

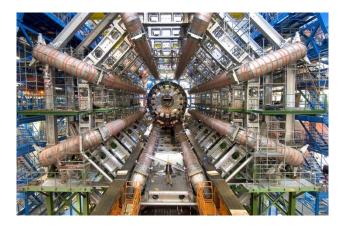
FY 2018 Budget Exercise DOE Office of Science

HEPAP Meeting, August 12, 2016

Cherry A. Murray Director, Office of Science www.science.energy.gov

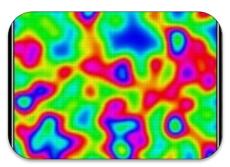
Department of Energy Mission Areas

Energy



Nuclear Safety and Security

Science


Environmental Cleanup

Office of Science FY16 - \$5.35B

Largest Supporter of Physical Sciences in the U.S.

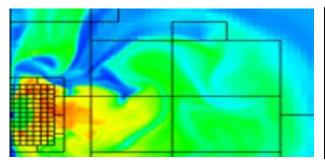
Research: 42%, \$2.2B

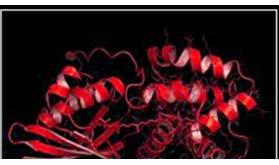
~40% of Research to Universities

> 20,000 Scientists Supported

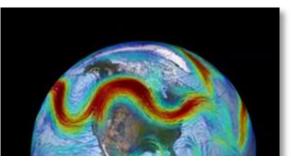
Funding at >300 Institutions including all 17 DOE Labs

Construction: 13.5%, \$723M


Facility Operations: 38%, \$2.02B


>30,000 Scientific Facility Users

Office of Science Programs



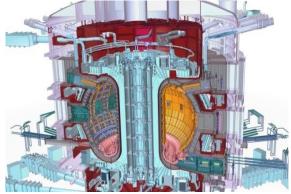
Advanced Scientific Computing Research FY2016 \$621M

Basic Energy Sciences

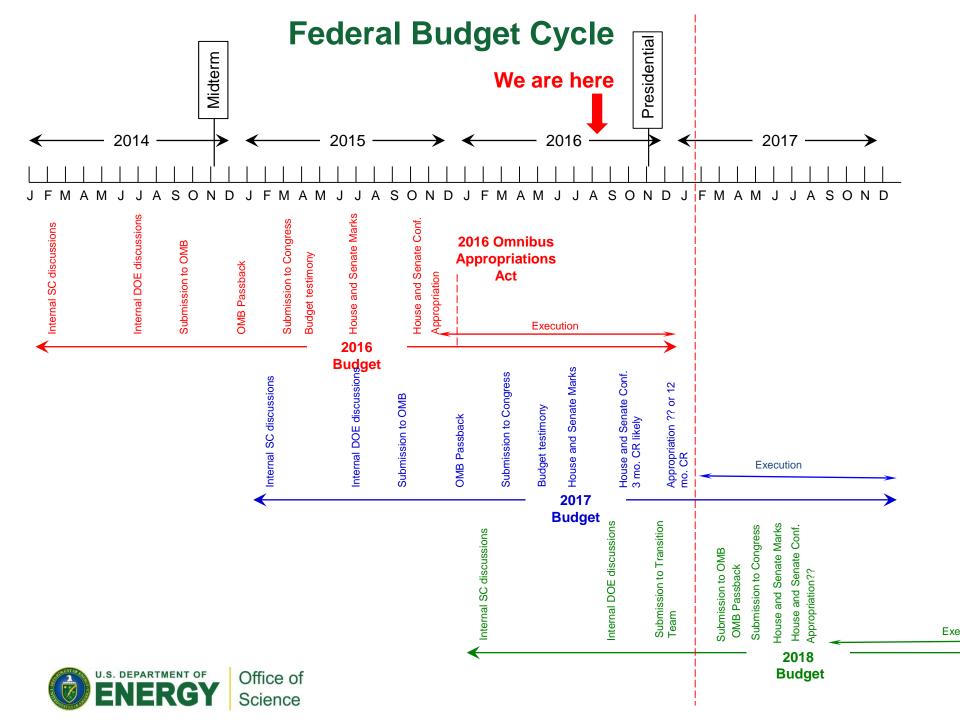
FY2016 \$1849M

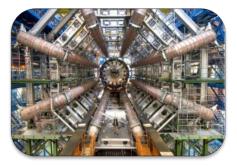
Biological and Environmental Research FY2016 \$609M

High Energy Physics

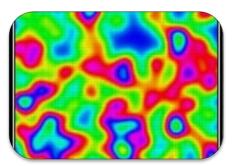

FY2016 \$795M

Fusion Energy Sciences


FY2016 \$438M


Nuclear Physics

FY2016 \$617M



Office of Science FY17 Request: \$5.67B, +6.1%

Largest Supporter of Physical Sciences in the U.S.

Research: 42%, \$2.4B

~40% of Research to Universities

> 20,000 Scientists Supported

Funding at >300 Institutions including all 17 DOE Labs

Facility Operations: 36%, \$2.06B

>35,000 Scientific Facility Users

\$1.8B Mission Innovation

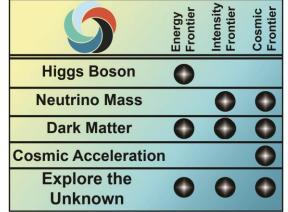
Without \$100M mandatory, \$5.57B, +4%

FY17 Appropriations Marks, as of 4-14-16

- Science \$5.5B (+3%) for both marks compared to FY16 enacted but some differences of opinion
 - -HEP fared well
 - FY16 Enacted \$795M
 - FY17 Request \$818M
 - Senate Mark \$833M
 - House Mark \$823M

Transition SC Budget Planning Scenarios extended for FY 2017 – FY 2022

- OMB Transition Budget Scenario Current Services
 - 2016 appropriated +2% growth per year in outyears (FY18 4.2% higher than FY16 enacted, 0.04% higher than FY17 Request)
 - Identification and prioritization of the activities that are delayed, suboptimal or cannot be sustained
- Internal 'Unconstrained' Scenario Aspirational
 - 2016 appropriated +7% growth per year in outyears (consistent with Senate authorizations mark for doubling of science budget in ten years)
 - Optimize funding levels for construction and operations
 - Include all requirements, such as full ITER first plasma funding, Exascale Initiative acceleration, P5 projects, science support for Mission Innovation, ...



High Energy Physics

Understanding how the universe works at its most fundamental level

- Particle Physics Project Prioritization Panel (P5) report in May 2014 presents an actionable long-term strategy for U.S. particle physics that enables discovery and maintains the U.S. position as a global leader in particle physics.
 - **Five intertwined science drivers**, compelling lines of inquiry that show great promise for discovery:

 - Pursue the physics associated with neutrino mass
 - Identify the new physics of *dark matter*
 - Understand cosmic acceleration: dark energy and inflation
 - *Explore the unknown*: new particles, interactions, and physical principles

 Science drivers identify the scientific motivation while the *Energy, Intensity, and Cosmic Research Frontiers* provide a useful categorization of experimental techniques
 http://science.energy.gov/~/media/hep/hepap/pdf/May-

2014/FINAL_P5_Report_053014.pdf

END

