

The U.S. Magnet Development Program

Soren Prestemon

Director US Magnet Development Program Lawrence Berkeley National Laboratory

- Context for high field accelerator magnet R&D
 - Motivation
 - P5 and the Accelerator R&D Subpanel recommendations
- The US Magnet Development Program
 - How we are structured
- Technical status of each area
 - **o** Progress and current status
 - **o** Corresponding roadmap within the MDP plan
- Summary

Office of

Advanced superconducting accelerator magnet technology is critical for a future collider

A large Hadron collider entails...

- A high intensity proton source,
- Fast-cycling magnets for the injection chain,
- New magnets probably highfield
- A new tunnel
 - Exception: HE-LHC could reach $E_{cm}=33$ TeV with 20T dipoles...

Dominant cost drivers for an pp collider: Magnets and tunnel

Cost/performance is the critical metric

The US HEP Superconducting Magnet Programs are now integrated into the US Magnet Development Program

The U.S. Magnet Development Program Plan

US Magnet Development Program (MDP) Goals:

GOAL 1:

Explore the performance limits of Nb₃Sn accelerator magnets with a focus on minimizing the required operating margin and significantly reducing or eliminating training.

GOAL 2:

Develop and demonstrate an HTS accelerator magnet with a self-field of 5 T or greater compatible with operation in a hybrid LTS/HTS magnet for fields beyond 16 T.

GOAL 3:

Investigate fundamental aspects of magnet design and technology that can lead to substantial performance improvements and magnet cost reduction.

GOAL 4:

Pursue Nb₃Sn and HTS conductor R&D with clear targets to increase performance and reduce the cost of accelerator magnets. ed U.S. high-field magnet R&D collaboration studies for a very high-energy proton-proton ge improvement in cost-performance.

pursue the development of Nb₃Sn magnets proton-proton collider.

execute a high-temperature superet development plan with appropriate ility of cost-effective accelerator magnets

ce

th

try and manufacturing engineering oth decrease the touch labor and increase on superconducting accelerator magnets.

crease funding for superconducting upport aggressive development of new

U.S. MAGNET DEVELOPMENT PROGRAM

The management structure of the MDP is clearly defined and the program is fully functioning

Technical Advisory Committee Andrew Lankford, UC Irvine – *Chair* Davide Tommasini, CERN Akira Yamamoto, KEK Joe Minervini, MIT Giorgio Apollinari, FNAL (LARP/Hi-Lumi) Mark Palmer, BNL

MDP Management Group S. Prestemon, LBNL G. Velev, FNAL (*Deputy*) L. Cooley, FNAL S. Gourlay, LBNL D. Larbalestier, FSU A. Zlobin, FNAL

Initial technical roles of participants matched with strengths and interests

• FSU

- Conductor R&D
- Leverage Bi-2212 and REBCO R&D Program
- Shared infrastructure overpressure furnace for sub-scale coils

• FNAL

- Primary focus and responsibility for Cos-Theta
- LBNL
 - Primary responsibility for CCT
 - **o** Lead mechanical support structure effort between labs
 - Primary responsibility for HTS component
- Significant leverage with other programs, e.g.
 - FES (on high temperature superconductors)
 - SBIR program
 - Early Career Research Program
 - University programs (e.g. Ohio State, Tufts, U. of Houston, MIT, Florida State/NHMFL)
- Close connection with LARP/HL-LHC AUP

Technical areas have leads who are responsible for coordination and planning

Magnets	Lead	
Cosine-theta 4-layer	Sasha Zlobin	
Canted Cosine theta	Diego Arbelaez	IND ³ SIII
Bi2212 dipoles	Tengming Shen	HTS
Cond Proc and R&D	Lance Cooley	Conductor R&

Technology area	LBNL lead	FNAL lead
Modeling & Simulation	Diego Arbelaez	Vadim Kashikhin
Training and diagnostics	Maxim Martchevsky	Stoyan Stoynev
Instrumentation and quench protection	Emmanuele Ravaioli	Thomas Strauss
Material studies – superconductor and structural materials properties	lan Pong	Steve Krave

Technology development

We have initiated a two-prong approach to high field dipoles to explore the limits of Nb₃Sn

 A reference design based on a 4-layer cosine-theta magnet utilizing highperformance Nb₃Sn

- A path to explore innovative designs
 - Starting with the canted cosine-theta (CCT), a different paradigm that integrates mechanical structure internally

Overview of the Nb₃Sn Milestone Plan, Highlighting the Cos(θ) Reference Magnet Development and the Innovation Route with CCT

201	16	2017		2018			2019		
Push traditional Cos-theta technology to its limit with newest conductor and structure									
	Cos-theta	4 layer 15 T		Preload mo	ds	15 T witl improve	n ments	4-layer 16 T Cos-theta	
	Leverage lat Key structur	est Nb ₃ Sn and Bladder and e		Impact of preload on training				Optimized 16 T design as baseline	
Develop innov	vative concept	to address	technology	y issues at h	nigh field	ł			
CCT – 2-laye	r 10 T —								
1st model	Address conductor expansion	Address assembly issues	Test alternative materials	Focus on training	Foc mar Prej HTS	us on gin pare for inserts	HTS insert training		
then demonstrate 16 T fields, and furthermore use for hybrid HTS-LTS dipoles									
					CCT – 8-I	ayer 16 T	demonstrati	on —>	
			ССТ	- 4-layer 13	T model	\rightarrow		CCT – 8-layer 15 T for hybrid	
			1st n	nodel	Improven reproduci possible e of future	nents & bility; element 16 T		HTS insert testing	

The Cosine-theta 4-layer magnet is proceeding well at FNAL, with first coil prepared for VPI

Coil parts provided by CERN

Office of

Science

The CCT program is proceeding to systematically address technical issues

Lead: Diego Arbelaez

Two candidate HTS conductors are pursued to explore and push the limits of HTS for high-field dipole applications

- Bi-2212
 - Rutherford cables and sub-scale magnets in racetrack and CCT configuration

- REBCO
 - Cable characterization and dipole magnet development

CORC[®], from Advanced Conductor Technologies, Inc.

Overview of the HTS Milestone Plan, Highlighting the Bi-2212 Magnet Development and the REBCO Magnet Development

20	15	2016	2017		2018		2019
Bi-2212							
	Subscale m	agnet program	5 T, 50mm b	ore dipole		2 T in 5 T, 0.5 m long demo dipole	
REBCO							
	Te ma	Technology exploration & 1 T, 50 mm bo magnet design studies		bore dipole	T in 15T, 0.5 m long emo dipole		
				2 T, 20 K co	nduction cool	ed demonstrat	ion dipole
		Expl	ore other HEP	Stewardship a	pplications: F	usion, Medical	, Light Sources, etc.

Significant progress on the Bi2212 HTS magnet front: Leveraging overpressure boost in magnet configurations

Lead: Tengming Shen

LBNL Bi2212 magnets:

- Dramatic improvements in conductor properties in last couple of years
- Racetrack & CCT coils fabricated and pushed to their electrical, mechanical, and quench limits

REBCO program developing quickly: conductor and cable characterization, magnet design and prototyping underway

Lead: Xiaorong Wang

Courtesy Danko Van Der Laan, Advanced Conductor Technologies, Inc.

Tooling developed for winding of 40-turn prtototype

Office of

Science

ENERG

Backbone of the Program: Magnet Science and Development of Underpinning Technologies

Areas of focus:

- Training studies
- Modeling
- Diagnostics, quench detection, protection
- Develop infrastructure, e.g. insert testing
- New materials insulation, impregnation and structural
- Design comparison and cost analysis to guide program

Improvements/advances from this part of the program are then integrated into the Nb₃Sn and HTS magnets

Overview of the Technology Development Milestone Plan, which Feeds the Nb₃Sn and HTS Magnet Program Elements

U.S. MAGNET DEVELOPMENT PROGRAM

Advanced diagnostics are providing new and critical insight into the mechanisms of training and magnet performance

U.S. MAGNET DEVELOPMENT PROGRAM

Lead: Lance Cooley

Superconducting Materials Procurement and R&D is Critical for Program Success

- Push performance limits of Nb₃Sn and HTS conductors based on magnet needs
- Understand
 - **O** Uniformity and reliability
 - **O** Scalability and future cost

	Quantity	Target				
Initial specifications for Nb ₃ Sn conductor	Diameter	0.7 to 1.2 mm; (hold @ 1.3)				
	Unit length	95% yield at 150 m				
Intend to procure Bi2212 wire soon utilizing existing Bi powder from SBIR programs	Jc(16 T, 4.2K)	1300 A/mm2 (best effort) 1240 in cable				
	Jc std. dev.	< 100 A/mm2				
	RRR	>100; >50 at cable edge or in strand rolled to 15% reduction				
	Cu:NC	0.9 to 1.1 (e.g. 150/169)				
	Dse	<60 µm				
	HT duration	<240 hours				

The MDP is being managed and reviewed for program coherence and technical strength

U.S. DEPARTMENT OF ENERGY Office of Science

We have an active program focused on advancing high-field LTS and HTS accelerator magnet technology for future pp colliders

- We have...
 - an MDP Plan that lays out our goals and a roadmap for achieving them, fully aligned with the P5 report and the HEPAP Accelerator R&D Subpanel report
 - established an excellent Technical Advisory Committee to provide guidance on our program
 - identified individuals who will lead and coordinate efforts within the program
 - organized our first yearly workshop to work through the program, identify technical issues, and provide input for budgets moving forward
- Our focus now is delivering on our near term goals
 - making the Cosine-theta 4-layer magnet a success potential new record field
 - progressing through technical issues with the CCT to see if potential can be achieved
 - making real dipoles from HTS and integrating them with LTS
 - procuring sufficient conductors for the program, and identifying opportunities for conductor R&D

Backup slides

Cost-effective high-field superconducting magnets are essential for a future collider

Office of

Science

Exciting advances in HTS properties, but cost remains a major hurdle

The Program is guided by **Driving Questions... related to performance**

- **1**. What is the nature of accelerator magnet training? Can we reduce or eliminate it?
- 2. What are the drivers and required operation margin for Nb₃Sn and HTS accelerator magnets?
- 3. What are the mechanical limits and possible stress management approaches for Nb_3Sn and 20 T LTS/HTS magnets?
- 4. What are the limitations on means to safely protect Nb₃Sn and HTS magnets?

The Program is guided by **Driving Questions...related to cost**

- 5. Can we provide accelerator quality Nb₃Sn magnets in the range of 16 T?
- 6. Is operation at 16 T economically justified? What is the optimal operational field for Nb₃Sn dipoles?
- 7. What is the optimal operating temperature for Nb₃Sn and HTS magnets?
- 8. Can we build practical and affordable accelerator magnets with HTS conductor(s)?
- 9. Are there innovative approaches to magnet design that address the key cost drivers for Nb₃Sn and HTS magnets that will shift the cost optimum to higher fields?

The Program is guided by **Driving Questions...** related to conductor development

(1) What are the near and long-term goals for Nb₃Sn and HTS conductor development? What performance parameters in Nb₃Sn and HTS conductors are most critical for high field accelerator magnets?

