

ATLAS Status

Anyes Taffard University of California Irvine

ATLAS Collaboration

HEPAP Meeting 12.10.2015

LHC Timeline

Technical Stop
Recommissioning with bear
Scrubbing
Machine development
Special physics runs

Diverse running conditions 13 TeV 50ns & 25ns collisions

- Ramp up from few up to 2400 bunches
- pp reference √s=5.02 TeV
- Heavy Ions √s_{NN}=5.02 TeV

Peak Luminosity vs time

LHC Timeline

Technical Stop
Recommissioning with bear
Scrubbing
Machine development
Special physics runs

LHC Timeline

Technical Stop
Recommissioning with bea
Scrubbing
Machine development
Special physics runs

The ATLAS Detector

Tracking detectors

- High precision silicon and micro-tube tracking
- Fine-granularity, longitudinally segment calorimeter
- ✓ Air-core toroid muon spectrometer

ATLAS Upgrades During LS1

Infrastructure:

New beam pipe, improvement to magnet & cryogenic system

Detector consolidation:

Completion ($|\eta|$ =1.1-1.3) and repairs of muon chambers. Repair of pixel modules and calorimeter electronics. New pixel services. New luminosity detector (LUCID). New MBTS detector.

Insertable 4th pixel layer (IBL):

New innermost pixel layer at R=3.3cm from beam.

Various trigger upgrades:

To improve triggering capabilities and trigger purity (eg topological trigger)

Software:

Many improvements to simulation, reconstruction, grid and analysis software.

IBL insertion May 2014

L1 Topo board

2015 Data Taking

ATLAS Detector in 2015

ATLAS pp 25ns run: August-November 2015

Inner Tracker		Calorimeters		Muon Spectrometer				Magnets		
Pixel	SCT	TRT	LAr	Tile	MDT	RPC	CSC	TGC	Solenoid	Toroid
93.5	99.4	98.3	99.4	100	100	100	100	100	100	97.8

All Good for physics: 87.1% (3.2 fb⁻¹)

Luminosity weighted relative detector uptime and good data quality (DQ) efficiencies (in %) during stable beam in pp collisions with 25ns bunch spacing at $\sqrt{s}=13$ TeV between August-November 2015, corresponding to an integrated luminosity of 3.7 fb⁻¹. The lower DQ efficiency in the Pixel detector is due to the IBL being turned off for two runs, corresponding to 0.2 fb⁻¹. Analyses that don't rely on the IBL can use those runs and thus use 3.4 fb⁻¹ with a corresponding DQ efficiency of 93.1%.

More than 96% of channels working in each system Significant improvements w.r.t Run-1 in most systems

Overall good data taking efficiency for 25ns

- 87.1%
- 93.1% for analyses not relying on IBL

Learnt to operate new detector

Monitoring and adjusting trigger following the LHC intensity ramp up

Inner Detector

Pixel and IBL operational since Week 1

Significant improvement of the performance of the Pixel thanks to firmware upgrades

- Operational stability thanks to firmware upgrades (3 order of magnitude less errors)
- Larger faction of active modules

Fraction of inactive modules

IBL

Corrosion

• Fixed before installation

Wire bond resonance danger

• Careful trigger rate optimization for partially filled machine to avoid fixed frequency trigger

corrosion

10

Corrosion

• Fixed before installation

Wire bond resonance danger

• Careful trigger rate optimization for partially filled machine to avoid fixed frequency trigger

Stave bowing

- Discovered with cosmic ray alignment
- Direct impact on tracking performance
- Run by run alignment correction necessary to recover the physics performances.
- Temperature and cooling stability OK until September

Trigger Rate vs # colliding bunches

ATL-INDET-PUB-2015-001

Corrosion

Fixed before installation

Wire bond resonance danger

• Careful trigger rate optimization for partially filled machine to avoid fixed frequency trigger

Stave bowing

- Discovered with cosmic ray alignment
- Direct impact on tracking performance
- Run by run alignment correction necessary to recover the physics performances.
- Temperature and cooling stability OK until September

Trigger Rate vs # colliding bunches

Local x Residual

Corrosion

• Fixed before installation

Wire bond resonance danger

• Careful trigger rate optimization for partially filled machine to avoid fixed frequency trigger

Stave bowing

- Discovered with cosmic ray alignment
- Direct impact on tracking performance
- Run by run alignment correction necessary to recover the physics performances.
- Temperature and cooling stability OK until September

Sow Voltage Front End current drift

 Observed drift of IBL calibration parameters and low voltage current consumption with increasing integrated luminosity

Trigger Rate vs # colliding bunches

Local x Residual

IBL: LV Front End current drift

- Effect understood to be a Front End transistors leakage due to defects built-up at the Silicon Oxide (STI) interface and cumulated by ionizing dose
 - Known features but not tagged during construction
 - Almost invisible at low dose rate

Lab investigations are on-going for next year operation

Consequences

- Temperature increase
- Electrical failure risks

Issue expected to be relaxed after few Mrad

SCT & TRT

Stable and reliable throughout 2015

SCT

- Si leakage currents continue to closely match expectations from radiation damage
- Noise, gain and operating voltage comparable to Run-1
- Some minor DQ and data taking inefficiency due to ReadOut firmware requiring further tuning

FRT

- Proved to sustain 100kHz limit at 50% occupancy
- Xe gas leak developed in the exhaust active gas pipes (no new ones in Run-2)
 - \bullet Losses at the end of pp operation ~150L/day
 - Measures to reduce the Xe leak rate will be taken during Year End Technical Stop
- Scenarios with more modules running with Ar-mixture are under study. Aiming to minimize performance losses.

Xe+Ar pp running configuration

Ar HI running configuration

Impact Parameter Resolution

ATL-PHYS-PUB-2015-018

ATL-PHYS-PUB-2015-051

Unfolded transverse impact parameter resolution compared to the expectation from minimum bias and $Z \rightarrow \mu\mu$ simulation.

*****Large gain in resolution through IBL.

Enhance tracking close to interaction point

Good agreement between data and MC

• d_0 , z_0 resolutions in both simulation agree with each other to within 20%

Calorimeters

Very smooth operations throughout 2015

≗LAr:

- Noise burst flagging running @ HLT level
- New current control HV for EMEC installed during LS1
 - Tremendously reduce HV trip in EMEC.
 - \bullet Install new current controlled modules for HEC in ${\sf YETS}^{\sf +}$
- LAr Phase-I trigger upgrade demonstrator boards installed (1.767<φ<2.160; |η|<1.4)
 - Readout implemented this year. Data taking during physics and calibration runs.

File:

- No LVPS trips (unlike in Run-1). 2 dead modules
- Using all calibration systems to preserve the scale
- New MBTS counters were inter-calibrated based on the minimum bias current measurement from Tile.
- \bullet Commissioning of the Tile–Muon trigger for 1.0<[η]<1.3 is in its final stage

LAr noise burst

Super cells pulse shape for each layer

Known drifts from PMTs under illumination. Recovery when there is no collisions 14

Muon Detectors

Very smooth operations throughout 2015

RPC

- Commissioning of new trigger towers (feet region) ongoing
 - All towers included in trigger and readout since Sept

FGC

- Deployed the inner coincidence
 - Reduction of muon trigger rates in the Endcap

CSC:

- New readout operating nicely
 - Tested up to L1 rates of 100kHz

Alignment performed with toroid off

 \bullet Target resolution of 10% for 1 TeV μ

RoIs distribution w & w/o FI coincidence

Forward Detectors

LUCID

• Newly installed. Working well as a luminosity monitor

ZDC

• Detector refurbished. Taking data successfully during the Heavy Ions run

ALFA Data taken between October 12th and 18th

- Total cross section
- Diffractive physics

LUCID Hit counts

TDAQ system redesign for Run-2 and bringing many improvements

• Run-2 pp data taking over 90% efficiency

$^{\circ}$ ~1.5k High Level Trigger (HLT) selections seeded by ~400 different Level-1

items

- Primary triggers (usually unprescaled)
- Background triggers (usually prescaled)
- Alternative trigger (use different algorithms)
- Backup triggers (tighter selections)
- Calibration triggers (providing partially built events)

Peak rate:

- Level-1: 70 kHz (100 kHz max)
- HLT: 1.4 kHz

Menu items and prescale strategy maintained though out 2015.

• Ensure continuity of trigger selections for physics analyses.

Pedestal correction

- Minimize pileup effects and linearize trigger rate for L1Calo MET > 35 GeV trigger
 - Shows dramatic improvement in rate.

ATLAS Operations 12 2015 Data, is = 13 TeV 50 ns pp Collision Data • without pedestal correction • with pedestal correction • with pedestal correction • with pedestal correction • mith pedestal correction • with pedestal correction • mith pedestal correction

L1_XE35 rate w & w/o pedestal

17

Computing

Reprocessing of 2015 data/MC planned for end of 2015/early 2016

• Major software update for summer 2016 only

New analysis model:

 Physics groups data format produced within 24h after Tier-O data processing

Running jobs last 3 months

Trigger Performance

19

Muon reconstruction efficiency Efficiency 0.95 0.9 MC Data 0.6 — Tight muons Medium muons ATLAS Preliminary 0.4 Loose muons \s = 13 TeV, 3.3 fb⁻¹ Data/MC 1.05 0.95 -2.5-2 -1.5 -1 -0.5 0.5 1.5 2.5 0 2 1 η

uons

Efficiencies of the combined track-based and calorimeter-based isolation for the Gradient Loose working point

Muon performance with full 2015 dataset

Good agreement between data and simulation

 Correction factors applied to correct remaining differences

ATL-COM-PHYS-2015-1392

laus

BDT Tau Identification score

Hadronically decaying taus identified using boosted decision tree online and offline

- Performance measure using $Z \rightarrow \tau \tau \rightarrow \mu \tau_{had}$ candidates
- Good agreement between data and simulation

Visible mass of the $\mu\tau_{\text{had}}$ Z candidates

FJet energy scale studied in-situ with full 2015 dataset

- Photon-jet balance
- Multi-jet balance

Agreement between data and simulation better than 2% up to 3TeV

Agreement between data and simulation better than 2% up to 3TeV

Flavour Tagging

Several enhancements between Run-1 and Run-2 impact flavor tagging
Improved tracking (including IBL) and flavor tagging algorithms

Improvement in light flavor (~x4) and c-jet (~x1.6) rejection

Flavour Tagging

ATLAS successfully completed the LS1 upgrades

• Nearly all components are now commissioned and used.

- Restart after long shutdown and data taking through out 2015 has been very successful.
 - Despite some challenges, data taking efficiency and system stability has already reached a level comparable to the last part of Run-1
 - Possible only with the dedications of the subsystem experts and shifters, often working all around the clock

Detailed performance studies demonstrate good understanding of the 2015 data

Huge thanks to the LHC team for a good start and rapidly increasing luminosity!

Eagerly waiting more data in 2016 to carry on exploration of the 13 TeV physics landscape.

Looking forward to sensitivity beyond the SM to extend beyond Run-1.

H→ZZ→2µ2e candidate

Commissioning for Run -2

Cosmic Runs every few weeks with full detector

since Sept. 2014:

- Integrate all systems into new DAQ, exercise system etc...
- Initial alignment studies for IBL.

Beam Splashes (04/05 & 04/07):

• Timing of calorimeters.

900GeV collisions (May 5th & 6th):

- Pixel and IBL tuned on during "quiet beam".
- 7M collision events.

I3 TeV test collisions (May 20th & 21st) :

- Pixel and IBL tuned on during "quiet beam".
- 21M collision events.

Trigger/DAQ System in Run-2

Run-2 pp data taking over 90% efficiency:

- HLT farm ~25k cores.
 - Partially used for simulation jobs during Technical Stop and Machine Development periods
- Largest busy contribution from holding triggers while "stopless" recovering

¥YETS and 2016 plans

• PC-based Region of Interest Builder (faster and more flexible)

Trigger Menu

	Turnical offling selection	Trigger S	election	Level-1 Peak	HLT Peak	
Trigger	Typical online selection	Lovel 1 (CoV)	HIT (CoV)	Rate (kHz)	Rate (Hz)	
		Level-1 (Gev)	ILI (Gev)	$L = 5 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$		
Cincile lentene	Single iso μ , $p_{\rm T} > 21 \text{ GeV}$	15	20	7	130	
Single leptons	Single $e, p_{\rm T} > 25 \text{ GeV}$	20	24	18	139	
	Single μ , $p_{\rm T} > 42 \text{ GeV}$	20	40	5	33	
	Single τ , $p_{\rm T} > 90$ GeV	60	80	2	41	
	Two μ 's, each $p_{\rm T} > 11$ GeV	2×10	2×10	0.8	19	
	Two μ 's, $p_{\rm T} > 19, 10 \text{ GeV}$	15	18, 8	7	18	
Two leptons	Two loose e's, each $p_{\rm T} > 15 \text{ GeV}$	2×10	2×12	10	5	
	One <i>e</i> & one μ , $p_{\rm T} > 10, 26 \text{ GeV}$	$20 (\mu)$	7, 24	5	1	
	One loose e & one μ , $p_{\rm T} > 19, 15$ GeV	15, 10	17, 14	0.4	2	
	Two τ 's, $p_{\rm T} > 40, 30 \text{ GeV}$	20, 12	35, 25	2	22	
	One τ , one μ , $p_{\rm T} > 30, 15 \text{ GeV}$	12, 10 (+jets)	25, 14	0.5	10	
	One τ , one $e, p_{\rm T} > 30, 19 \text{ GeV}$	12, 15 (+jets)	25, 17	1	3.9	
	Three loose e 's, $p_{\rm T} > 19, 11, 11 \text{ GeV}$	$15, 2 \times 7$	$17, 2 \times 9$	3	< 0.1	
	Three μ 's, each $p_{\rm T} > 8 \text{ GeV}$	3×6	3×6	< 0.1	4	
Three leptons	Three μ 's, $p_{\rm T} > 19, 2 \times 6$ GeV	15	$18, 2 \times 4$	7	2	
	Two μ 's & one $e, p_{\rm T} > 2 \times 11, 14$ GeV	$2 \times 10 \ (\mu's)$	$2 \times 10, 12$	0.8	0.2	
	Two loose e 's & one μ ,	2 × 8 10	$2 \times 12 \ 10$	0.3	< 0.1	
	$p_{\rm T} > 2 \times 11, 11 {\rm GeV}$	2 × 8, 10	$2 \times 12, 10$	0.5	< 0.1	
One photon	one γ , $p_{\rm T} > 125 \text{ GeV}$	22	120	8	20	
Two photons	Two loose γ 's, $p_{\rm T} > 40, 30$ GeV	2×15	35, 25	1.5	12	
1 wo photons	Two tight γ 's, $p_{\rm T} > 25, 25 \text{ GeV}$	2×15	2×20	1.5	7	
Single jet	Jet $(R = 0.4), p_T > 400 \text{ GeV}$	100	360	0.9	18	
	Jet $(R = 1.0), p_{\rm T} > 400 \text{ GeV}$	100	360	0.9	23	
$E_{\rm T}^{\rm miss}$	$E_{\rm T}^{\rm miss} > 180 {\rm ~GeV}$	50	70	0.7	55	
Multi-jets	Four jets, each $p_{\rm T} > 95$ GeV	3×40	4×85	0.3	20	
	Five jets, each $p_{\rm T} > 70 \text{ GeV}$	4×20	5×60	0.4	15	
	Six jets, each $p_T > 55$ GeV	4×15	6×45	1.0	12	
b-jets	One loose $b, p_{\rm T} > 235 \text{ GeV}$	100	225	0.9	35	
	Two medium b's, $p_{\rm T} > 160, 60 \text{ GeV}$	100	150, 50	0.9	9	
	One b & three jets, each $p_{\rm T} > 75$ GeV	3×25	4×65	0.9	11	
	Two b & two jets, each $p_{\rm T} > 45 \text{ GeV}$	3×25	4×35	0.9	9	
b-physics	Two μ 's, $p_{\rm T} > 6, 4$ GeV					
	plus dedicated <i>b</i> -physics selections	6, 4	6, 4	8	52	
Total				70	1400	

Luminosity Measurement

Preliminary Luminosity Calibration

• 9% from June 10th LHCf run (very conservative)

Luminosity calibrated in dedicated beam scans

• So-called "van-der-Meer scan" (VdM)

For high precision, a set of scans is required

• Takes about 2 days for 4 experiments

Scan was taken on Aug. 25th

• ATLAS+CMS to understand relative observed difference.

Dominant systematics:

- Quality of the VdM data
- Consistency of the various luminosity monitors

Preliminary systematics for 2015 data 5%

Run-1: 1.8% for 2011 and 1.9% for 2012 (but it took a while)

Beam Spot

- Very stable beam spot for all 2015
- Tune beam once to bring collisions in nominal position
- Very stable x, y, z beam sizes

Beam Spot Public Results

Inner Detector Material

ATLAS Preliminary

Pixel

Frame

2×10²

Hadronic Interaction Radius [mm]

 3×10^{2}

vs = 13 TeV

h_{ev}l < 2.4

- Detailed mapping of the material in Pixel detector using:
- Hadronic interactions

ATL-PHYS-PUB-2015-050

Data 2015

IST

40

50

30

Photon conversions

Vertices / 0.50 mm / Event

10-1

10⁻²

10⁻³

10⁻⁴

10⁻⁵

10⁻⁶

Simulation updated after comparison to improve geometry description

Layer-1

60 70 80 9010²

Layer-2

Pythia8 Simulation (Updated Geometry)

Pythia8 Simulation (Default Geometry)

B-Layer

Electrons and Photons

ATL-PHYS-PUB-2015-041

EGAM-2015-002

Likelihood electron identification performance with full 2015 dataset

Good agreement between data and simulation

- Lower efficiency in data than MC mostly arises from a known mismodelling of calorimetric shower shape
- Correction factors applied to correct remaining differences

Missing Transverse Momentum

New technique developed during LS1

using tracking information

- Track Soft Term (TST)
- Track MET
- Reduces pileup sensitivity

Systematics derived from MC, will be updated soon

