

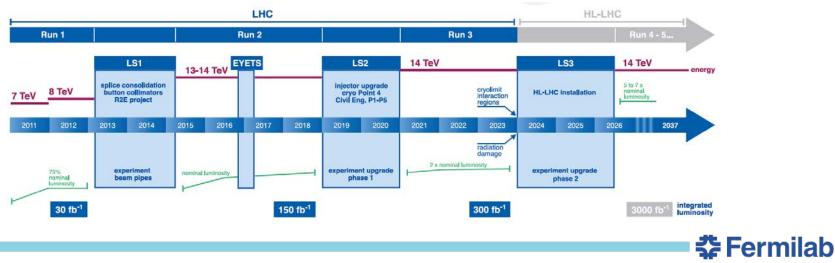
U.S. Activities for HL-LHC

G. Apollinari LARP Director

HEPAP Meeting December 9th – 11th, 2015

- Status and Progress of LARP
 - 2015 Achievements
 - 2016 Goals
 - New Toohig Fellows
 - "LARP+" Program
- Transition to US-HiLumi
 - Definition of Deliverables
 - Functional and Technical Specs
 - Preliminary Funding Profile
 - Conceptual US-HiLumi Schedule

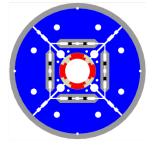
LARP History and Evolution


- The US LHC Accelerator Research Program (LARP) was formed in 2003 to coordinate US R&D related to the LHC accelerator and injector chain at Fermilab, Brookhaven, Berkeley and SLAC.
 - Has involvement from Jefferson Lab, Old Dominion University and UT Austin
- LARP has contributed to the initial operation of the LHC, but much of the program is focused on future upgrades
 - Increase Luminosity (HL-LHC)
 - Beam Handling/Monitoring
- The program funding increased from \$12-13M/year (FY13) to ~15.5 M\$ (FY16 Guidance)
 - Magnet research (~half of program in FY13, ~75% in FY15)
 - Accelerator research (Crab cavities, WBFS, Collimators, e-hollow lens,..)
 - Programmatic activities, including support for Toohig Fellowship
- FY14-FY18 Evolution
 - Initial convergences on deliverables for HL-LHC
 - Program to be handled like a "project" to Reduce Risk of US Contributions to HL-LHC Project
 HL-LHC Project

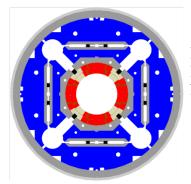
From LHC to HL-LHC

- LHC operating at 6.5 TeV
- In the period 2015-2023
 - Peak luminosity of 2.10³⁴ cm⁻²s⁻¹
 - Integrated luminosity of 300 fb⁻¹
- HL LHC
 - Upgrade the Interaction Region in 2024-2026
 - Peak luminosity of 5.10³⁴ cm⁻²s⁻¹
 - 3000 fb⁻¹ integrated luminosity in following ~12 years

$$L = \gamma \frac{n_{\rm b} N^2 f_{\rm rev}}{4\pi \,\beta^* \,\varepsilon_{\rm n}} \,R; \quad R = 1/\sqrt{1 + \frac{\theta_{\rm c} \,\sigma_z}{2\sigma}}$$

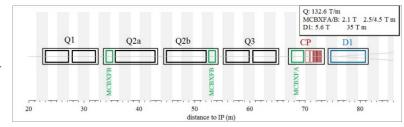

- 1. More Luminosity: increase squeeze at interaction region
 - Increase magnet aperture, therefore increase field.
 - Use Nb₃Sn Technology as <u>Baseline</u>
- 2. More beam: larger beam-beam interactions in region where they are brought close together.
 - Solution 1: keep beam as separated as possible increasing crossing angle from 300 μ rad to 600 μ rad. Use Crab Cavities as <u>Baseline</u>
 - Solution 2 (Plan B): If solution 1 does not work, reduce crossing to 300 mrad and mitigate beam-beam interaction with Long Range Beam Beam Wire or hollow e-lens (<u>R&D effort</u>, soon to <u>Baseline</u>).
 - Control possible transverse instabilities or e-cloud effects with Wide Band Feedback System (<u>R&D effort</u>).

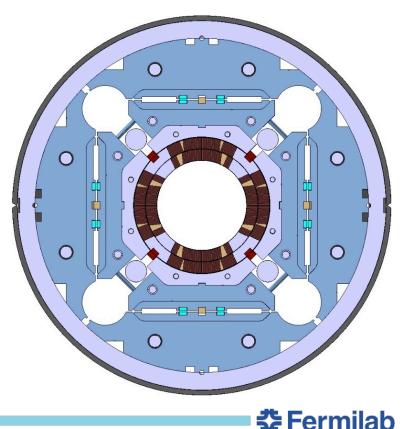



- LHC Accelerator Research Program (since 2003)
 - R&D on Nb₃Sn quadrupoles for LHC luminosity upgrade
- From TQ/LQ series to MQXF
 From 90 to 150 mm
- MQXF scale-up of HQ
 - Similar coil lay-out
 - Same structure concept
 - Successfully tested

LARP TQ-LQ Nb₃Sn, 1-3.7 m 90 mm apert. 200 T/m

LARP HQ Nb₃Sn, 1 m 120 mm apert. 170 T/m

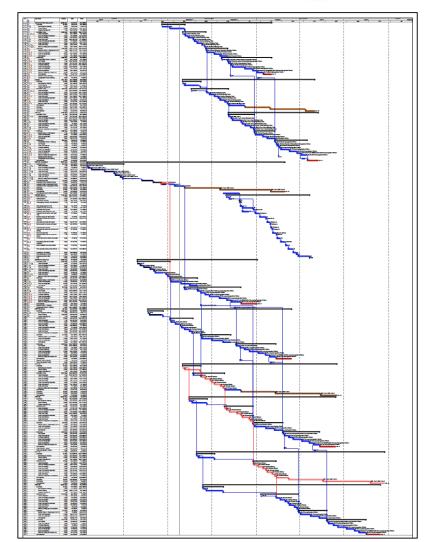

LARP-CERN MQXF Nb₃Sn, 1.5 m 150 mm apert. 132.6 T/m



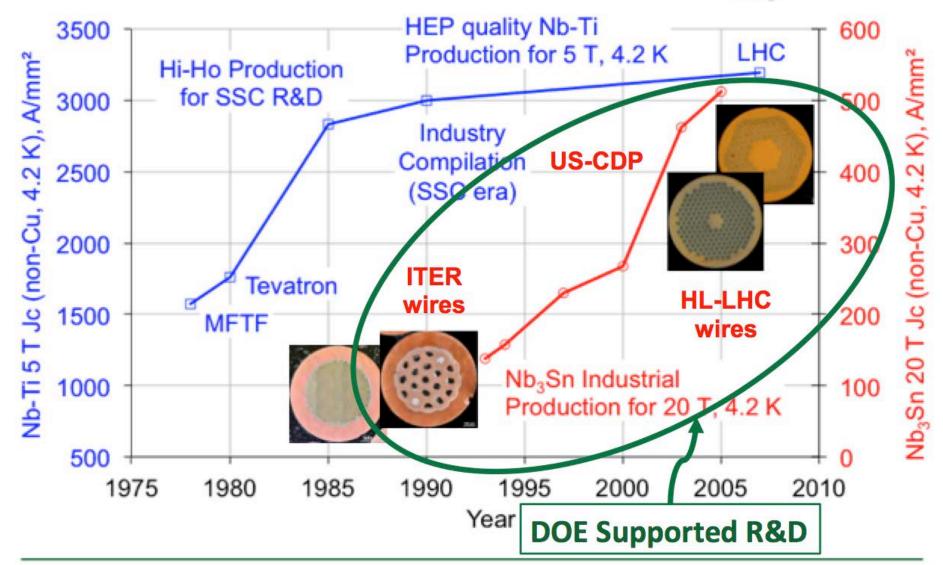
Target: 132.6 T/m

LARP

- 150 mm coil aperture, 11.4 T B_{peak}
- Q1/Q3 (by US-HiLumi Project) – 2 magnets MQXFA with 4.2 m
- Q2a/Q2b (by CERN)
 - 1 magnet MQXFB with 7.15 m
- Different lengths, same design
- Short model phase in progress
- Long prototype fabrication started
 - Handled as "Project" by LARP


12/15/2015

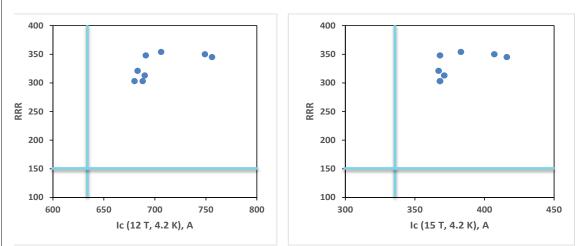
FY16 Goals: Complete First Long (4 m) MQXF Quad



- Complete first long (4m) quadrupole in US
 - Coil winding at FNAL
 - Reaction/impregrantion shared with BNL
 - Structure Procurement and Assembly at LBL
 - Summer 2015 Internal LARP Review with full participation from CERN
 - Test by early FY17
- Magnet assembly treated as Project with "poor-man" EVMS to confirm effort estimates for US-HiLumi Project
- <u>Overall Goal: complete 2 long</u> prototype by early FY18 (CD-3)

At 54, LTS's Have Reached Maturity dor!

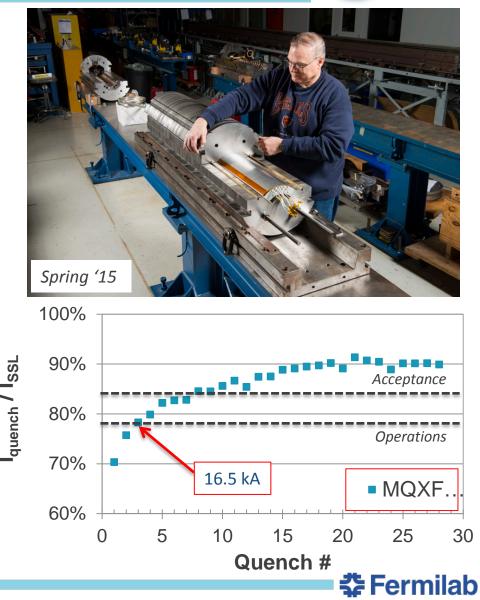
LARP


Conductor Procurement

U.S. HiLumi Project	Specificati Quadrupole Magr	US-HiLumi-doc.40 Rev. No. Original Release Date: 04-May-2015 Page 15 of 15				
	ANNEX – SUMMARY OF PERFORMANCE REQUIREMENTS					
	Parameter or characteristic	Value	Unit			
	Superconductor composition	Ti-alloyed Nb3Sn				
	Strand Diameter	0.850 ± 0.003	mm			
	Critical current at 4.2 K and 12 T	> 632	A			
	Critical current at 4.2 K and 15 T	> 331	A			
	n-value at 15 T	> 30				
	Count of sub-elements (Equivalent sub-element diameter)	≥ 108 (< 55)	(µm)			
	Cu : Non-Cu volume Ratio Variation around mean	$\geq 1.2 \pm 0.1$				
	Residual Resistance Ratio RRR for reacted final-size strand	≥ 150				
	Magnetization* at 3 T, 4.2 K	< 240 (< 300)	kA m ⁻¹ (mT)			
	Twist Pitch	19.0 ± 3.0	mm			
	Twist Direction	Right-hand screw				
	Strand Spring Back	< 720	arc degrees			
	Minimum piece length	550	m			
	High temperature HT duration	≥ 40	Hours			
	Total heat treatment duration from start of ramp to power off and furnace cool	≤ 240	Hours			
	Heat treatment heating ramp rate	≤ 50	°C per hour			
	Rolled strand (0.72 mm thk.) critical current at 4.2 K and 12 T	> 600	A			
	Rolled strand RRR after reaction	> 100				
1	*Magnetic moment (A m^2) divided by the volume (m^3) of a strand piece in transverse					

*Magnetic moment (A $\rm m^2)$ divided by the volume (m^3) of a strand piece in transverse magnetic field, without removing copper

- Convergence on 108/127 based on performance and cost analysis (May'15)
- Common specs US-LARP/CERN
- Order placed by FNAL for ~200 km in Sep '15
 - ~10% of US needs for full Project
- First data from OST very promising.
 - Lab verification in progress


This document is uncontrolled when printed. The current version is maintained on US-HiLumi docdb site.

12/15/2015

🚰 Fermilab

Successful Test of First MQXF Coil

- First model coil for HL-LHC magnets assembled and tested in mirror configuration at FNAL. The Mirror Magnet was tested in the IB1 Vertical Magnet Test Facility using for the first time an upgraded 30kA setup.
 - Higher current needed for higherperforming Nb₃Sn magnets
- Coil achieved HL-LHC "operating current" (16.5kA) in 3 quenches during the first day of testing !

Quench Current (A)

-3

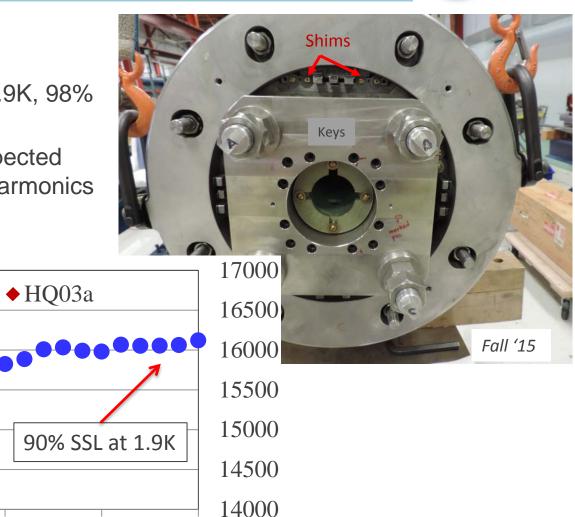
Successful Test of HQ03a

17

22

12

Quench #


- LARP
 120 mm Aperture
 - Excellent Memory

Excellent Memory

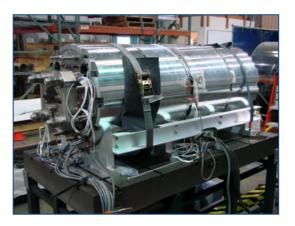
- Achieved 90% SSL at 1.9K, 98% at 4.5K.
- The shims achieved expected change the b3 and b5 harmonics with little effect on other harmonics.

• HQ03a2

7

2

🛟 Fermilab



Successful Assembly of First MQXFS

- Two identical structure assembled and pre-loaded with aluminium coils at LBNL and CERN, and then with real coils at LBNL
- Component instrumented with strain gauges
- Very good agreement with calculations

Assembly Mishap during MQXFS1

...and then the lightning stroke !

- MQXFS1 went SC on Nov 12th '15.
- "Quench and open circuit event" on late Nov 12th !

Findings

- The failure of the quench detection system to protect the superconducting lead was traced to human error: a quench detection cable connected to the wrong receptacle, followed by missing identification of quench detection signal anomalies in the standard checkout data. It was found that one of the two quench detection cables was connected to the wrong receptacle, and as a result the quench detection system was monitoring the wrong voltages not only for the superconducting bus sections, but also for the copper section of the current leads. The other quench detection cable bringing the coil voltages was connected correctly.
- This incorrect connection was not identified during standard checkouts performed prior to ramping the magnet, although there were clear indications in the checkout data that there was something wrong with the leads quench detection signals.

Conclusions

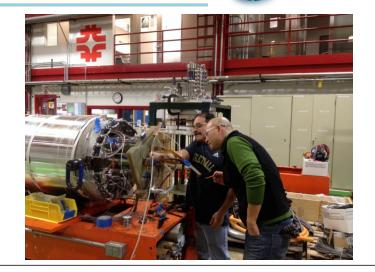
- The investigation team provided a list of recommendations to the TD Division Head in the three critical directions: technical, procedural, and organizational.
- Main recommendations:
 - The Test and Instrumentation (T&I) Department must ensure that a test stand and quench protection systems <u>subject matter expert is available</u> to perform critical initial tests of the quench protection system and to review and approve all checkout data before allowing the magnet test with current to proceed.
 - Add a second formal safety signoff addressing verification of the quench protection system and clearance to ramp the magnet to quench. This should be a joint signoff by the test facility Magnet Test Area Leader, representing the T&I department, and the test Principal Investigator, representing the Magnet Systems department.
 - Every time critical quench protection connectors are plugged, include a formal checkout procedure to verify that they were installed in the correct receptacles.

ıb

Conclusions –cont.

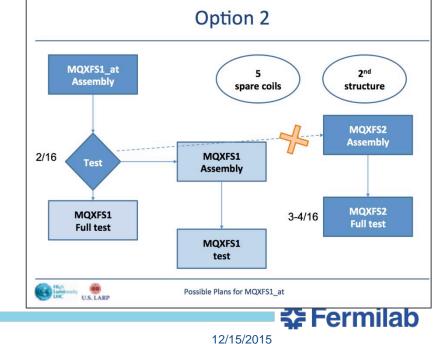
 This is the first incident damaging a magnet for ~ 18 years of operation of the VMTF stand. The investigation team did not find any problems with the stand itself or the stand Quench Protection system. After the repair of the stand and magnet leads, and satisfying the short term committee recommendations, we believe that the magnet test can resume.

al



Plans for MQXFS1 and MQXFS2

- "Consolidation" in full swing
 - Repair VMTF Top Plate and 30 kA leads. Certification by Jan '16.
 - Repair damaged portion of Magnet SC lead. Completion by mid-Jan '16.
 - Aim at MQXFS1 test by Feb '16


- Initiate assembly of MQXFS2 (at CERN with US and CERN coils) without waiting for MQXFS1 results
 - Increased risk in determining proper pre-load levels, mitigated by decision to apply conservative pre-load.

High

HC

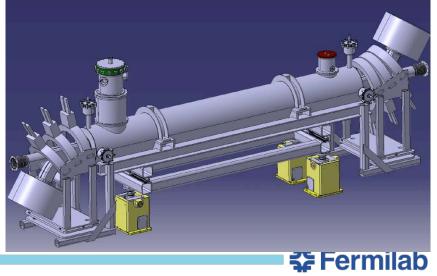
.uminositv

FY16 Goals: Test of Long MQXF Mirror Coil & First Long (4 m) MQXF Quad

- 3 US-LARP long (4 m) coils produced
 - Wound and cured at FNAL
 - Reacted and under impregnation at BNL
- Plan for mirror configuration test in April '16
 - BNL Vertical Stand
- 1st Long Prototype later in CY16 or earlier CY17.
- 2nd Long Prototype by early CY18.

Crab Cavities Situation

- What worked:
 - Parts stamped OK at Niowave (SBIR)
- What didn't:
 - Plan to weld cavities at JLAB not accepted by NW
 - NW continued, and plans to complete, the welding of 2 RFD and 2 DQW, failing to deliver welding qualifications & certifications requested by CERN
- What's next:
 - Decision on acceptance of NW cavities
 - If accepted, plans for chemical processing and assembly of the He Vessel at JLAB
 - Alternatives explored, including production of cavities at CERN.



R&D Activities: e-lens

- Collimation with hollow electron beams
 - Beam studies on halo population and active control in LHC
 - Tests and characterization of CERN hollow gun at Fermilab
 - Numerical tracking and calculation of loss maps
- Long-range beam-beam compensation with electron wire
 - Definition of conceptual design
 - Beam dynamics simulations of compensation scenarios
- Common to collimation and beam-beam compensation
 - Study magnetized electron beams with self fields
 - Maintain and improve Fermilab electron-lens test stand

12/15/2015

Toohig Fellowship

Following May'15
 HiLumi/LARP Meeting, 2
 candidates were offered a
 Toohig Fellow position at US
 National Labs:

M Fitterer – FNAL

Some Definitions !

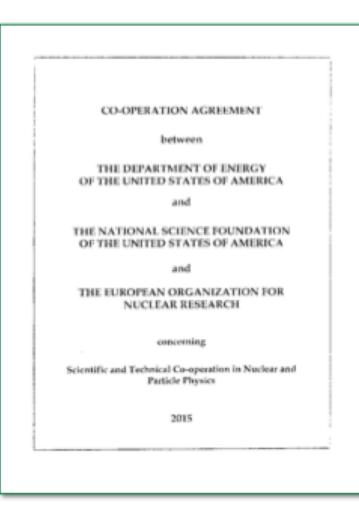
- LARP (FY15-FY18):
 - Continue LHC R&D with emphasis on minimizing risk of US in-kind deliverables for HL-LHC Project.
 - Deliver 5 QXF Models/Prototypes & dressed CC (SPS Test)
 - Support Toohig Fellowship and if possible Acc. Phys. activities
 - US-HiLumi Project (FY18-FY24):
 - US in-kind deliverable to HL-LHC, controlled as a 413.3b Project
 - Follows
 - DOE-CERN agreement on ICA (done)
 - DOE-CERN Protocol (~end CY15)
 - Coll. Agreement with in-kind deliverables (early CY16?)
 - LARP+ (FY19-FY30):
 - Program to support US involvement in aspect of HL-LHC improvements not covered by US-HiLumi Project
 Section 10 (2010)

...onward to US-HiLumi (413.3b DOE Project)

International Partnerships

Successful partnerships key to implementing U.S. long-term strategy

New <u>Bilateral</u> U.S.-CERN Agreement Signed May 7, 2015


LBNF-DUNE Resources Review Board - 9/3/2015 14

U.S.-CERN Agreement

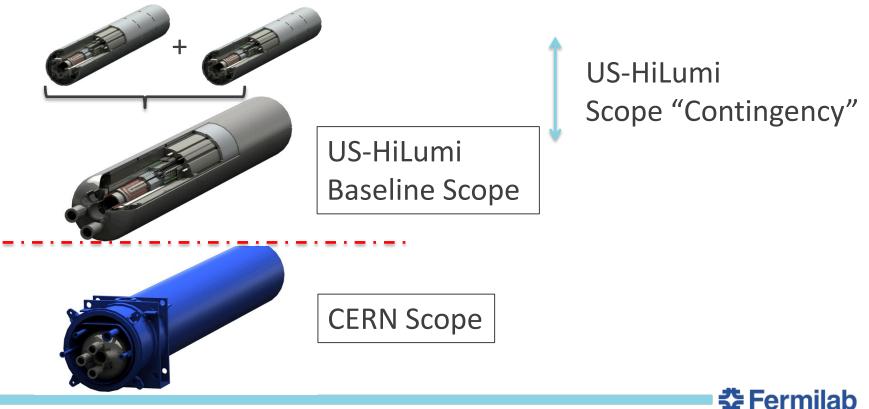
Considering:

- That research in nuclear and particle physics is important for the further development of fundamental science and technological progress;
- [U.S.] interest in participating in the scientific programme of CERN;
- CERN's interest in participating in the scientific programmes of [the U.S.];
- The established contacts between CERN and [the U.S.], including the activities conducted under the . . . "1997 Agreement";
- The Parties desire to create a framework to ensure, on a long-term basis, opportunities for participation by scientists, engineers and technicians from one Party in research projects of the other Party, and for the provision of such other contributions as the Parties may agree;
- Scope
 - This Co-operation Agreement ("Agreement") constitutes the framework within which the Parties may, on the basis of reciprocity, further develop their scientific and technical co-operation.
- Implementation
 - This Agreement shall be implemented through the conclusion of Protocols between CERN on the one hand, and [the U.S.] on the other hand

U.S.-CERN Agreement Annexes

- U.S. Department of State granted OMB Circular-175 authorization in August 2015 and Annexes (=Protocols) to the Cooperation Agreement are now under negotiation with CERN
 - Accelerator Protocol (III)
 - LHC Accelerator Research Program (LARP)
 - U.S. Contributions to the HL-LHC Accelerator Upgrades
 - Future Circular Collider Initiatives with CERN (as an Addendum)
 - Experiments Protocol (II)
 - U.S. and CERN responsibilities for HL-LHC ATLAS and CMS detector upgrades
 - U.S. contributions towards the HL-LHC ATLAS and CMS detector upgrades
 - Framework of LHC Resources Review Boards (RRBs) and U.S. contributions to Common Funds
 - Neutrino Protocol (I)
 - CERN contributions to U.S.-hosted international neutrino program, including the Fermilab Short-Baseline Neutrino Program and LBNF/DUNE
 - Framework of Fermilab LBNF/DUNE RRBs and CERN contributions to Common Funds

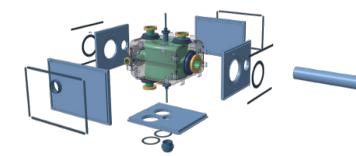
Protocols do not include detailed cost and scope, which will be specified through MOUs (non-binding) and Addenda (binding)



US-HiLumi Deliverables: Magnets

12/15/2015

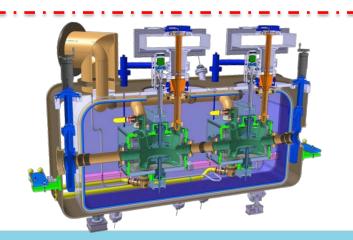
- US-HiLumi Focusing Magnets
 - Deliver <u>10 Cold Masses</u> to CERN by end CY24. Each CM contains two 4.2m long, 150 mm aperture magnets



US-HiLumi Deliverables: Crab Cavities

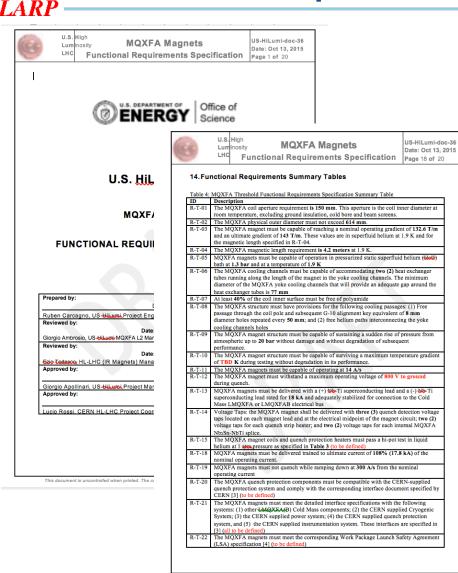
• US-HiLumi Crab Cavities

LAR


 Deliver <u>40 Individual He-Vessel</u>
 <u>Dressed Crab Cavities</u> with HOM and tuners to CERN by end CY24.

US-HiLumi Baseline Scope

High Luminosity LHC



CERN Scope

Functional Requirements for MQXF Magnets

- MQXF Functional Requirements already exchanged with CERN.
 - Handled in terms of ~22 "Threshold Requirements", i.e. minimum goals for magnet performance before shipment to CERN:
 - Ex: MQXF trained to 108% (17.8 kA) of operating current, withstand 800V to ground during quenching, etc..
- Few of these requirements will become "Target KPPs (<u>Key Performance</u> <u>Parameters</u>)" used by US Congress to monitor US-HiLumi Project during its execution.
 - Plan to investigate with DOE whether <u>Achievement of Threshold KPP</u> and <u>Acceptance by</u> CERN can be used as synonymous.

High

IHC

Luminosity

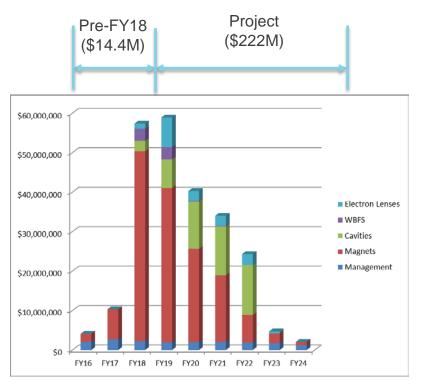
This document is uncontrolled when printed. The current version is maintained on http://us-hilumi-docdb.fnal.gov

- A DOE construction project is governed by DOE Order 413.3B
 - <u>https://www.directives.doe.gov/directives-documents/0413.3-</u>
 <u>BOrder-b</u>
 - Applies to capital assets projects having a Total Project Cost greater than or equal to \$50M
- DOE projects typically progress through five Critical Decision (CD) gateways, which serve as major milestones
 - Each CD marks an authorization to increase the commitment of resources by DOE and requires successful completion of the preceding phase or CD

Critical Decisions

Fermilab

- Critical Decision (CD) Gateways
 - CD-0: Approve Mission Need
 - CD-1: Approve Alternative Selection and Cost Range
 - CD-2: Approve Performance Baseline (when KPP are frozen !)
 - CD-3: Approve Start of Construction/Execution (Production Start !)
 - CD-4: Approve Start of Operations or Project Completion
- A project shall be completed at CD-4 within the original approved performance baseline (CD-2)
- CD-0 approval is now expected by early FY16
 - Mission Need based on DOE/CERN agreements
 - US-LARP acting as if we already received CD-0 for US-HiLumi and preparing actively for CD-1
- CD-1 approval by ~Jan 17?
 - Requires preparation in 2016 for CD-1 Director's review and CD-1 DOE review
- Consolidated CD-2/3 approval
 - Approval by Q3 FY18, based on 2 successful long magnet prototypes



Funding Profile: History

🛠 Fermilab

• Feb '15 presentation to DOE-Germantown:

Feb 2015 FY18-22 Estimate				
Management	\$13M			
Magnets	\$138M			
Cavities	\$47M			
E-lenses	\$17M			
WBFS	\$7M			
TOTAL	\$222M			

12/15/2015

- DOE Feedback in May '15 at HiLumi/LARP Collaboration meeting:
 - Plan for funding profile
 - starting in FY18 at ~20 M\$
 - integrating to ~181 M\$ by FY24

Other Relevant "High Level" Inputs

- CERN C&S Review Feb 2015
 - Recommendation to consider installation of ~50% of the Crab Cavity System in LS3, with the remaining 50% installed in LS4
- CERN Council Jun 2015

LARP

- Plan for a contribution from US to HL-LHC at the level of ~200M\$ (previously 181 M\$) in the FY18-FY24 timeframe
- Consider possible contribution from US to HL-LHC at the level of ~50 M\$ in the FY24-FY29 timeframe
 - Homework to CERN to define possible scope for additional contribution
 - Very preliminary un-official feedback on "50M\$" scope definition (July 2015)
 - 1a) Hollow e-lens
 - 1b) Complete CC HOM, Main PC
 - 3) e-beam Compensator
 - 4) SPS/HL-LHC WBFS
 - 5) Contribution to 11 T

(50% in LS3, 50% in LS4)

Sermilab

- (LS4)
- (LS3)

(LS3)

(LS4)

	Up to LS)		Up to LS4 (~50 M\$)		
	Manag. + Magnets	Crab Cavities			Hollow e-lens	Compensator
Scenario #1	~ 160 M\$	~ 40 M\$			~20 M\$	~30 M\$
To be shown today						
	Up to LS3 (~ 200 M\$))		Up to LS4 (~50 M\$)	
	Manag. + Magnets	50% Crab Cavities	Hollow e- lens		50% Crab Cavities	Compensator
Scenario #2	~ 160 M\$	~ 20 M\$	~20 M\$		~20 M\$	~30 M\$

• What will make "Scenario #2" feasible:

Possibilities

- Inclusion of e-lens in Baseline by CERN (~this year ?)
- Endorsement by FNAL Directorate and CAO/AD:
 - Engineering Support being identified at FNAL.
 - Timing Corollary: a possible US contribution to Hollow e-lens in US-HiLumi (FY18-FY24) cannot rely on much R&D effort. It must be an almost "ready-to-go" contribution based on existing and proven designs (TeV, RHIC,..)

🔁 Fermilab

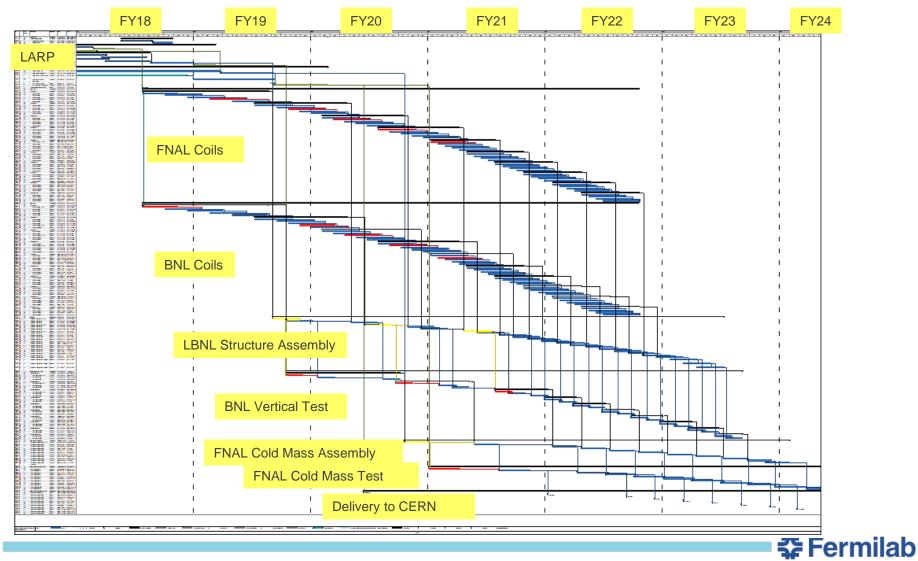
Approach to fit DOE funding profile

- Reduce TPC estimate \$222M -> (\$181M + \$19M = \$200M):
 - Reduce scope (-\$24M)
 - Removed Electron Lens (-\$17M)
 - Removed Wideband Feedback System (-\$7M)
- Reduce cost in early FYs:
 - CERN LS3 delayed by one year
 - Tunnel installation in 2025 instead of 2024
 - Enables starting production slowly in FY18/FY19
 - Use LARP tooling and LARP technician crew
 - As more funding becomes available in FY19/20, ramp-up production rate by adding tooling and technicians
 - "Just-in-time" procurements
 - Use phased procurements
 - Increases schedule risk and escalation cost

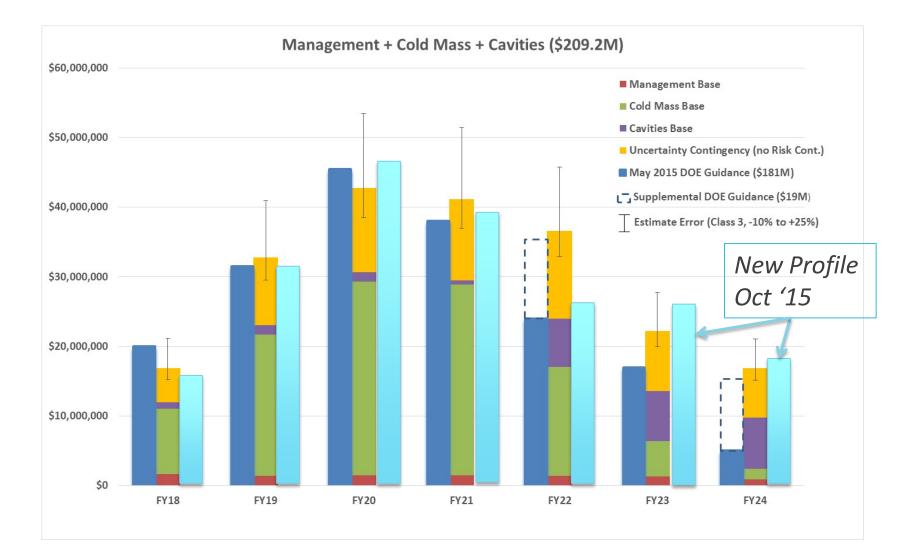
Magnets Manufacturing Plan

U.S. High LHC US-HiLumi-doc-52 Date: TBD Page 1 of 12 WILD US-HiLumi-doc-52 Date: TBD Page 1 of 12			 Launched a magnets manufacturing plan effort in April 2015 Initial focus on production rates as a function of tooling and crew size 		
U.S. HiLum MAGNETS MANUF	-			Requirements and Specifications References Design Report Specifications Drawings Bill of Materials Production Line Infrastructure Tooling and equipment Tooling and equipment occupancy Space Production floor layout	Inspection Activities Inspection points Acceptance criteria Measurements Testing Disposition Records Quantities and Throughput Production quantities Throughput
Prepared by: Giorgio Ambrosio, Lance Cooley, Arup Gosh, Dan Dietderich, Ian Pong, <u>Fred Nobreag</u> , Miao Yu, Jesse Schmalze, <u>Mike Anerella</u> , <u>Eric Anderssen</u> , Helene Felice, Dan Cheng, Guram Chlachidze, Rodger Bossert, Antonios Vouris, Roger Rabehl Project Team	Organization BNL, FNAL, LBNL	Contact		 Temporary Storage for Work in Progress Utilities Inventory Parts Raw Materials Consumables 	 Learning Curve Yield Workforce Crew Size Qualifications Staff Acquisition
Reviewed by: Date: Ruben Carcagno, US-HiLumi Project Engineer	Organization FNAL	Contact ruben@fnal.gov		Spares Manufacturing Activities Procedures	 Training Other commitments Shift Work
Reviewed by: Giorgio Ambrosio, US-HiLumi L2 Manager	Organization FNAL	Contact giorgioa@fnal.gov		TravelersSteps	Resource leveling Idle time
Approved by: Date: Giorgio Apollinari, US-HiLumi Project Manager	Organization FNAL	Contact apollina@fnal.gov		 Sequencing Dependencies Concurrency Routing Shipment 	Coverage

This document is uncontrolled when printed. The current version is maintained on http://us-hilumi-docdb.fnal.gov



Preliminary Integrated Schedule


MS Project with logic dependencies

US-HiLumi Cost Model Output



7/31/2015

🛟 Fermilab

A major investment from US-HEP in LHC infrastructure !

12/15/2015

🔁 Fermilab

- Steady progress under LARP on magnets, crab cavities and other R&D activities
 - Hick-up on magnet test facility
- Transition from LARP to US-HiLumi getting to the nitty-gritty details of deliverables, functional specifications, etc.
- Preliminary funding profile for US-HiLumi appears to allow deliveries according to CERN schedule needs, albeit at a slightly increased schedule and execution risk (JIT Production)
- Preparation of a plan for an Accelerator Physics *LARP*+ phase is encouraged.

