - \frac{\epsilon}{2\cos\theta_W} F'_{\mu\nu} B_{\mu\nu},$$

• induces couplings of dark photon to the SM, prop.to charge

DARK PHOTON

• *U*(1)_D can have kinetic mixing with hypercharge

$$\mathcal{L}_{\text{vector}} = \mathcal{L}_{\text{SM}} + \mathcal{L}_{\text{DS}} - \frac{\epsilon}{2\cos\theta_W} F'_{\mu\nu} B_{\mu\nu},$$

• induces couplings of dark photon to the SM, prop.to charge

CONCLUSIONS

- flavor program expected to significantly improve new physics reach
- probes both high scales and weakly coupled light sectors

BACKUP SLIDES