

From LARP to HL-LHC AUP Report to HEPAP

Giorgio Apollinari LARP Director/HL-LHC AUP Project Manager

Agenda High Energy Physics Advisory Panel Hilton Washington North / Gaithersburg 620 Perry Parkway Gaithersburg, MD 20877 December 1-2, 2016

Summary

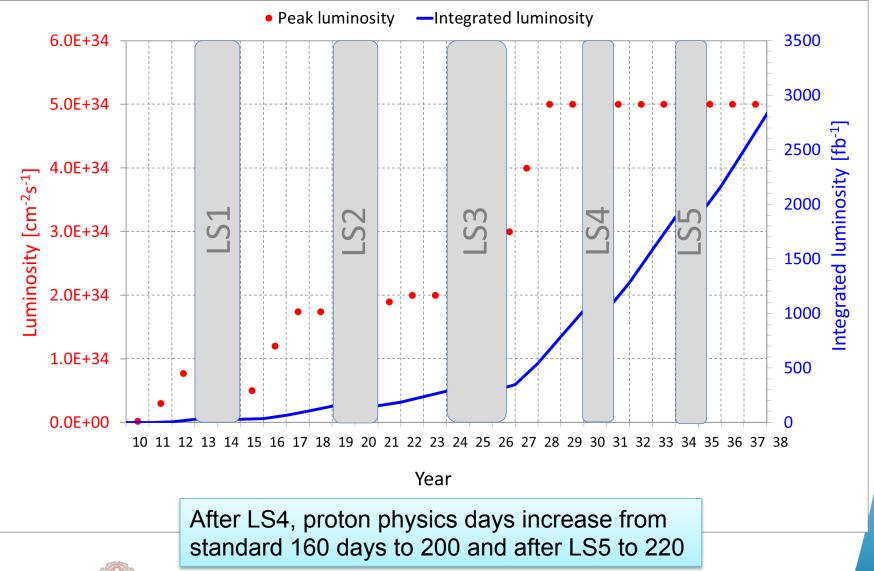
- Introduction
- Technical Progress in LARP
 - Mostly Magnets & Crab Cavities
- Preparation for HL-LHC AUP
 - Deliverables and Key Performance Parameters
 - Cost Model
 - Contingencies Discussion
 - Cost, Scope, Schedule, Risk
 - Preparation for ICR (Independent Cost Review)

Goal of High Luminosity LHC (HL-LHC) as fixed in November 2010

From FP7 HiLumi LHC Design Study application

The main objective of HiLumi LHC Design Study is to determine a hardware configuration and a set of beam parameters that will allow the LHC to reach the following targets:

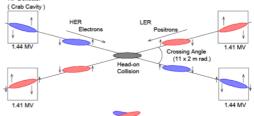
A peak luminosity of $L_{peak} = 5 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ with levelling, allowing:

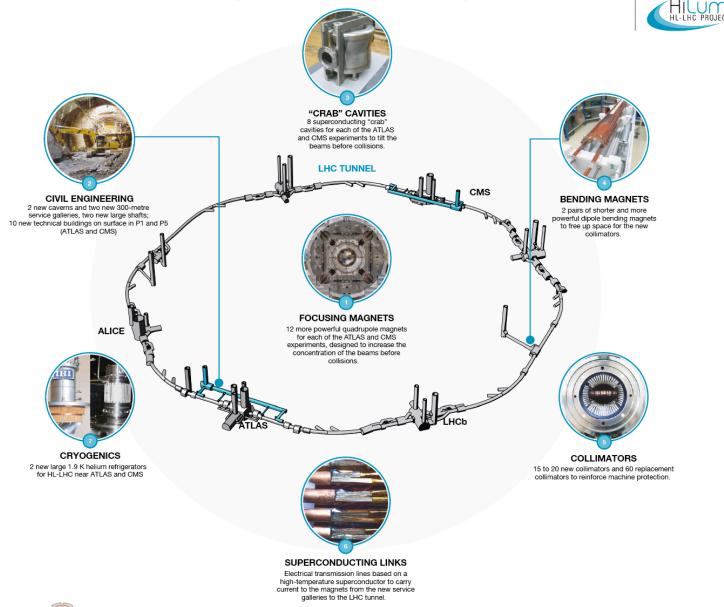

An integrated luminosity of **250 fb⁻¹ per year**, enabling the goal of L_{int} = **3000 fb⁻¹** twelve years after the upgrade. This luminosity is more than ten times the luminosity reach of the first 10 years of the LHC lifetime.

Ultimate performance established 2015-2016: with same hardware and same beam parameters: use of engineering margins:
L_{peak ult} ≅ 7.5 10³⁴ cm⁻²s⁻¹ and Ultimate Integrated L_{int ult} ~ 4000 fb⁻¹ LHC should not be the limit, would Physics require more...

LARF

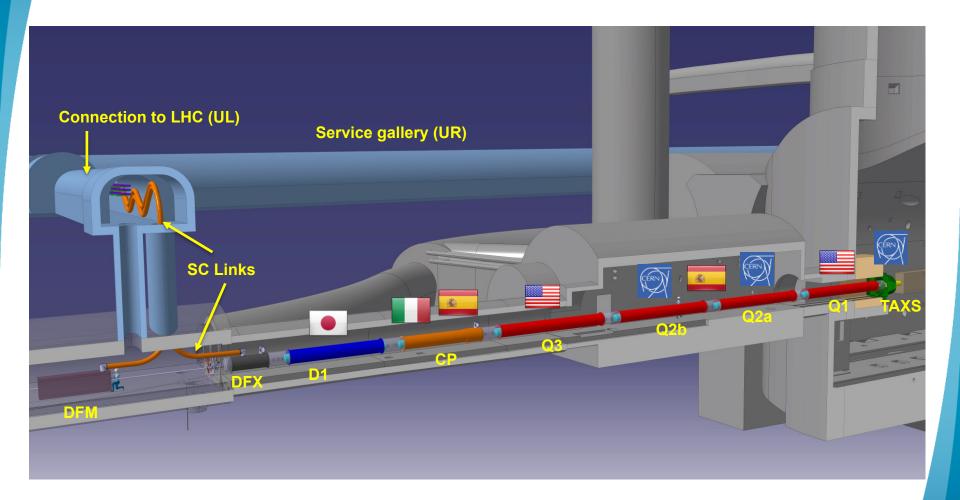
Luminosity profile : NOMINAL

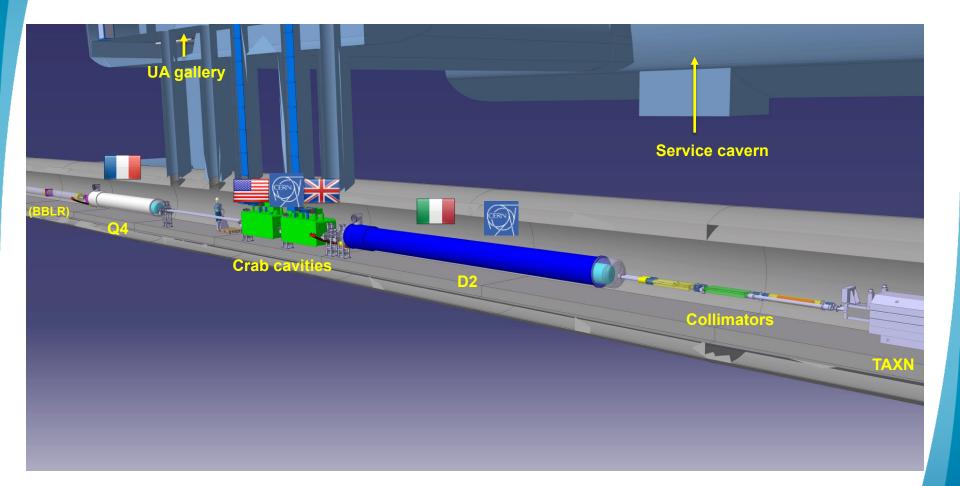



HL-LHC in a Nutshell

$$L = \gamma \frac{n_{\rm b} N^2 f_{\rm rev}}{4\pi \,\beta^* \,\varepsilon_{\rm n}} \,R; \quad R = 1/\sqrt{1 + \frac{\theta_{\rm c} \,\sigma_z}{2\sigma}}$$

- 1. More Luminosity: increase squeeze at interaction region
 - Increase magnet aperture, therefore increase field.
 - Use Nb₃Sn Technology as <u>Baseline</u>
- 2. More beam: larger beam-beam interactions in region where they are brought close together.
 - Solution 1: keep beam as separated as possible increasing crossing angle from 300 μrad to 600 μrad. Use Crab Cavities as <u>Baseline</u>
 - Solution 2 (Plan B): If solution 1 does not work, reduce crossing to 300 mrad and mitigate beambeam interaction with Long Range Beam Beam Wire (<u>R&D effort</u>).


HiLumi LHC landmarks

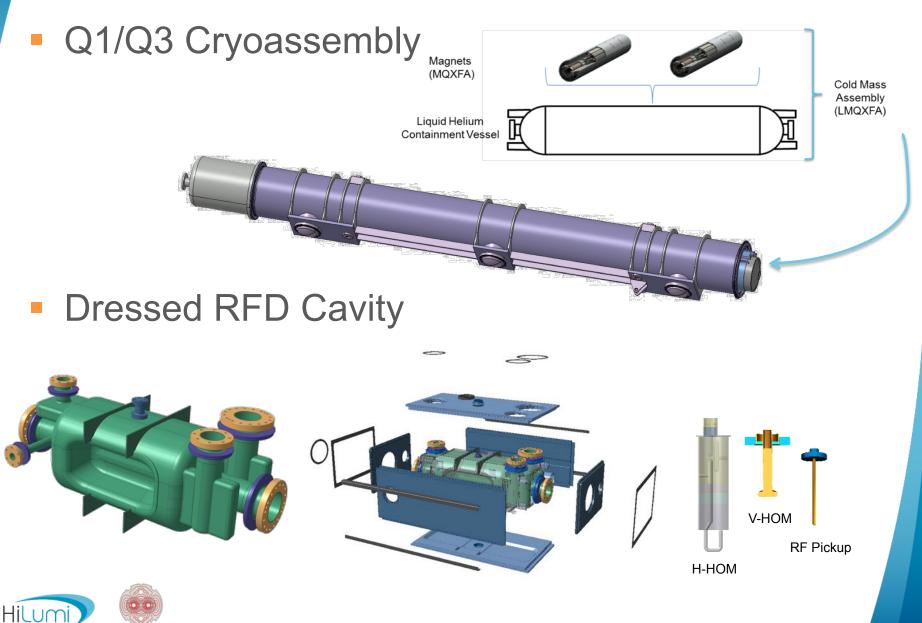

CERN May 2016

The Inner Triplet region with in-kinds

The MS regions with in-kinds

LARP & HL-LHC Accelerator Upgrade Project

- LARP is an R&D <u>*Program*</u> funded by DOE to explore technology for future upgrades to the LHC.
 - Started in ~2004 with focus on Nb₃Sn Magnets and Accelerator system Research (CC, Rotatable Collimators, e-lens, WBFS, etc)
 - Run since FY14 with clear Risk Reduction mandate to minimize the technical risk for possible US contributions to HL-LHC.
- DOE plans to contribute to the HL-LHC upgrade through a <u>Project</u> called HL-LHC Accelerator Upgrade Project (AUP)
 - Governed by DOE Order 413.3B which applies to capital assets projects having a Total Project Cost greater than or equal to \$50M
 - DOE projects progress through <u>five</u> Critical Decision (CD) gateways, which serve as major milestones marking an authorization to increase the commitment of resources by DOE and requires successful completion of the preceding phase or CD
- A Properly managed handshaking between LARP and HL-LHC AUP will be a major element of the future success of the US contribution to HL-LHC.


US Scope and Deliverables (1)

- At this time (pre-CD-1) the following deliverables are <u>entertained</u> for the US contribution to HL-LHC:
 - From the PPEP Draft exchanged with AUP FPD

Parameters	Threshold Performance	Objective Performance	
Inner Triplet	5 Q1-Cryoassemblies and 5 Q3-	Up to 1 additional Cold Mass is	
Focusing Quadrupoles (Q1 and Q3)	Cryoassemblies are accepted by CERN after testing at HL-LHC nominal temperature and ultimate gradient for the magnets, and functionality for the Cryoassembly. The Cryoassemblies will be assembled from Cold Masses built by HL-LHC AUP and Cryostat kits provided by CERN.	accepted by CERN after testing at HL-LHC nominal temperature and ultimate current for the magnet, and functionality for the Cold Mass.	Slightly more than 50% of the Q1/Q2a & b/Q3 Final Focusing Triplets of HL-LHC
SRF Crab Cavities	10 Radio Frequency Dipoles (RFDs) Dressed cavities for the HL-LHC Crab Cavity System are accepted by CERN after being tested at HL- LHC nominal temperature, nominal frequency, and ultimate cavity voltage. Dressed cavities will include HOM couplers, pick-ups, He Vessel and magnetic shields.	Up to 1 additional Dressed RFDs and financial support for the execution of up to 10 DQW (bare or dressed) at a vendor selected and managed by CERN.	50% of the total number of Crab Cavities for HL-LHC

- Delivery Date Needs (from CERN):
 - Q1/Q3 Cryoassembly #1 at CERN by Late '21 Cryoassembly #8 at CERN by Summer '24 Drossed Cavity #1 at CERN by Late '22
 - RFD Dressed Cavity #1 at CERN by Late '22 Dressed Cavity #8 at CERN by Summer-Fall '23

US Scope and Deliverables (2)

LARP

Magnets: Technical Progress in LARP and LARP/HL-LHC AUP Handshaking

LARP+CERN: Short Models Status

- 22 coils fabricated (14 by CERN, 8 by LARP)
- 3 mechanical models assembled
- 1 coil tested in mirror structure
- 2 quadrupoles assembled & tested
 - 1 azimuthal pre-stress increase & under test
 - I longitudinal pre-stress increase to be tested soon

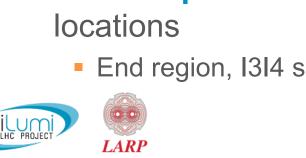
LARP+CERN: Short Models Status (2)

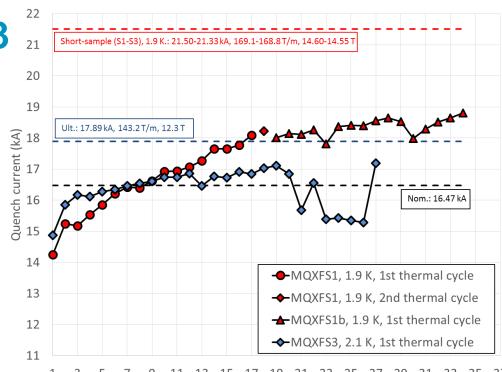
VTMP

11

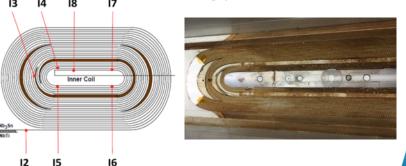
Power in

MQXFS1b vs. MQXFS3


- Very similar axial and azimuthal pre-load
 - wrt MQXFS1, same axial, +20 MPa azimuthal

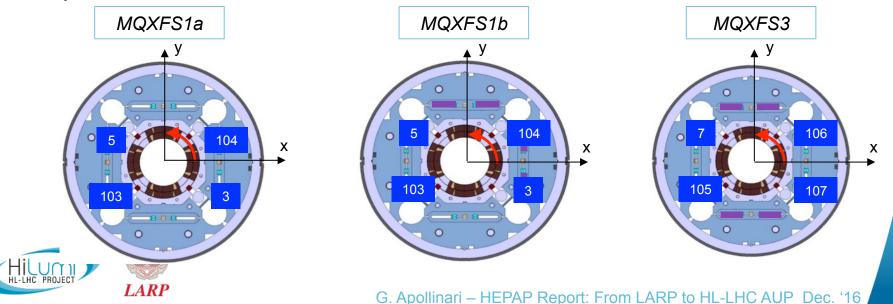

Similar training slope

- Although at different current level
 - ...but 1b not virgin
- Slower than MQXFS1a


Similar quench

End region, I3I4 segment

23 25 27 29 31 33 35 37 19 21 Training quench #


G. Apollinari – HEPAP Report: From LARP to HL-LHC AUP Dec. '16

LARP+CERN:

Magnetic Measurements Summary

Good agreement with expected field quality in terms of saturation, allowed harmonics and persistent currents.

- The dominant source of field errors is the coil geometry and its initial assembly because harmonics not altered from assembly to powering.
- Magnetic shimming:
 - Demonstrated the capability to correct 3 units of b₃ and a₃ in MQXFS1b
 - Successfully corrected 3 units of b₄ in MQXFS3a.
- Some of the measured geometric field errors are above our correction capabilities.

15

LARP+CERN: Plans for MQXFS3 and MQXFS1

MQXFS3b

- Retest with axial pre-load increased
 - Pre-load increased by about a factor two at cold last Friday
 - Test expected in December 2016

• MQXFS3c

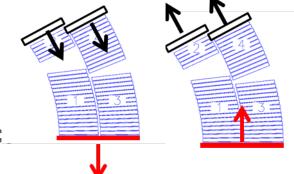
- Full disassembly and coil visual inspection
- Reassembly and re-loading with higher azim. pre-stress

MQXFS3d

• Welded stainless steel shell test

• MQXFS1c (currently stainless steel shell test)

Increase of axial pre-load under consideration


CERN: Short model program Upcoming tests (I)

MQXFS5 & MQXFS6

- Test of four PIT* coils (203,204,205,206) with 2nd generation cable design
 - Strand without and with bundle barrier

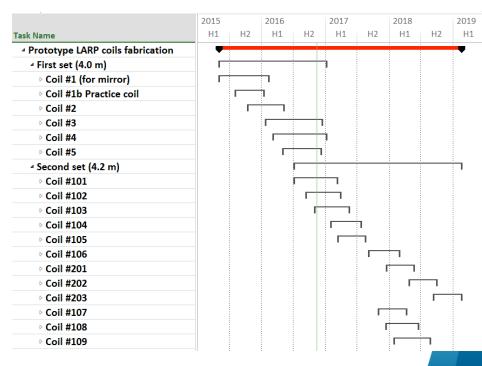
MQXFS4

- Second RRP 2nd gen. magnet, as S3
 - Reproducibility
- Test of pole/mid-plane shims to correc_ allowed harmonics

1st test of **laminated structure** by LARP

* Up to Nov 20th, test of Alternative Vendor, now only test of Alternative Technology (more on this later)

LARP prototype program



LARP prototype program Coil fabrication

- Coils for practice & mirror: 2 coil, 4 m long, completed
 - Coil 01 for mirror (1st generation cable)
 - Coil 01b practice (1st generation cable)
- Coils for MQXFA1: 4 coils, 4 m long, ~completed
 - Coil 02 (1st generation cable)
 - Coil 03,04,05 (2nd generation cable)
- 12 Coils for MQXFA2-3 & for practice of BNL W&C line (4.2 m long)
 - 9 W&C at FNAL
 - 6 R&I at FNAL
 - 3 R&I at BNL
 - 3 W&C, R&I at BNL

LARP prototype program Coil test

MQXFPM1

- Vertical Test Facility @ BNL commissioned in September-October 2016
- Test results at 1.9 K
 - First quench: 14387 A, 65% of *I*_{ss} (22.1 kA)
 - Outer layer mid-plane block
 - Second quench: 16040 A, 73% of I_{ss}
 - Inner layer pole turn straight section
- Replacement of IGBT blown at discharge of quench 2 in progress
- Training resuming soon, but first long Nb₃Sn coil with HL-LHC design is behaving like the short models !

Q1/Q3 Prototypes

- 4 m coil in mirror magnet is under test
- First prototype magnet test in spring/summer 2017
 - 4 m coils: one 1st gen + three 2nd gen coils
- Second prototype magnet test in 2017-2018 CD2/CD3b
 - 4.2 m coils: all 2nd gen coils (<u>first tunnel ready MQXF</u>)
- Third prototype magnet test in early 2019
 - 4.2 m coils, 1st structure changing thick → thin laminations
- First prototype cryostated magnet test in early 2020

	2015		2016		2017		2018		2019		2020	(JD3C
Task Name 🔹	. H1	H2	H1	H2	H1	H2	H1	Н2	H1	H2	H1	H2	1
Prototype LARP magnets			-	:	:	: :		1	:	:	:		
MQXFL mirror										-			4
MQXFA1					:				-			Ε/	
MQXFA2							■ ★						
▷ MQXFA3												6	
▷ LQXFAP									Г	-	• ••• 🖈		
		:	:	:	:	: :	<u>.</u>						<u> </u>

Q1/Q3 Prototypes (MQXFA & Cold-Mass)

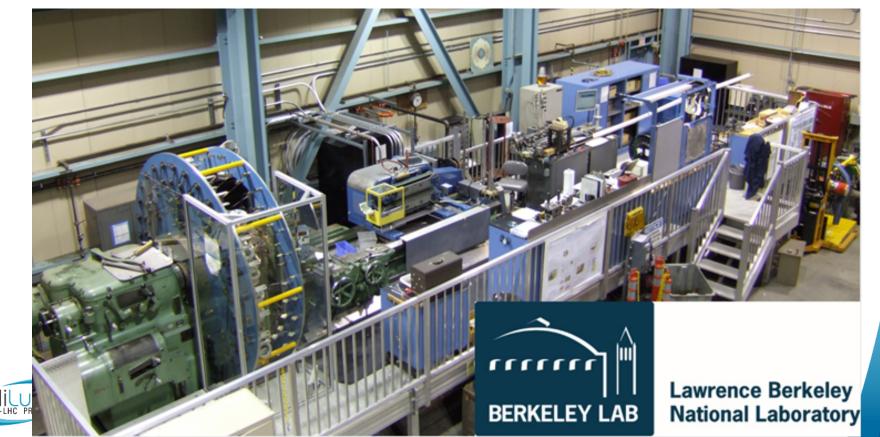
Progress so far:

- 5 Coils completed + 4 in progress
- I Coil under test in mirror structure
- 1 Structure procured & instrumentation in progress (MQXFA1)

QXFA1b outer coil winding

BNL oven recently upgraded

Tables for MQXFA assembly



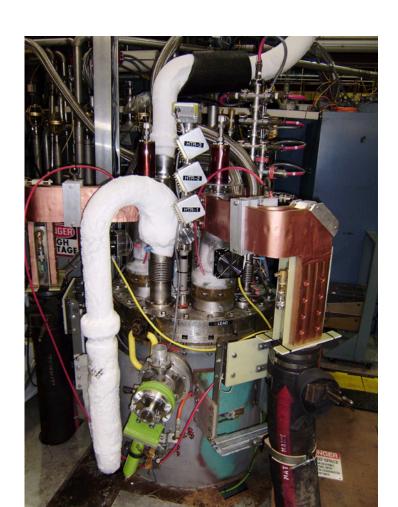
Facilities & Equipment: Conductor

- Strand procurements and QC
- Cabling @ LBNL
- Cable insulation @ vendor

23

Facilities & Equipment: Coils

- Winding
- Curing
- Reaction
- Impregnation


Facilities & Equipment: Magnet Assembly

- Parts procurement
- Sub-assembly & instrumentation
- Magnet assembly @ LBNL

Facilities & Equipment: Magnet Test

- Vertical Test Facility @ BNL ~
 - Commissioning successfully completed
 - T = 1.88 K
 - I = 22 kA

4m coil ready for test

Cold Mass & Cryostat

 Plans for assembly of Cold Mass & Cryostat have to be finalized

- Cryostat kit from CERN
- Horizontal Test facility @ FNAL to be upgraded

Solutions Resources

Search 📿

News in Focus Business & Money Science & Tech Lifestyle & Health Policy & Public Interest People & Culture

Bruker and Oxford Instruments Announce Acquisition of Oxford Instruments Superconducting Wire Business by Bruker's BEST Segment

BEST Emerges as Global Portfolio, Performance and Quality Leader in Superconducting Materials

Solutions Resources

Search 📿

News in Focus Business & Money Science & Tech Lifestyle & Health Policy & Public Interest People & Culture

Bruker and Oxford Instruments Announce Acquisition of Oxford Instruments Superconducting Wire Business by Bruker's BEST Segment

BEST Emerges as Global Portfolio, Performance and Quality Leader in Superconducting Materials

Update on HL-LHC AUP strand procurement

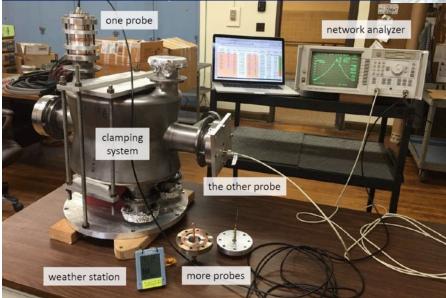
- July 15th 2016 review recommendation: "Execute a time phased procurement of the required Nb₃Sn strand in a timely manner so as not to endanger the proposed magnet production schedule."
- 3 magnet delivery scenarios:
 - (A) last magnet by Jun 30th 2023 → last strand by Jun 30th, 2021
 (B) last magnet by Dec 31st 2023 → strand Dec 31st, 2021
 (C) last magnet by Jun 30th 2024 → last strand Jun 30th, 2022
- RFI issued Aug 1st 2016, 1 response (OST)
 - Cost respons in agreement with expectations
- Oct 28th 2016 Draft RFP completed, Nov 7th 2016 revised
 - Proceeded with ~250km strand procurement for LARP prototype activities + Options for Scenarios mentioned above.
- Anticipate early Jan 2017 response, PO by Feb 2017

Crab Cavities: Technical Progress in LARP and LARP/HL-LHC AUP Handshaking

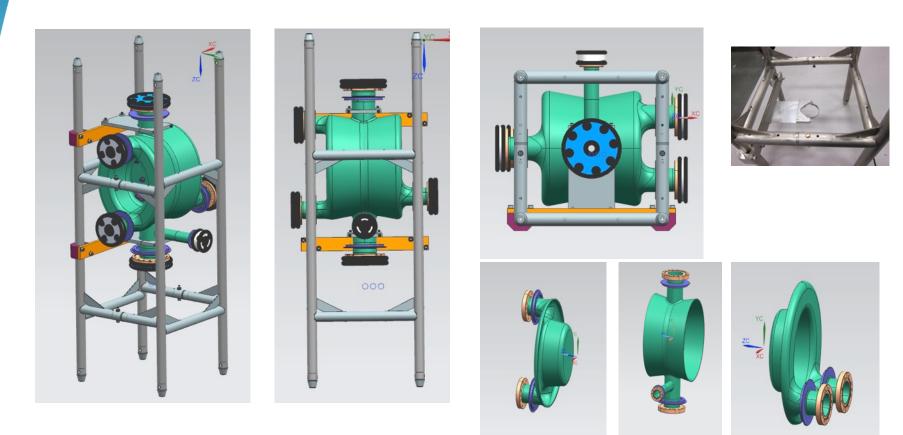
SBIR Crab Cavities Effort in LARP

Soft Landing for Niowave SPS Prototypes in the U.S.

- Cavities not "installable" in CERN machines due to a number of CERN certifications at fabrication time that could not be met in an SBIR framework
- CERN has initiated production of DQWs for SPS Test. Positive !
- To reduce risk and insure completion under LARP Scientists and Engineers Control, transfer of semiassembled cavities to JLAB has been negotiated with Niowave
- All four cavities (2+2) are at JLAB now, and have been trimmed to final dimensions:
 - DQW awaiting welding
 - RFD completing first pass of bulk BCP on parts
- Overall Goal: Acquire experience for HL-LHC AUP and CERN construction activities



DQW Final Trimming at Niowave 15 Sep 2016


Trim tuning at Niowave – frequency check setup

DQW Processing

- JLAB Standard Cage fits the DQW cavity
 - (Clamps are shared with the RFD Cavity)
- Flange protectors are also the same as for the RFD cavity with the exception of the Pick up Port)

RFD Cavities Processing at JLAB

RFD final Machining at JLAB 27 Oct 2016

RFD Frequency Recipes

CAV-001

CAV-002

		2
Step (Recipe for 20 C, 50 % and 1013.25 mbar)	Δf	f_n
	[kHz]	[MHz]
Cavity after trimming and thinning		399.840296
Shift due to bulk BCP (140 microns)	-39.441	
Cavity after bulk BCP		399.800855
Weld shrinkage	115.645	
Weld bead	5.000	
Cavity after final weld		399.921500
Shift due to light BCP (20 microns)	-5.762	
Cavity after light BCP		399.915738
Shift due to mounted couplers	4.906	
Fully assembled cavity with HOM couplers		399.920644
Pressure effect (760 Torr differential)	-60.800	
Dielectric effect air to vacuum	130.341	
Evacuated cavity at 20 C		399.990185
Thermal shrinkage	572.877	
Colled down cavity at 4.2 K		400.563062
Shift due to change in skin depth	28.000	
Cavity frequency adjusted for skin depth		400.591062
Pressure from 760 Torr to 23 Torr in He tank	58.960	
Cooled down cavity at 2.0 K		400.650022
Shift due to tuner activation to its mid range	150.000	
Cavity with tuner activated		400.800022
Lorentz detuning	-10.022	
Operational cavity with RF on		400.790000

Step (Recipe for 20 C, 50 % and 1013.25 mbar)	Δf	f_n
	[kHz]	[MHz]
Cavity after sub-assembly fabrication		399.843949
Shift due to bulk BCP of End Plates (140 microns)	-26.988	
Cavity after trimming and thinning		399.816961
Shift due to bulk BCP of Center Body (140 microns)	-16.106	
Cavity after bulk BCP		399.800855
Weld shrinkage	115.645	
Weld bead	5.000	
Cavity after final weld		399.921500
Shift due to light BCP (20 microns)	-5.762	
Cavity after light BCP		399.915738
Shift due to mounted couplers	4.906	
Fully assembled cavity with HOM couplers		399.920644
Pressure effect (760 Torr differential)	-60.800	
Dielectric effect air to vacuum	130.341	
Evacuated cavity at 20 C		399.990185
Thermal shrinkage	572.877	
Colled down cavity at 4.2 K		400.563062
Shift due to change in skin depth	28.000	
Cavity frequency adjusted for skin depth		400.591062
Pressure from 760 Torr to 23 Torr in He tank	58.960	
Cooled down cavity at 2.0 K		400.650022
Shift due to tuner activation to its mid range	150.000	
Cavity with tuner activated		400.800022
Lorentz detuning	-10.022	
Operational cavity with RF on		400.790000

Achieved after trimming - 399.845874 MHz

Achieved after trimming - 399.809239 MHz

AUP General Strategy – A Fresh Start

- The same model adopted for projects such as XFEL, LCLS-II, FRIB... will be followed.
 - Contracts managed by a laboratory, raw material inspected by laboratory, cavities built in industry (more in next slides) with heavy supervision, processing/testing in laboratory
 - The key aspect is: maximize direct control by the laboratory by placing direct contracts with industry
- Effort will be centralized at <u>Fermilab</u>
 - Leverage Fermilab SRF infrastructure and experience with other SRF cavity projects (ILC R&D, LCLS-II, PIP-II, etc.)
 - All contracts (with industry and with other laboratories) will be managed through Fermilab procurement
 - Received Support from Lab Senior Management for FNAL as the SRF Lab for HEP

Plan with Clear Intermediate Milestones

- Organize 2 Phases:
 - Phase #1 for RFD Prototypes (FY17-FY20)
 - Phase #2 for RFD Production (FY20-FY23)
- Phases #1: Prototypes Fabrication contracts series
 - <u>Evaluate proposals and award (2, ideally 3) contracts only to</u> suppliers meeting minimum requirements (<u>extensive and</u> <u>successful SRF experience</u>, existence of QA system, …)
 - <u>Fund initial development of representative samples for electronbeam welded joints of RFD cavity (qualification phase)</u>
 - <u>Down-select</u> based on quality of samples, etc. and <u>fund</u> <u>fabrication</u> of 1 cavity at each of 2 suppliers (ideal), or 2 cavities at one supplier.
- Phase #2: Fabrication of HL-LHC Cavities
 - Vendor performance risk mitigated by prior vendor qualification steps and successful delivery of HL-LHC RFD bare and jacketed prototypes.

How do we turn all of this into HL-LHC AUP, a 413.3b DOE Project ?

HL-LHC AUP – CD-0 (or Mission Need) Approval

	Department of Energy Washington, DC 20585 November 19, 2015	Mission Need Statement HL-LHC Accelerator Upgrade Submitted by:
MEMORANDU	IM FOR CHERRY A. MURRAY DIRECTOR OFFICE OF SCIENCE JAMES L SIEGRIST	Bruce P. Janus Bruce P. Strauss, Program Manager Office of High Energy Physics, Office of Science, DOE
	ASSOCIATE DIRECTOR OF SCIENCE FOR HIGH ENERGY PHYSICS	Michael Procario, Director of Facilities Opera
SUBJECT:	ACTION: Approval of Mission Need Statement for the HL-LHC Accelerator Upgrade	Office of High Energy Physics, Office of Scie
project. The at Order 413.3B, A	tion memorandum transmits the Mission Need Statement for the subject ttached Mission Need Statement complies with Department of Energy Program and Project Management for the Acquisition of Capital Assets, red to support Critical Decision-0, Approve Mission Need.	James Siegrist, Associate/Director Office of High Energy Physics Office of Science, DOE Cherry Murray, Director Office of Science
Physics Project Hadron Collider	: The High Energy Physics (HEP) strategic plan developed by the Particle Prioritization Panel (P5) called continuing Involvement in the Large r (LHC) program the highest priority for the field. This involvement full participation in the high luminosity upgrade of the LHC (HL-LHC) and	Concurrence: Office of Science Stephen W. Meador, Director Office of Project Assessment, Office of Science, DOE
being capable of Strategy for Par	hat the field of particle physics is global in scope with no one region of implementing the largest and most challenging efforts. The European rticle Physics also recognized this and recommended that European cists should seek work in the U.S. or Japan.	Patricia Dehmer, Deputy Director for Science Programs Office of Science, DOE
Organization fo international co	ictively developing an enhanced partnership with the European or Nuclear Research (CERN) since the PS report was issued. An poperation agreement with CERN has been signed and protocols on HC experiments, and contributing to the HL-LHC accelerator upgrade are e.	Approval: <u>Cleanter</u> Date: <u>3/7/2014</u> Cherry Murray, Director
superconductin	veloped expertise superior to CERN's in several areas including g magnets made from niobium-tin and superconducting Radio c avities. These are now the primary candidates that will be considered is to upgrade.	Office of Science
Given these con Statement and I	nsiderations, now is an appropriate time to approve a Mission Need begin planning for the U.S. contributions to this upgrade.	
	Refered with any link on recycling paper	2

- ESAAB meeting approved CD-0 for HL-LHC Accelerator Upgrade Project on April 13th 2016.
- Next step: CD-1 (Approve Alternative Selection and Cost Range)

Project Scope

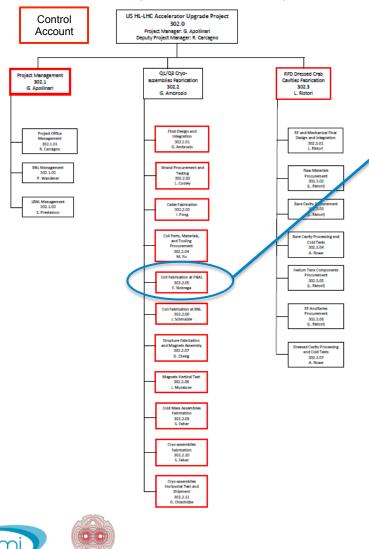
• KPP Deliverables:

Threshold KPPs	Objective KPPs
10 Q1/Q3 Cryo-assemblies	1 Cold Mass Assembly
10 RFD Dressed Cavities	1 RFD Dressed Cavity &
	Financial support for DQW cavities

- Threshold KPPs have been agreed with CERN Technical Management (Lucio Rossi)
 - It now includes installing the cold mass assembly in the final cryostat supplied by CERN
- Objective KPPs constitute Scope Contingency
- (*As of Nov 29th 2016*) Scope **does not** include prototypes
 - Assumed to be funded by LARP

Project Scope

• KPP Deliverables:


_	Threshold KPPs	Objective KPPs	
	10 Q1/Q3 Cryo-assemblies	1 Cold Mass Assembly	In project baseline
	10 RFD Dressed Cavities	1 RFD Dressed Cavity &	baseline
_		Financial support for DQW cavities	_

- Threshold KPPs have been agreed with CERN Technical Management (Lucio Rossi)
 - It now includes installing the cold mass assembly in the final cryostat supplied by CERN
- Objective KPPs constitute Scope Contingency
- (*As of Nov 29th 2016*) Scope **does not** include prototypes
 - Assumed to be funded by LARP

Work Breakdown Structure (WBS)

WBS Chart (US-HiLumi-doc-104)

LARP

WBS Dictionary (US-HiLumi-doc-39) Each L3 WBS has a WBS Dictionary entry. Example:

WBS Code	WBS Name	Control Account
302.2.05	Coil Fabrication at FNAL	Yes
WBS Description		

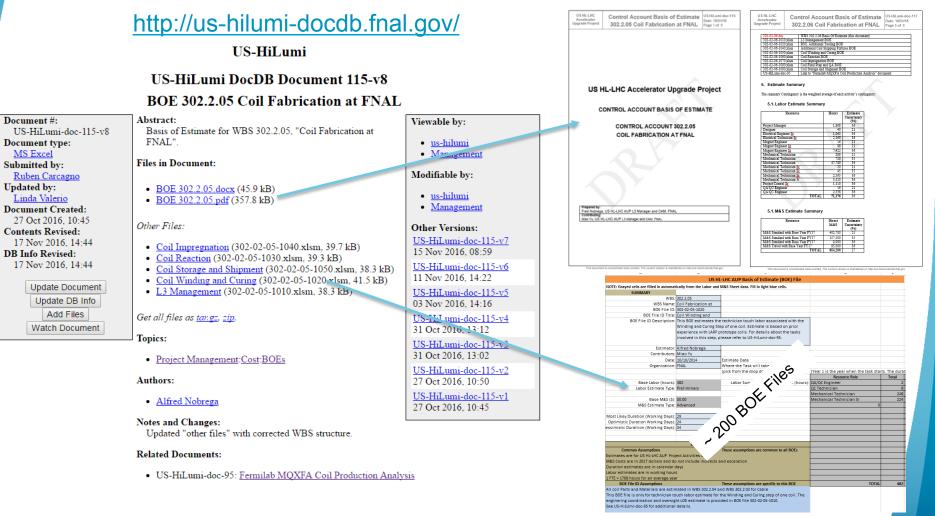
Scope of Work

Fabricate 50 QXF coils at Fermilab. Fabrication steps include Winding and Curing, Reaction, and Impregnation. Includes shipping of accepted coil to LBNL for magnet assembly. Detailed description of QXF coil fabrication process provided by US-HiLumi-doc-95

Scope Assumptions/Exclusions

- One set of coil fabrication tooling is available from LARP, installed and fully functional in Fermilab Industrial Building 3 (IB3). This includes a winding machine with one mandrel, a curing press, a reaction oven and an impregnation fixture, an impregnation station (in IB2) and an impregnation fixture.
- Coil witness sample testing is covered under the scope of WBS 302.2.02 Stand Procurement
- 1 out of every 8 coils is assumed to be rejected and scrapped (see Risk Register in US-HiLumi-doc-79)

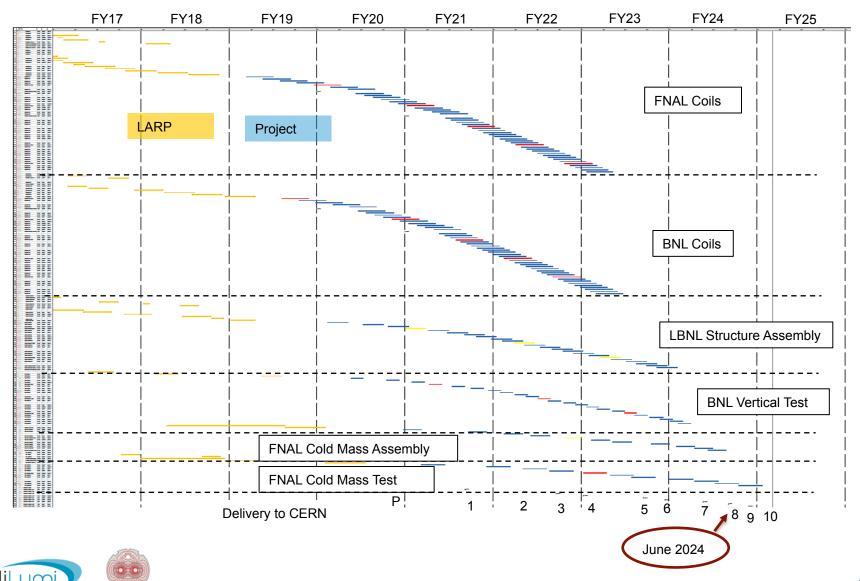
Deliverables


A minimum of 40 accepted QXF coils with their corresponding QC reports

- 13 Control Accounts
- L3/CAM Identified

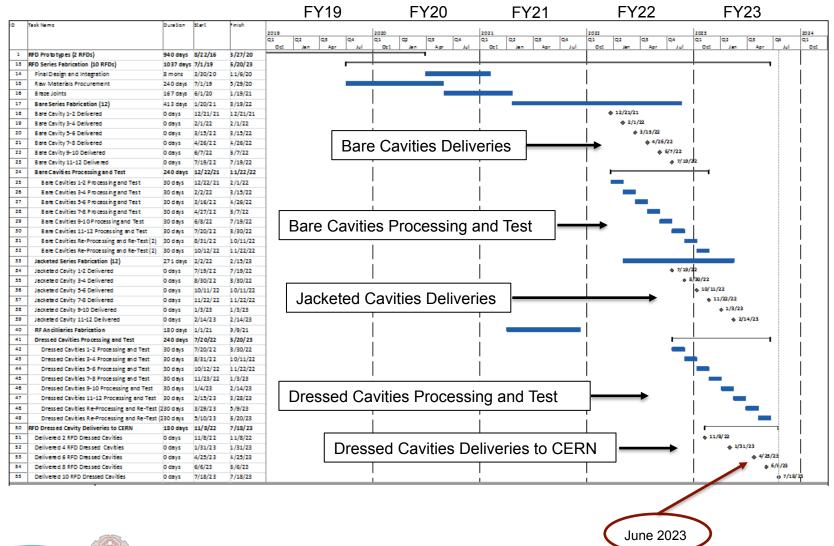
Basis of Estimate (BOEs)

 Each Control Account has a BOE DocDB Document with several supporting BOE files in a standard format (DocDB upload in progress). Example:



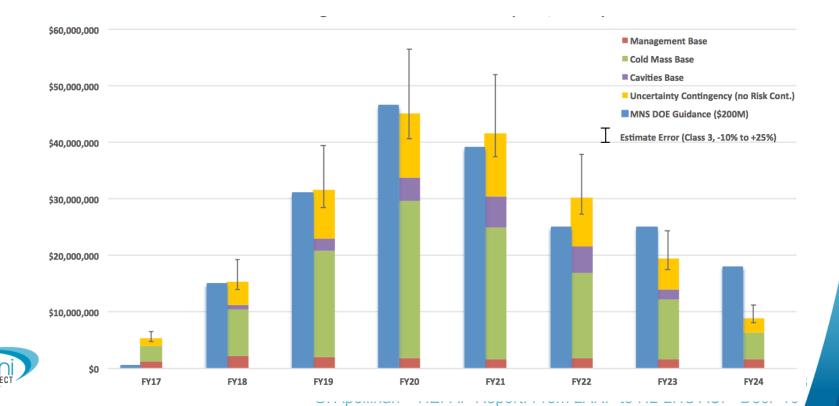
Risk Mitigation Actions

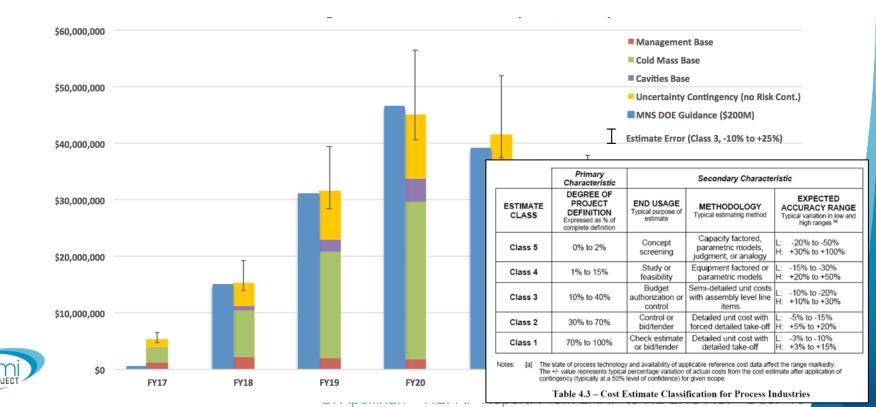
- Project baseline includes risk mitigation actions to make up for estimated product failures
 - Details in Risk Register (US- HiLumi-doc-79, in progress)
- Failure Assumptions:
 - 1 out of 10 cables is rejected
 - 1 out 8 coils is rejected
 - 3 out of 20 magnets have to be re-worked and re-tested
 - 1 out of 10 cold mass assemblies has to be re-worked and re-tested
 - 1 out of 5 RFD cavities is rejected
- Uniform distribution of failures is assumed


Q1/Q3 Preliminary Integrated Schedule (Q1/Q3 #8 delivered by June 2024)

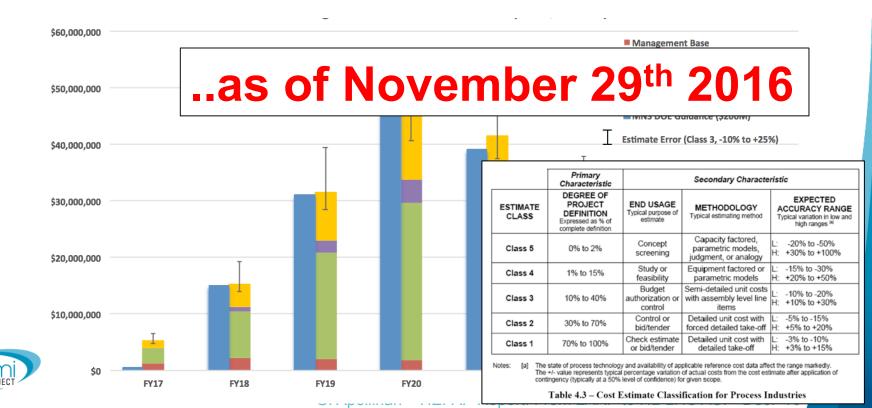
-LHC PROJEC

LARP

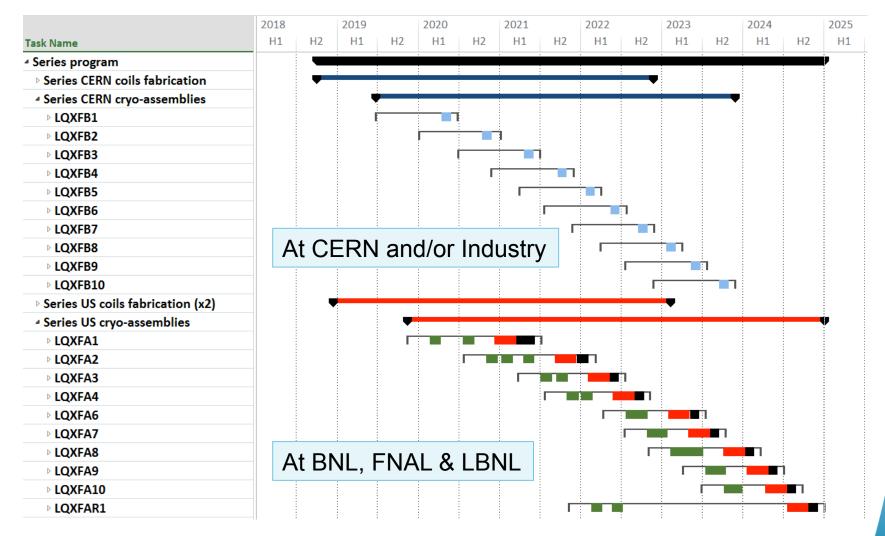

RFD Preliminary Integrated Schedule ("Dressed" RFD #8 delivered by June 2023)


Time-Phased Cost Estimate – 30,000 feet view

- The "Preliminary Integrated Schedules" for Magnets and CC (to be shown later) allow HL-LHC AUP to plan for funding profile.
- Cost Estimate at ~198 M\$ Level
 - 128 M\$ (Base) + 47 M\$ (Estimate Contingency) + 21 M\$ (Escalation)
 - 128 M\$ (Base) = 99 M\$ (Magnets) + 17 M\$ (CC) + 12 M\$ (Management)
 - Estimate Contingency: Magnets (36%) vs CC (43%)
- Residual <u>Risk Contingency</u> not included in the cost estimate


Time-Phased Cost Estimate – 30,000 feet view

- The "Preliminary Integrated Schedules" for Magnets and CC (to be shown later) allow HL-LHC AUP to plan for funding profile.
- Cost Estimate at ~198 M\$ Level
 - 128 M\$ (Base) + 47 M\$ (Estimate Contingency) + 21 M\$ (Escalation)
 - 128 M\$ (Base) = 99 M\$ (Magnets) + 17 M\$ (CC) + 12 M\$ (Management)
 - Estimate Contingency: Magnets (36%) vs CC (43%)
- Residual <u>Risk Contingency</u> not included in the cost estimate



Time-Phased Cost Estimate – 30,000 feet view

- The "Preliminary Integrated Schedules" for Magnets and CC (to be shown later) allow HL-LHC AUP to plan for funding profile.
- Cost Estimate at ~198 M\$ Level
 - 128 M\$ (Base) + 47 M\$ (Estimate Contingency) + 21 M\$ (Escalation)
 - 128 M\$ (Base) = 99 M\$ (Magnets) + 17 M\$ (CC) + 12 M\$ (Management)
 - Estimate Contingency: Magnets (36%) vs CC (43%)
- Residual <u>Risk Contingency</u> not included in the cost estimate

Series production

Contingency Analysis

- Contingency Categories
 - Scope Contingency
 - Estimate Uncertainty Contingency
 - Risk Contingency
 - Risk Mitigation Actions
 - Schedule Contingency

Scope Contingency

- Scope Contingency is provided by the following Objective KPP scope:
 - 1 cold mass assembly and 1 RFD cavity
- Objective scope provides additional spares to CERN
 - CERN requires a minimum of 2 spares cryo-assemblies and 2 spares RFD cavities to be part of the threshold scope, so the objective scope is for a 3rd spare
- Strand for the objective cold mass assembly must be procured by late FY21/early FY22
 - It means relatively early commitment to objective scope
- Objective scope total cost is~ \$11.4M (~6% TPC)

Risk Contingency

- Risk Management Plan adopted (FNAL procedure, in US-HiLUmi-doc-89)
- Project Risk Register development in progress (draft in US-HiLumi-doc-79)
 - More than 70 risks have been identified
 - Major mitigation actions already in Project Baseline (next slide)
- Risk Workshop with all project CAMs scheduled at FNAL for December 1st 2016 (yesterday)
 - First pass at quantitative analysis of residual risks

Risk Mitigation Actions

Risk mitigation actions included in baseline

Risk	Probability	Mitigation Actions
Cable for coil rejected	10% (1 every 10 cables)	Fabricate 23 additional cables
Coil rejected	12.5% (1 every 8 coils)	Fabricate 12 additional coils
Magnet poor performance	15% (3 every 20 magnets)	Re-assemble and re-test 3 magnets
Cold Mass poor performance	10% (1 every 10 cold masses)	Re-assemble and re-test 1 cold mass
RFD cavity rejected	20% (1 every 5 cavities)	Fabricate 2 additional RFD cavities

- More details in Risk Register (in progress)
- Risk Mitigation Actions Cost and Schedule Impact
 - ~ \$21M (11% TPC), ~ 12 months

Estimate Uncertainty Contingency

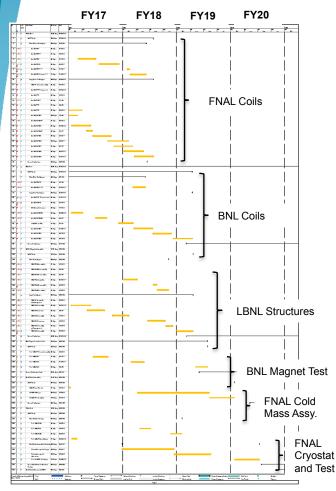
 Estimate Uncertainty Contingency follows the FNAL Project Support Office rules for Labor and M&S:

Code	Type of Estimate	Contingency %	Descripti	ion			
M&S Guidel	ines		•				
M1	Existing Purchase Order	0%	Items that have been completed or obligated. (Note: Contact C included as estimate uncertainty contingency)	hange Order	s are considered a Risk and should not be		
M2	Procurements for LOE / Oversight work	0%-20%	M&S items such as travel, software purchases and upgrades, co other work activities.				
M3	Advanced	10%-20%	Items for which there is a catalog price or recent vendor quote existing design with little or no modifications and for which th		elines	Contingency %	Description
M4	Preliminary	20%-40%	Items that can be readily estimated from a reasonably detailed designs but with moderate modifications, which have docume	L2	Actual Level of Effort Tasks	0% 0%-20%	Actual costs incurred on activities completed to date. Support type activities that must be done to support other work activities or the entire project effort, where estimated effort is based on the duration of the activities it is supporting.
M5	Conceptual	40%-60%	(e.g., budgetary quote, vendor RFI response) based on a prelin Items with a documented conceptual level of design; items ad modifications, which have documented costs from past project	L3	Advanced	10%-25%	Based on experience with documented identical or nearly identical work. Development of activities, resource requirements, and schedule constraints are highly mature. Technical requirements are very straightforward to achieve.
M6	Pre-Conceptual - Common work	60%-80%	Items that do not have a documented conceptual design, but d estimate type indicates little confidence in the estimate. Its u estimate.		Preliminary	25%-40%	Based on direct experience with similar work. Development of activities, resource requirements, and schedule constraints are defined at a preliminary (beyond conceptual) design level. Technical requirements are achievable and with some precedent.
	Pre-Conceptual - Uncommon work Beyond state of the art	80%-100%	Items that do not have a documented conceptual design, and is should be minimized when completing the final estimate. Items that do not have a documented conceptual design, and here the state of the	L5	Conceptual	40%-60%	Based on expert judgment using some experience as a reference. Development of activities, resource requirements, and schedule constraints are defined at a conceptual level. Technical requirements are moderately challenging.
1110		10070	requirements are beyond the state of the art.		Pre-conceptual	60%-80%	Based only on expert judgment without similar experience. Development of activities, resource requirements, and schedule constraints are defined at a pre-conceptual level. Technical requirements are moderately challenging.
				L7	Rough Estimate	80%-100%	Based only on expert judgment without similar experience. Development of activities, resource requirements, and schedule constraints is largely incomplete. Technical requirements are challenging.
				L8	Beyond state of the art	>100%	No experience available for reference. Activities, resource requirements, and schedule constraints are completely undeveloped. Technical requirements are beyond the state of the art.

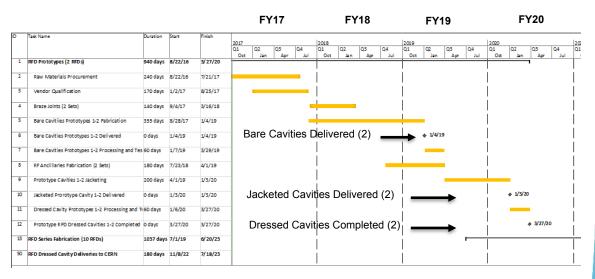
- Contingency allocated at the activity level, total contingency is a weighted average
- Total estimate uncertainty contingency is ~ \$47M, which is ~ 37% of the base cost and ~ 24% of the TPC

Schedule Contingency

- With the assumption of uniform distribution of product failures, <u>there is no schedule float</u> for the critical milestone of cryo-assembly #8 at CERN by June 2024
- To create schedule float, funding would need to be shifted from the later years to the earlier years to accelerate the production rate
 - The needs were communicated in a letter to S. Rolli in August 16, 2016.
- Working with DOE to create at least ~6 months of float in HL-LHC AUP Project (Cryoassembly #8 shipped by Dec. '23 rather than June '24)

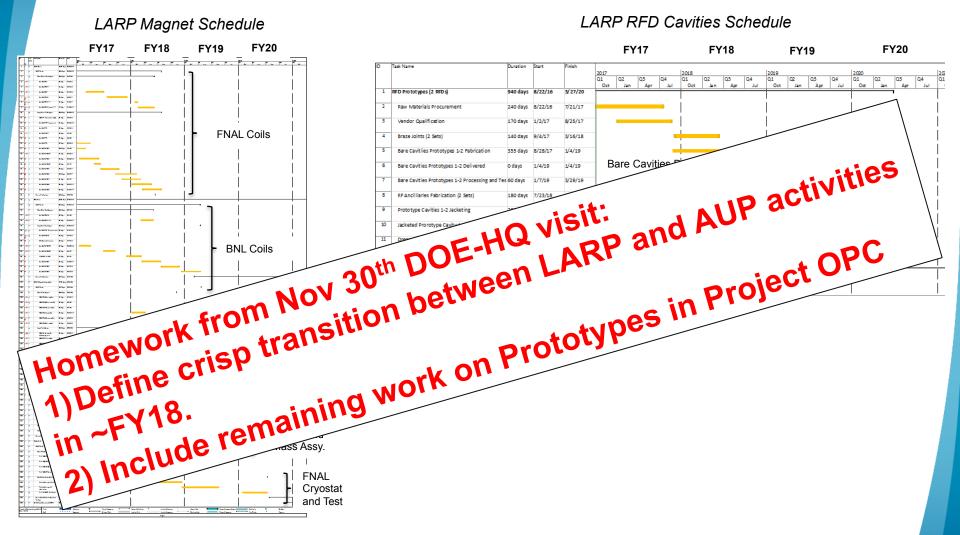

LARP and HL-LHC AUP

- A Key Project Assumption is that all prototypes are funded by LARP.
 - (As of Nov 29th) Project scope was only <u>series</u>
 <u>production</u>
- LARP prototypes are a critical project <u>external</u> <u>dependency</u>
 - Successful performance and timely completion of LARP prototypes essential to obtain CD-3 on schedulea:
 - CD-3b (magnets) mid-FY18
 - CD-3c (cryo-assemblies and RFD cavities mid-FY20
 - FY18-FY20 LARP funding request to execute prototype scope has been requested



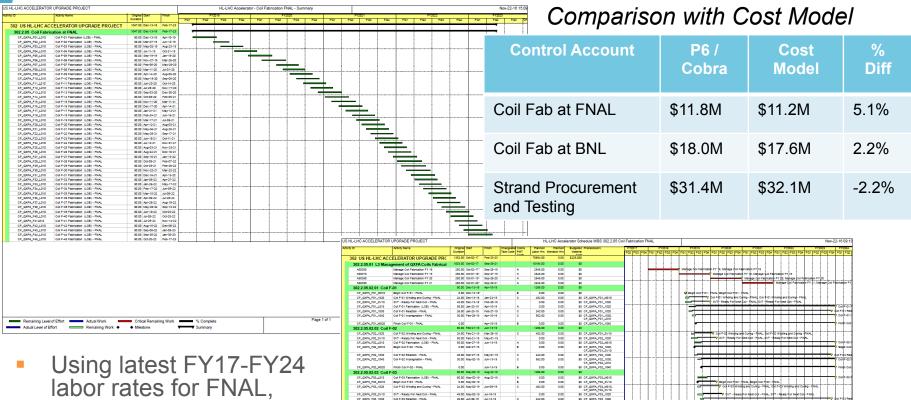
LARP Funding Needs in FY18-FY20 (DOE Review of LARP, July 2016)

LARP Magnet Schedule



LARP RFD Cavities Schedule

LARP Funding Needs in FY18-FY20 (DOE Review of LARP, July 2016)



Preparation for ICR

- DOE Independent Cost Review (ICR) expected to start ~ February 2017
- Project Office staffing ramping up
- Cost Model is being migrated to FNAL resource loaded schedule (RLS) Primavera (P6)/Cobra system
 - Three control accounts already loaded, 10 more to go
- Will continue using Cost Model for quick "what-if" scenario analysis
 - P6/Cobra will focus on a particular scenario for the ICR
- BOEs are being uploaded to controlled "DocDB" documents, one document per Control Account with an overview CA BOE and several BOE support files
 - BOE "scrubbing" ongoing, verifying estimates traceability, source documentation, etc.
 - ~ 200 BOE files
- Draft "CD-1" documents in progress

P6/Cobra Output Example **Coil Fabrication at FNAL and BNL**

- BNL, and LBNL
- 3% labor escalation, 2% M&S escalation

\$0 CF_QXFA_F03_M010 CF_QXFA_F02_0V10 \$0 CF_QXFA_F03_1020 CE OXEA FOR SVID SVT - Ready For Next Col - FNA 48.00 May-02-19 Jul-10-19 0.00 242.00 562.00 26.00 Jun-06-19 Jul-12-19 30.00 Jul-15-19 Aug-23-15 50 CF_QXFA_F04_M010 50 CF_QXFA_F03_0V10 50 CF_QXFA_F03_0V10 CF_QXFA_F03_0V10 50 CF_QXFA_F04_1020 80.00 Jul-11-19 Oct-31-19 0.00 Jul-11-19 24.00 Jul-11-19 Aug-13-19 0.00 49.00 Jul-11-19 Dep-18-19 26.00 Aug-14-19 Dep-19-19 30.00 Dep-20-19 Oct-21-19 CF_0XFA_F64_6V10 0.00 242.00 562.00 00 CF_QXFA_F04_1030 CF_QXFA_F04_1010 00 CF_QXFA_F04_1040 0.00 80.00 Dep-19-19 Jan-16-20 0.00 0.00 462.00 F_QXFA_F05_L011 0.00 Sep-19-19 24.00 Sep-19-19 Oct-22-19 50 CF_QXFA_F04_9V10 50 CF_QXFA_F05_M010 CF_QXFA_F04_9V10 50 CF_QXFA_F05_1020 50 CF_QXFA_F05_1020 50 CF_QXFA_F05_1030, CF_QXFA_F05_L010 \$0 CF_QXFA_F05_M0 \$0 CF_QXFA_F05_0V 0.00 0.00 482.00 0.00 24.00 Nov-27-19 Jan-07-20 \$0 CF_QXFA_F06_M010 CF_QXFA_F05_0V10 44.00 Nov-27-19 OF OXEA FOR OVIO Feb-05-2 0.00 242.00 562.00 26.00 Jan-08-20 30.00 Feb-14-20 Feb-13-20 Mar-26-20 50 CF_QXFA_F06_1020 50 CF_QXFA_F06_1020 50 CF_QXFA_F06_1030 CF_QXFA_F06_1030 Actual Level of Effor Milestone % Complete

G. Apollinari – HEPAP Report: From LARP to HL-LHC AUP Dec. '16

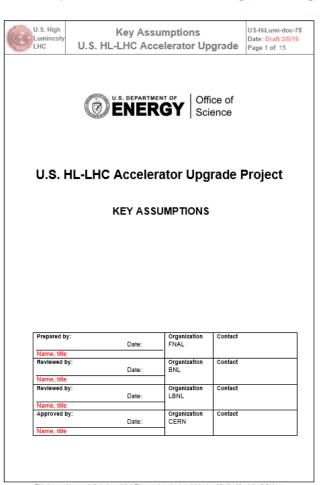
Conclusions

- LARP activities have seen several successes in the last year on the front of HL-LHC Magnets assembly and tests.
 - Crab Cavities activities are finally under full LARP control, with promising progress on the "SPS Prototypes" and a re-planning of activities for HL-LHC cavities.
- Project planning on track to support ICR in ~Feb 2017 and CD-1 in ~Summer 2017
 - Issues to address:
 - No schedule float for mid-2024 delivery of cryo-assembly #8
 - FY21-FY22 apparent funding shortfall after adding Crab Cavity production plan
 - Include prototype efforts for HL-LHC as part of HL-LHC AUP.

Backup Slides

Risk Management Plan

- Risk Management Plan Document (US-HiLumi DocDB #89) and Preliminary Risk Register (US-HiLumi DocDB #79) available
- Describes procedures for main processes:
 - Plan Risk Management
 - **Identify Risks**
 - Perform Qualitative Risk Analysis (*Risk Ranking*)
 - Perform Quantitative Risk Analysis
 - Plan Risk Responses
 - Monitor and Control Risks
- Risk mitigation actions are part of the project baseline (scope, schedule, and cost)


						[Risk ID	- Risk Owner	Risk Type	- Risk Title	- Risk Descripti	on	Detailed Risk Cause	- Detailed Risk Effect	Initial Response	e Plan	Comments
[Negligible impact	Low impact	Med	lium impact	Hi	gh impact	Cable								Failure of a magnetic brake happened recently at LBNL inspect magnetic brakes af (it takes two techs 2 days to brakes from the spools, op inspect the permanent mag	The plan is to fter every 8 runs to remove the ten the housings,	
Technical	Quality not affected	 Quality slightly below the required standard 		y moderately the required ard		ignificantly below ired standard, or opardy		Dietderich	Threat	Cable Loss	Cable Loss due to LBNL ca failure during a cable rur		The main concern for loss of a cable during a r is failure of a magnetic brake, or a mandrel tip breaks.		re-mount them in the spool necessary re-use magnetic been used before and have be of good quality. New bra- problematic in the past (cr operation because they we properly, producing free pa	brakes that have e demonstrated to akes have been racked during ere not sintered articles that	
Cost If Project TPC < 100M\$	• 0.05% of TPC	• 0.05% – 0.5% of TPC	• 0.5% -	- 5% of TPC		unds halts Project	:								would cause the brake to s 2nd mandrel will be fabric to install when the present much wear or appears to s fatigue. It takes 1-2 weeks t mandrel by LBNL staff.	ated and ready t mandrel has too show effects of	
If Project TPC > 100M\$	• < 50k\$	• 50k\$ – 500k\$	• 500k\$	– 5 M\$, or	 > 5M\$, o Lack of f 	or unds halts Project	: -								In the case of gears or driv to have spare parts. LBNL is spare machine that was in one time, and also explorin	s looking for a the LBNL shop at	
		 Critical path change of < 2 months, or 		I path change of	Critical p months	oath change of > 6									of having parts made in the maintenance shop if neces of the measurement machi-	e LBNL repair and sary. In the case ine, LBNL recently	
Schedule	 No schedule impact 	 Tier-4 milestone (Project -owned) 	• Tie (FP	Probability		Negligible in	npad	t	L	ow impa	ict	Me	dium impact	High impac	t	iew was th the new se spare NI e items to of a	
l		moves by > 1 month	mc	Very High	64 - 100%	No rank	c		M	edium ra	ank]	High rank	High rank	:	tensive ncy plan is	
				High	39 - 64%	No rank	c		M	edium ra	ank	I	High rank	High rank	:		
				Medium	21 - 39%	No rank	C		1	Low ran	k	М	edium rank	High rank	:		
				Low	9 - 21%	No rank	c		I	Low ran	k	М	edium rank	Medium rai	ık		
				Very low	0 - 9%	No rank	¢.		1	Low ran	k	1	Low rank	Medium rar	ık		
Hilumi																	

Preliminary Project Planning

Draft "Key Assumptions" Document available:

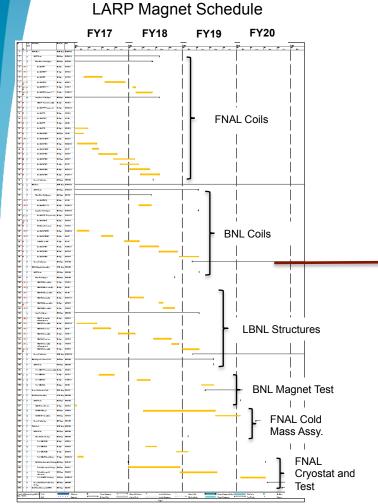
https://us-hilumi-docdb.fnal.gov:440/cgi-bin/ShowDocument?docid=78

LHC	High inosity U.S. HL-LHC Accelerator Upgrade	US-HiLumi-doc-78 Date: Draft 3/8/16 Page 3 of 15
TABLE	E OF CONTENTS	
1. INT	RODUCTION	
2. PRO	DJECT SCOPE ASSUMPTIONS	
21	MAGNETS	4
2.2	CRAB CAVITIES	
2.3.	ELECTRON LENS	
3. PR(DJECT COST ASSUMPTIONS	5
3.1	DOE PROJECT FUNDING	
3.2	Cost Estimating	
4 PR(DJECT SCHEDULE ASSUMPTIONS	
41	CERN Schedule	
4.1.	PROJECT SCHEDULE	
43	PROCUREMENTS SCHEDULE	
5 344	NUFACTURING ASSUMPTIONS	
5. MA	MAGNETS MANUFACTURING	
5.2	CRAB CAVITIES MANUFACTURING	
53	ELECTRON LENS MANUFACTURING	
	RASTRUCTURE AND PERSONNEL ASSUMPTIONS	
6.1.	GENERAL ASSUMPTIONS	
6.2. 6.2	FNAL INFRASTRUCTURE AND PERSONNEL. 1. FNAL Technical Division (TD)	
6.2		
6.2		
6.2		
6.3	BNL INFRASTRUCTURE AND PERSONNEL	
6.4.	LBNL INFRASTRUCTURE AND PERSONNEL	
6.5.	TBD INFRASTRUCTURE AND PERSONNEL	
	FERENCES	16

This document is uncontrolled when printed. The current version is maintained on http://us-hilumi-docdb.fnal.gov

G. Apollinari – HEPAP Report: From LARP to HL-LHC AUP Dec. '16

LARP Prototypes - Milestones


								Fise	cal Ye	ar								
	2017			2018			2019				2020				2021			
Task Name	Qtr 1	1 Qtr 2	Qtr 3 Qtr 4	Qtr 1	Qtr 2	Qtr 3 Qtr 4	Qtr 1	Qtr 2	Qtr 3	Qtr 4	Qtr 1	Qtr 2	Qtr	3 Qtr 4	Qtr 1	Qtr 2	Qtr 3	Qtr 4
CD-1/3a																		
Magnets CD-1/0	D-3a	a 🦷																
Magnet Prototype 1 Test Complete			•				-											
Magnet Prototype 2 Test Complete					•													
Magnet Series Production Approved (CD-3b)					-	•					Mag	nets I	Pro	ductio	'n			
Magnet Series Production Starts			CD-2/CD-	-3b 🗲		×	-						-					
Cold Mass Assembly				-			-											
Magnet Prototype 3 Test Complete									•									
Cold Mass Assembly Prototype Test Complete												•						
Cold Mass Assembly Production Approved												1	•	Cold	Mas	s Pro	ducti	on
Cold Mass Assembly Production Starts							-			CD-3	c 📢		•					-
Crab Cavities																		
Crab Cavity Prototypes Test Complete							-				•	•						
Crab Cavity Series Production Approved (CD-3c)												X	4	C	avitie	s Pro	ducti	on
Crab Cavities Series Production Starts				-			-				-		•					-
				:			:				:				:			
: LARP Prototypes									-	_								
: DOE CD Approval (CD-x)								_		_								
						LA	RP/	Pro	ject	Ove	erlap)						
Project Production																		

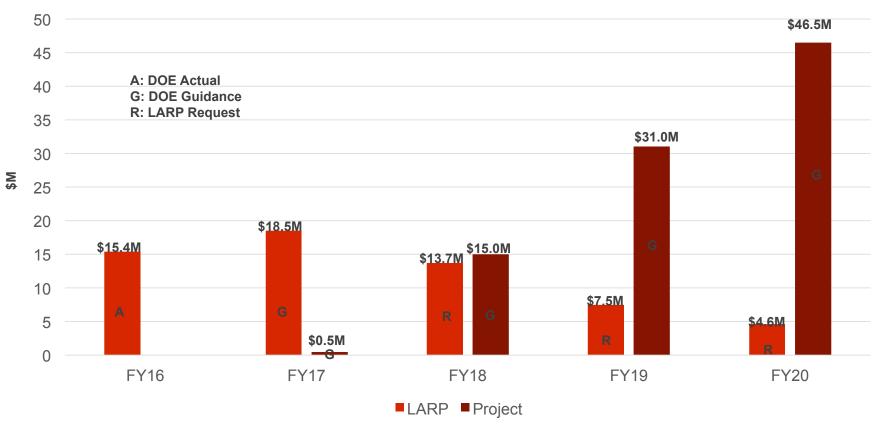
- There is an overlap of ~ 2 years (mid-CY18 to mid-CY20) between LARP prototypes and project series production
 - First two magnet prototypes needed to approve start of magnet series production (CD-3b)
 - Series production starts with coil fabrication
 - Last two magnet prototypes needed for HL-LHC tunnel ready cold mass assembly
- LARP funding slow ramp down (FY18-19-20) while project funding ramps up

LARP Magnet Prototypes (Rough) FY18-20 Estimate

LARP Magnet Estimates

LARP Magnet Quantities

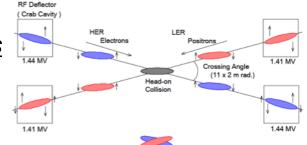
FY18 FY19 FY20


	FY17	FY18	FY19	FY20
Short Coil Prototypes				
QXFS-9	1			
QXFS-10	1			
QXFS-11		1		
Total Short Coil Prototypes	2	1		
Long Coil Prototypes				
QXFA-101	0.5			
QXFA-102	0.7			
QXFA-103	1			
QXFA-104	1			
QXFA-105	1			
QXFA-106	0.6	0.4		
QXFA-107	0.4	0.6		
QXFA-108		1		
QXFA-109		1		
W&C PC		0.8		
QXFA-201		1		
QXFA-202		1		
QXFA-203			1	
Total Long Prototypes	5.2	5.8	1	
Short Magnet Model				
MQXFS1c Test	1			
MQXFS4 Assembly		1		
MQXFS4 Test		1		
Marriet Duratations Arres				
ong Magnet Prototype Assy MQXFA1 Assembly	1			+
	1			+
MQXFA1 Test		1		+
MQXFA1b preload incr & test	0.1	1		
MQXFA2 Assembly	0.5	0.5	-	-
MQXFA2 Test		1	+ .	-
MQXFA3 Assembly			1	
MQXFA3 Test			1	
Cold Mass Prototype				+
LMQXFP Design	0.2	0.8		1
			1 .	+
LMQXFP Assembly			1	

Shipment to CERR Sub-tota	\$2,309.8	\$2,017.5 \$3,908.1	\$984.5 \$984.5
Shipment to CERM		\$2,017.5	
Shipment to CERM		\$2,017.5	
Shipment to CERM			
			\$342.0
Horizontal Tes		<i>φ</i> υυυ.0	\$642.50
Install Cryostat on Cold Mass Upgrade Test Stand		\$325.0 \$600.0	
Cold Mass Assembly		\$742.5	
Cryostat Assembly		\$350.0	
Cryostat Tooling			
Cold Mass Tooling			
Cryostat Design and Interfaces			
Prototype Cold Mass & Cryostat Cold Mass Design	1 \$633.80		
Dratating Cald Mass 9 Constant			
Sub-tota	\$1,303.0	\$1,218.9	
Data Analysis	\$361.80	\$361.8	
MQXFA1 Tes		\$857.1	
MQXFS1c Tes	t \$0.00	\$0.0	
LOE	\$84.15	\$0.0	
Tests	+		
Sub-tota	\$1,139.8	\$269.3	
QA and procurement suppor		\$0.0	
MQXFA1b Loading		\$0.0	
MQXFA3, only 1/3 M&S	\$0.00	\$0.0	-
MQXFA2 Assembly	/ \$975.10	\$0.0	
MQXFA1 Disassembly		\$0.0	
MQXFA1 Assembly		\$269.3	
MQXFS4 structure		\$0.0	
Structures and Assembly LOE	\$66.00	\$0.0	
Sub-tota	\$2,893.1	\$402.5	
Long Coils		\$402.5	
Short Coils	\$ \$360.85	\$0.0	
Toohigh (Holik		\$0.0	
Coils LOE	\$519.95	\$0.0	
Coils			
Sub-tota	\$1,044.1	\$0.0	
Cable Fabrication		\$0.0	
Q		\$0.0	
Procurement Follow-up		\$0.0	
LOE	\$40.00	\$0.0	
Conductor			
Sub-tota	\$0.0	\$0.0	
Toohigh Fellowship		\$0.0	
Accelerator Physics	\$0.00	\$0.0	
Energy Deposition		\$0.0	
Magnets	\$77.60	\$0.0	
QXF Design	<u> </u>		
Sub-tota	\$167.2	\$0.0	
Project Preparation		\$0.0	
Meetings, Reviews		\$0.0	
QXF Management Coordination	n \$101.85	\$0.0	

FY16-FY20 LARP/Project Funding Transition

FY16-FY20 LARP and Project Funding*

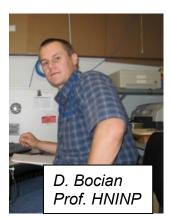

*Project funding guidance from approved DOE "Mission Need Statement" (US-HiLumi-doc-82). This profile does not meet CERN delivery schedule for HL-LHC (explained in separate talk)

Comments on KEK Crab Cavity Experience – Lessons Learned

Purpose for installing crab cavities in KEKB was twofold: address the geometrical factor loss and improve the beam-beam limit.

- Geometrical Factor Loss. <u>Cavities performed as</u> <u>expected from the 1st day of operations !</u>
 - Due to the short KEK bunches, the geometrical factor allowed only a modest increase in luminosity.

- In LHC, with longer bunches, the correction of the geometrical factor loss provides the large improvement in the Luminosity expected with Crab Cavities
- Improvement of Beam-Beam limit. This was the main reason for installation of Crab Cavities at KEK, with an expectation of improvement of KEK beam-beam limit from 0.06 to 0.15
 - In real crab cavity operation at KEKB this factor two was not achieved, but only some 20-30% (<u>http://accelconf.web.cern.ch/AccelConf/IPAC10/papers/weoamh02.pdf</u>)
 - Although the reason for underperformance was not identified, one suspects the presence of other uncorrected aberrations, since the introduction of skew sextupole enhanced the gain obtained from the crab cavities leading to record luminosities.
- In LHC, no improvement of the beam-beam limit is assumed from the CC. <u>Only the</u> geometrical factor loss is assumed to be corrected by CC
 - This is very conservative. If there is a gain (which simulations do predict) this could lead to an additional luminosity gain beyond the baseline HL-LHC parameters.


Toohig Fellowship

Due to changed nature of activities, asked G.L. Sabbi to lead Toohig Fellow selection in the next ~5-6 years, replacing the outstanding effort of J. Fox (SLAC)

E. Ravaioli selected at USLUA for Congressional Visit in Spring '17

HL-LHC AUP M&S Expenditures

Magnets M&S

- Strand Procurement (FNAL)
- Cable Fabrication (LBL)
- Coil Parts and Tooling (FNAL)
- Coil Tooling (BNL)

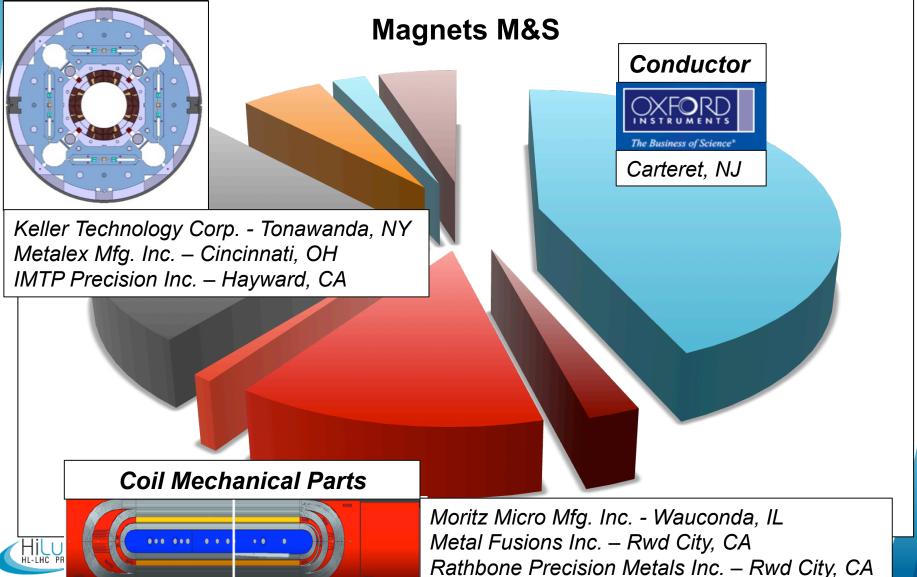
M

C

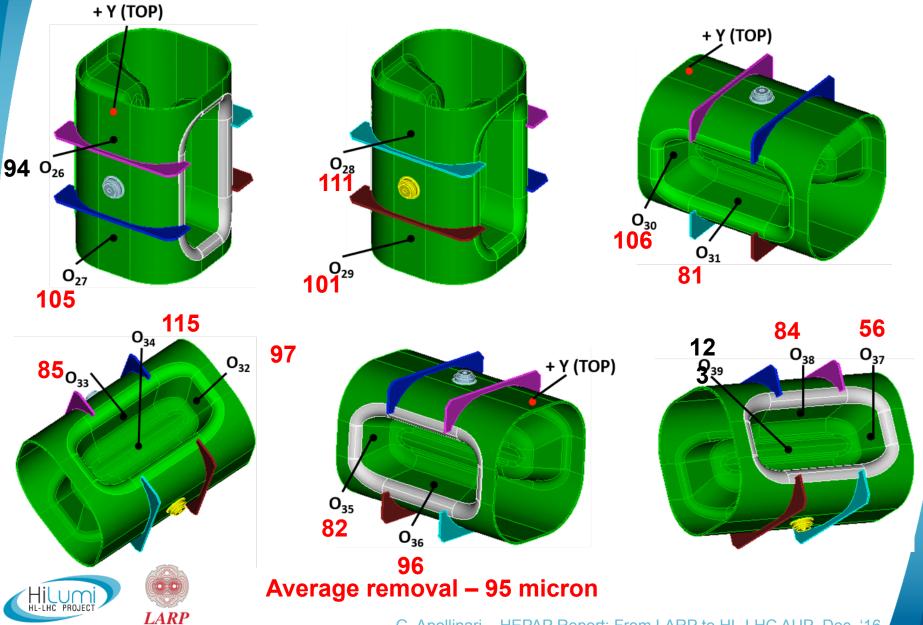
Structure Parts (LBL)

Magnet Procurements estimated at ~42.5 M\$

- CC Procurements estimated at ~9.0 M\$
 - FNAL: ~6.5 M\$
 - FNAL or Other Lab: ~2.5 M\$



- Raw Materials (FNAL)
- Cavities (FNAL)
- He Vessel Materials (FNAL)
- RF Ancillaries (FNAL or Lab)
- Tooling & Shipment (FNAL)



HL-LHC AUP Magnets M&S Expenditures: Candidate Companies based on LARP Experience

Structure Parts

RFD Thickness Measurements Results – CTR-002

G. Apollinari – HEPAP Report: From LARP to HL-LHC AUP Dec. '16

HL-LHC AUP Project Office

Project Manager & Deputy Project Manager

- ES&H Manager
- QA Manager
- Financial Manager
- Procurement Liason
- Lead Project Control
- P6 Scheduler
- Risk Liason

Yours Truly

- M. Bonkalski, ESH&Q
- J. Blowers/A. Hammati
- C. Trimby
- T. Powers
- F. Leavell-R. Marcum
- K. Kozak
- L. Taylor

Documentation in Support of CD-2/CD-3

- Tailoring for CC (CD-3c in ~'20)
- Specification Documentation
 - Functional Requirement Specifications in preparation
 - Conceptual/Technical Design Report in preparation
 - Technical Specifications/Vendor Qualification Assessment in preparation for RFD Prototypes procurements
- Project Documentation
 - BOEs/RLS/Dictionaries to be described in Ruben's

Phase #1: RFD Prototype Schedule

					FY17	FY18	FY19	FY20
)	Task Name	Duration	Start	Finish	2017 2017 Q1 Q2 Q3 Q4 Q1 Oct Jan Apr Jul 0		2019 Q1 Q2 Q3 Q4 Oct Jan Apr Jul	2020 Q1 Q2 Q3 Q4 Oct Jan Apr Jul
1	RFD Prototypes (2 RFDs)	940 days	8/22/16	3/27/20		an Ap Sa	occ san xp su	
2	Raw Materials Procurement	240 days	8/22/16	7/21/17	L	l Inder Exe	cution in FY1	7-I ARP
3	Vendor Qualification	170 days	1/2/17	8/25/17	1 [l			
4	Braze Joints (2 Sets)	140 days	9/4/17	3/16/18				
5	Bare Cavitiles Prototypes 1-2 Fabrication	355 days	8/28/17	1/4/19				
6	Bare Cavities Prototypes 1-2 Delivered	0 days	1/4/19	1/4/19	Bare Cavities De	livered (2)	♦ 1/4/19	
7	Bare Cavities Prototypes 1-2 Processing and Tes	60 days	1/7/19	3/29/19				
8	RF Ancilliaries Fabrication (2 Sets)	180 days	7/23/18	4/1/19		_		
9	Prototype Cavities 1-2 Jacketing	200 days	4/1/19	1/3/20				!
10	Jacketed Prorotype Cavity 1-2 Delivered	0 days	1/3/20	1/3/20	Jackete	ed Cavities Deli	vered (2)	♦ 1/3/20
11	Dressed Cavity Prototypes 1-2 Processing and Te	60 days	1/6/20	3/27/20				
12	Proto type R FD Dressed Cavities 1-2 Completed	0 days	3/27/20	3/27/20		Dressed Caviti	es Completed (2)	3/27/20
13	RFD Series Fabrication (10 RFDs)	1037 days	7/1/19	6/20/23				1
50	RFD Dressed Cavity Deliveries to CERN	180 days	11/8/22	7/18/23	-			

27 March 2020

