LUX-ZEPLIN(LZ) and Super Cryogenic Dark Matter Search(SCDMS) Status

M. G. D. Gilchriese LZ Project Director Lawrence Berkeley National Laboratory D. B. MacFarlane SCDMS Project Director SLAC National Accelerator Laboratory

> November 21, 2019 HEPAP

Overview

	LZ	SCDMS
Location	SURF	SNOLAB
Countries	5	5
Institutions	37	25
Collaboration Size	~ 250	~ 90
Cost	DOE \$55.5M Overall ~ \$75M	DOE \$18.6M NSF \$12.5M Overall ~ \$34M
Detection Medium	~10 tonnes LXe	25 kg Ge 3.6 kg Si

Project Timelines

Event	LZ	SCDMS	
CD-0	Sep 2012(A)	Sep 2012(A)	
CD-1	Apr 2015(A)	Dec 2015(A)	
CD-2	Aug 2016(A)		
CD-3	Feb 2017(A)	May 2018(A)	
CD-4(Early Finish/	Jul 2020/	Sep 2020/	
Milestone	Mar 2022	Sep 2021	
Start 1 st Science Run	Aug 2020	Jan 2021	
Decomm. or Upgrade	2026	2026 3	

SuperCDMS Collaboration: ~ 90 physicists at 25 institutions worldwide, 3 US national labs, 2 Canadian labs

SuperCDMS Detector Overview

Infrastructure Status at SNOLAB

Initial 4-Tower payload to meet G2 DM science goals

Complementary Targets and Multiple Functionality

	Germanium	Silicon
HV	Lowest threshold for low mass DM Larger exposure, no ³² Si bkgd	Lowest threshold for low mass DM Sensitive to lowest DM masses
iZIP	Nuclear Recoil Discrimination Understand Ge Backgrounds Sensitive to ⁸ Β ν-scatter	Nuclear Recoil Discrimination Understand Si Backgrounds Sensitive to ⁸ Β ν-scatter

For new crystals, (Towers 2,3,4), cosmogenic activation is limited to < 60 days surface exposure [90 ³H atoms/kg/day in Ge]

Stored in N₂ purged containers, Rn exposure tracked for all detectors

Tower 3 (HV) Tower 4 (iZIP)

Detector Tower Status

- Completed the Transition Edge Sensor(TES) deposition and photolithography for the Tower 2 & 4 endcap detectors
- Completed the solid model for the lids, standoffs, and IR shields and began preparation of fabrication drawings
- Held in-person meeting at vendor to review plans for horizontal and vertical flex cable fabrication → critical path driver for Tower subsystem
- Test wafers for Si HV detectors showed higher $\rm T_{\rm C}$ than expected
 - Developed multi-pronged R&D plan to reduce T_c for the inner detectors in Towers 2-4
 - Expect main production to start in November

SuperCDMS at SNOLAB: Detector Characterization and Yield Studies Underway

- Program to calibrate, characterize, & test detectors well-underway
- Newly-commissioned underground test facilities are up and running
 - NEXUS at MINOS underground Hall at FNAL
 - CUTE facility co-located in SuperCDMS hall at SNOLAB
- First measurement of the intrinsic ionization yield of Si at 50 mK
 - Single e-h detectors with 3 eV resolution in TUNL(=Triangle Universities Nuclear Laboratory) neutron beam
 - Crucial for low mass dark matter reach
 - Si paper published this spring, Ge measurement next year
 - Full-size SuperCDMS detectors at NEXUS using DD generator

CUTE -

TUNL Yield measurement

Cryostat Design & Bid Status

Pb Shield Pre-assembly at Lemer Pax in France: first shipment now at SNOLAB

4-Tower payload meets project science goals; order of magnitude improvement with background subtraction

LZ Collaboration

250 scientists & engineers from 37 institutes in the US, UK, Portugal, South Korea & Russia

Black Hills State University & Bristol University & Brookhaven National Laboratory & Brown University & Center for Underground Physics, Korea & Edinburgh University & Fermi National Accelerator Laboratory & Imperial College London & Lawrence Berkeley National Laboratory & Lawrence Livermore National Laboratory & LIP-Coimbra, Portugal & University of Liverpool & MEPHI Moscow, Russia & Northwestern University & Oxford University & Penn State University & Rutherford Appleton Laboratory & Royal Holloway, University of London & SLAC National Accelerator Laboratory & South Dakota School of Mines & Technology & South Dakota Science and Technology Authority & SUNY University at Albany & Texas A&M University & University of Alabama & University of California Berkeley & University of California Davis & University of California Santa Barbara & University College London & University of Maryland & University of Massachusetts & University of Michigan & University of Rochester & University of Sheffield & University of South Dakota & University of Wisconsin

LZ Detector Overview

Xe Status

- 10.7 tonnes procured
- 97% of Xe gas in hand
- Last 3% delivered in two weeks.
- Xe gas is at SLAC for removal of trace amounts of Kr, a radioactive contaminant, to achieve ≤ 0.3 parts-pertrillion of Kr.
- Production processing imminent.
- To SURF by April 2020

Kr Removal Plant at SLAC

Xe and Cryogenic Systems

- Underground installation at SURF largely done
- About to begin operation at 100kg Xe scale using "dummy" cryostat and final circulation system to debug system

Inner Detector Status

• Time Projection Chamber fully assembled and checked out in custom low Rn clean room on surface at SURF.

TPC/ICV Underground

- The TPC was installed into the Inner Cryostat Vessel(ICV) and the assembly lowered through the Yates shaft at SURF and transported underground on Oct. 21, 2019
- Next step: put into Outer Cryostat Vessel, already in place in water tank, Dec 2019. Followed by months of hookup & checkout

Outer Detector Status

Acrylic tank

At vendor

- Acrylic tanks fabricated and delivered to SURF but issues with 2 of 10, now back at vendor for repair by year's end.
- Liquid scintillator production 95% complete at BNL
- All phototubes in hand, production of supports underway
 Acrylic tanks In water tank

Electronics and Controls Systems

- All significant production is complete
- Underground installation long underway and on track to meet needs as equipment comes online

Computing and Software

- Operational challenge complete, data transfer from SURF to US data center (NERSC at LBNL) successful.
- Mock Data Challenges(MDCs) used to validate software and computing model
- In last stages of MDC3, simulate first few months of data taking, including calibration, and analysis
- Utilizing NERSC resources and UK data centre (roughly equal to NERSC resources)
- Next steps: more operational challenges, code development, leading to computing & software readiness review by April 2020

Expected WIMP Sensitivity

- Plot below based on 1000 live days, ~ 5 years
- Better than XENON1T (2018) in few months of running
 10⁻⁴²
- Goal to publish from 1st run in early 2021

Paper

Summary

- LZ and SCDMS Projects preparing for completion in the 2nd half of CY2020
- Plan to begin science operations by end CY2020 – early CY2021
- First science results by CY2021
- Planning for data taking of ~ 5 years

Axion Dark-Matter eXperiment Generation 2 (ADMX-G2)

ADMX-G2 is located at University of Washington, managed by Fermilab

- Primarily DOE supported with contributions from the UK, Germany and Australia; R&D support from the Heising-Simons Foundation
- Uses a strong magnetic field and resonant cavity to convert dark matter axions into detectable microwave photons

Operating: Series of runs (1a-2b) with detector modifications cover range 0.5 to 2 GHz (~ 2 to 8 micro-eV mass) – started Aug. 2016; planned to complete ~ 202

- > Run 1A (2017) & Run 1B (2018) both reached "invisible" axion (DFSZ model) sensitivity!
- Run 1C running; Run 2 Cavities under development.

ADMX-Extended being planned (a Dark Matter New Initiative) \rightarrow 2 - 4 GHz

U.S. DEPARTMENT OF

Office of

Science

Pierre Sikivie, inventor of the axion haloscope and recipient of the 2020 Sakurai prize, helping assemble the ADMX experiment.

