DUNE: A New Collaboration for Physics at LBNF

Mark Thomson on behalf of the DUNE Collaboration

HEPAP Meeting 9th December 2015

Торіс	Slides
1. The DUNE Collaboration	10
2. DUNE Science	10
3. DUNE Detector Strategy	5
4. DUNE and P5	1
5. Relation to SBN and CERN Prototypes	2
6. Summary	1

1. The DUNE Collaboration

Introduction: DUNE and P5

Paraphrasing P5

- Called for the formation of LBNF:
 - as a international collaboration bringing together the LBL community
 - ambitious scientific goals with discovery potential for:
 - Leptonic Charge-Parity (CP) violation
 - Proton decay
 - Supernova burst neutrinos

Resulted in the formation of the DUNE collaboration with strong representation from:

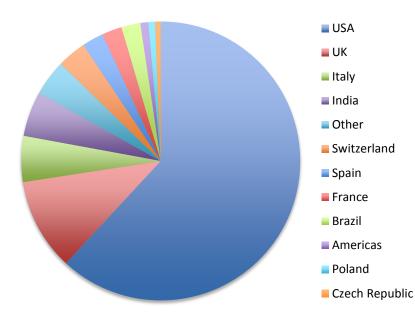
D

- LBNE
- LBNO
- Other interested institutes

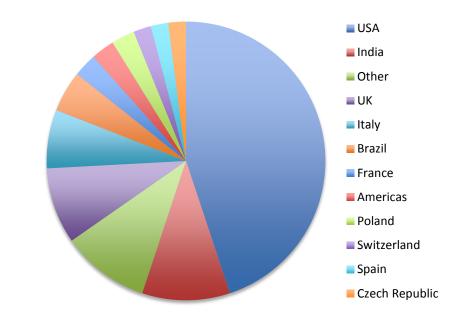
DUNE is up-and-running

It is a rapidly evolving scientific collaboration...

- First formal collaboration meeting April 16th-18th 2015
 - Over 200 people attended in person
- Conceptual Design Report in June (foundations from LBNE/LBNO)
- Passed DOE CD-1 Review in July
- Second collaboration meeting September 2nd-5th 2015
- Successful CD-3a Review in December 2015 (last week)
 - paves the way to approval of excavation in FY17



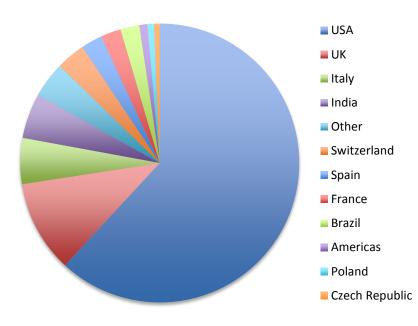
The DUNE Collaboration


As of today:

803 Collaborators

145 Institutes

from



The DUNE Collaboration

As of today:

803 Collaborators

from

27 Nations

Armenia, Belgium, Brazil, Bulgaria, Canada, Colombia, Czech Republic, France, Germany, Greece, India, Iran, Italy, Japan, Madagascar, Mexico, Netherlands, Peru, Poland, Romania, Russia, Spain, Switzerland, Turkey, UK, USA, Ukraine

+ soon to add Finland

DUNE already has attracted broad international support

Organizational Challenges

- Large and diverse international collaboration
 - Need to fully engage broad spectrum of collaborators in the DUNE scientific and detector activities
- The collaboration is likely to grow significantly
 - Management structures need to be scale effectively to a collaboration of >1000 scientists, c.f. ~3000 in ATLAS or CMS

• CD-2 in 2019 is a major goal

- Need to effectively utilize the collaboration resources, both financial and people
- Further engage international community

Organizational Challenges

- Large and diverse international collaboration
 - Need to fully engage broad spectrum of collaborators in the DUNE scientific and detector activities
- The collaboration is likely to grow significantly
 - Management structures need to be scale effectively to a collaboration of >1000 scientists, c.f. ~3000 in ATLAS or CMS

• CD-2 in 2019 is a major goal

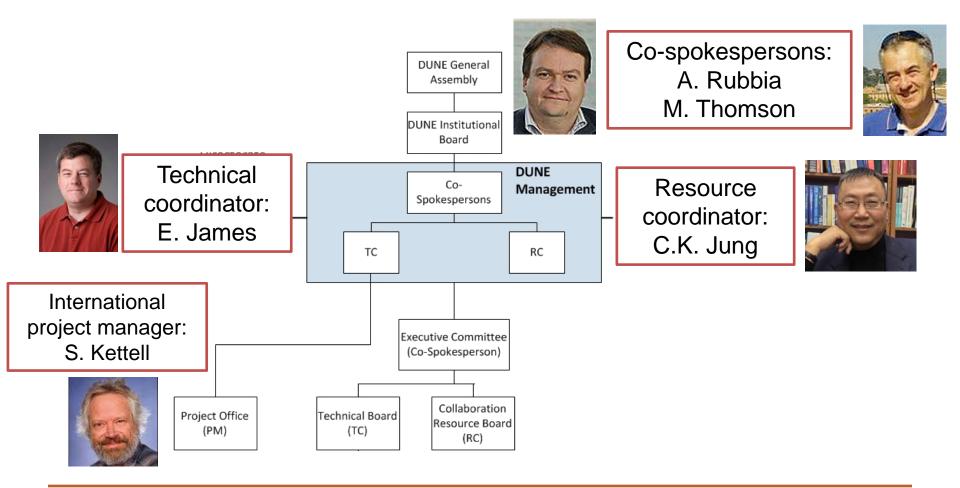
- Need to effectively utilize the collaboration resources, both financial and people
- Further engage international community

Guided by experience from LHC experiments and elsewhere

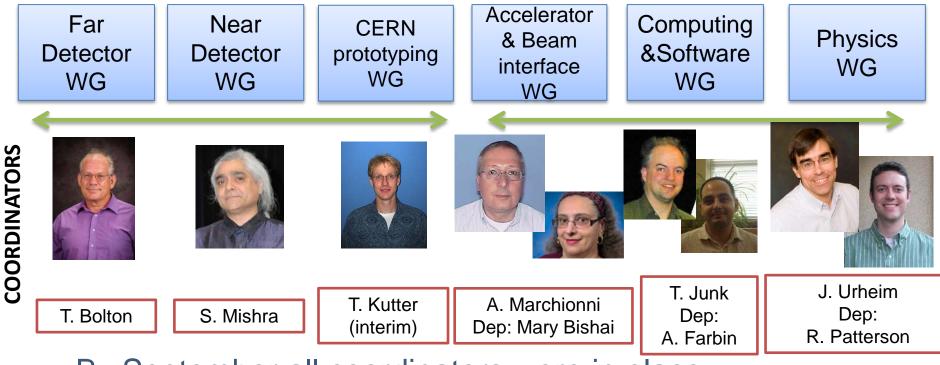
Collaboration Management

Collaboration rules adopted in April

- Defined high-level management structure and executive committee
- Initial focus was the preparation of the draft CD-1-R documents
 - Set up temporary task forces to draft CDR


• Since CD-1-Refresh review in July:

- Implemented collaboration working group structure and leadership
 - Put in place a very strong far detector leadership team
- Set up 3 task forces to addresses strategically important questions
- Defined technical board membership
 - Played an important role in defining/validating the far site requirements for detector grounding and DAQ power
- Currently developing the work plan for progress towards CD-2 in 2019 and identifying resources required
- Now in "normal" operational mode with regular WG meetings


DUNE Management

Experienced team in place since April

DUNE Coordination Team

Organize scientific and detector activities of the collaboration

- By September all coordinators were in place
 - Searched widely within the collaboration
 - Ended up with a very strong team
 - Responsible for coordination of DUNE working groups

DUNE Task Forces

- In addition to WGs, we have set up three "Task Forces" to address strategically important issues:
 - Task force leadership reports the DUNE executive committee
 - Focus on collaboration goals/open questions for CD-2
 - Activities cross boundaries of various working groups
 - For example physics, reconstruction software and far detector WGs
 - Limited duration: deliver report in 18 months
- Assembled strong teams

DUNE Task Forces cont.

TF1: Near detector optimization

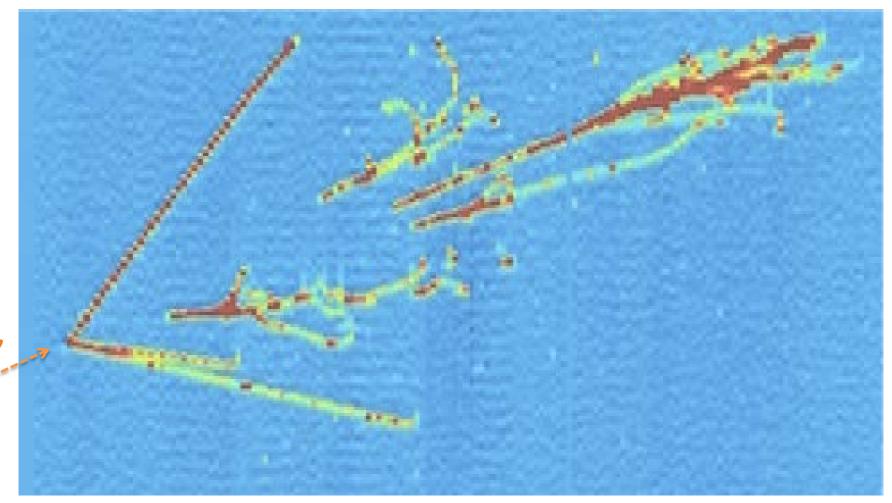
- End-to-end simulation of Near Detector design and analysis
- Evaluate impact on far detector systematics
- Evaluate benefits of alternative designs
- TF2: Far Detector Reconstruction/Physics
 - End-to-end simulation and full reconstruction of far detector
 - Validation (optimization) of design parameters (e.g. wire spacing)
 - Update physics sensitivities with full simulation for CD-2

• TF3: Beam Optimization

- Further develop physics-driven optimization of the beam line
- Identify options for improvements and present a first-order cost-benefit analysis

DUNE Task Forces cont.

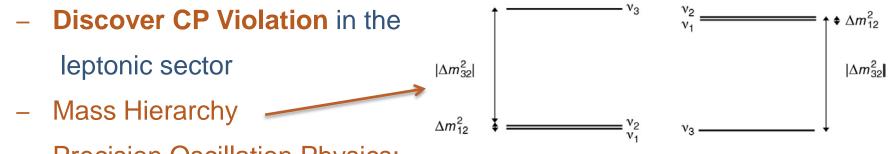
- En critical questions as we meter of few Focus on critical primerous


Timeline

• Hit many "milestones" in the last nine months

- − 11 March DUNE Co-spokespersons elected ✓ □
- 24 March Task Force conveners named charged to prepare CDR ✓ □
- 16-18 April First DUNE Collaboration Meeting
- 18 April Institute Board Rules approved
- 19 April First full LBNC Meeting
- 4 May First DUNE Executive Committee meeting
- 2-3 June CD-1-R Director's Review
- 14-16 July DOE CD-1-R Review
- 27 July
 Scientific/Detector Coordinators appointed
- 17 August Technical Board Formed
- 2-5 Sept Second DUNE Collaboration Meeting
- 21 Sept Move to regular WG meeting schedule
- 27-29 Oct DOE CD-3a Director's Reviews
- 2-4 Dec DOE CD-3a Review ✓

2. DUNE Science


A neutrino interaction in the ArgoNEUT detector at Fermilab

DUNE Primary Science Program

Focus on fundamental open questions in particle physics and astroparticle physics:

• 1) Neutrino Oscillation Physics

- Precision Oscillation Physics:
 - e.g. parameter measurement, θ_{23} octant, testing the 3-flavor paradigm
- 2) Nucleon Decay
 - e.g. targeting SUSY-favored modes, $p \to K^+ \overline{\nu}$
- 3) Supernova burst physics & astrophysics
 - Galactic core collapse supernova, sensitivity to v_e

DUNE Primary Science Prog *leries*

Focus on fundamental open questions in *p* physics and astroparticle physics: 500 priorities

- 1) Neutrino Oscillation Physic
 - outo be maior outo be to po matcheo to Discover CP Violation in the

leptonic sector

Mass Hierarchy

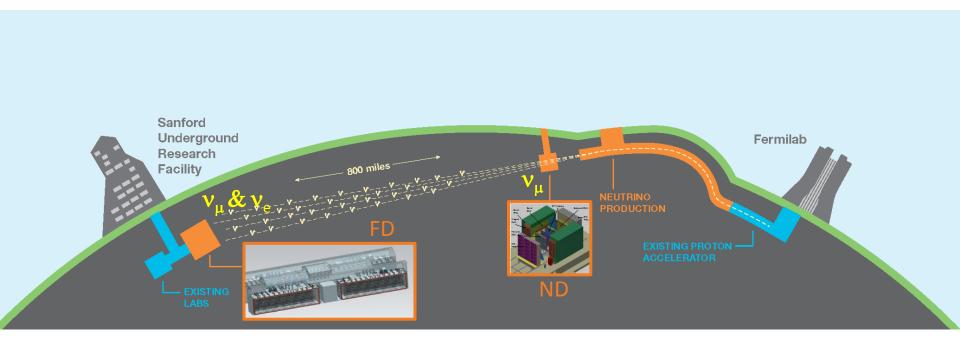
NO

Precisiop

octant, testing the 3-flavor paradigm

 ${\mathbf O}{\mathbf S}{\mathbf Y}$ -favored modes, $\mathbf{p} \to \mathbf{K}^+ \overline{\mathbf{v}}$

nova burst physics & astrophysics

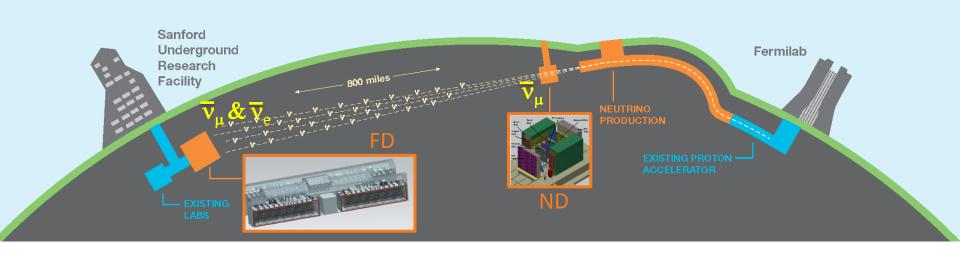

Galactic core collapse supernova, sensitivity to v_{e}

 $\Rightarrow \Delta m_{12}^2$

 Δm_{32}^2

Neutrino Oscillation Strategy

Measure neutrino spectra at 1300 km in a wide-band beam


- Near Detector at Fermilab: measurements of v_{μ} unoscillated beam
- Far Detector at SURF: measure oscillated v_{μ} & v_{e} neutrino spectra

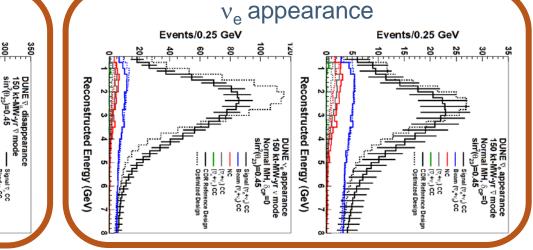
Neutrino Oscillation Strategy

... then repeat for antineutrinos

- Compare oscillations of neutrinos and antineutrinos
- Direct probe of CPV in the neutrino sector

- Near Detector at Fermilab: measurements of $\overline{\mathbf{v}}_{\mu}$ unoscillated beam
- Far Detector at SURF: measure oscillated \overline{v}_{μ} & \overline{v}_{e} neutrino spectra

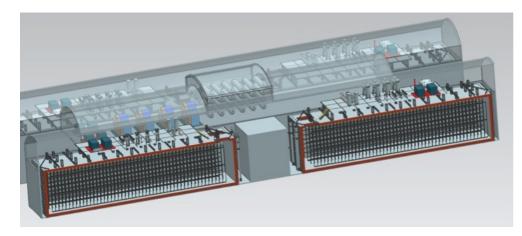
V_θ appendix the second seco

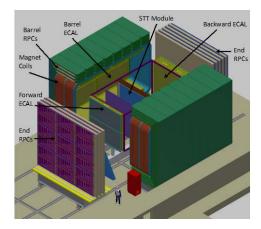

Neutrino Oscillation Strategy

Long baseline and wide-band beam enables:

- Determine MH and θ_{23} octant, probe CPV, test 3-flavor paradigm and search for BSM effects (e.g. NSI) in a single experiment
 - Long baseline:

Reconstructed Energy (GeV

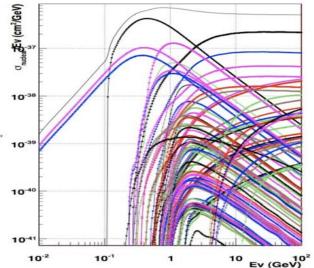

- Matter effects are large ~ 40%
- Wide-band beam:
 - Measure v_e appearance and v_u disappearance over range of energies
 - MH & CPV effects are separable


E ~ few GeV

DUNE CDR Reference Design =

Far detector: 40-kt fiducial LAr-TPC (four 10-kt modules)

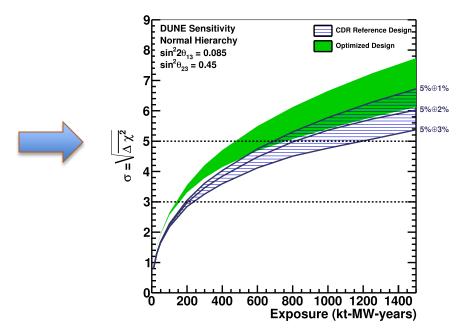
Near detector: Multi-purpose high-resolution detector


DUNE CDR Sensitivities

Many inputs to calculation (implemented in GLoBeS):

- Reference Beam Flux
 - 80 GeV protons
 - 204m He-filled decay pipe
 - 1.07 MW
 - NuMI-style two horn system
- Optimized Beam Flux
 - Horn system optimized for lower energies
- Expected Detector Performance
 - Based on previous experience (ICARUS, ArgoNEUT, ...)

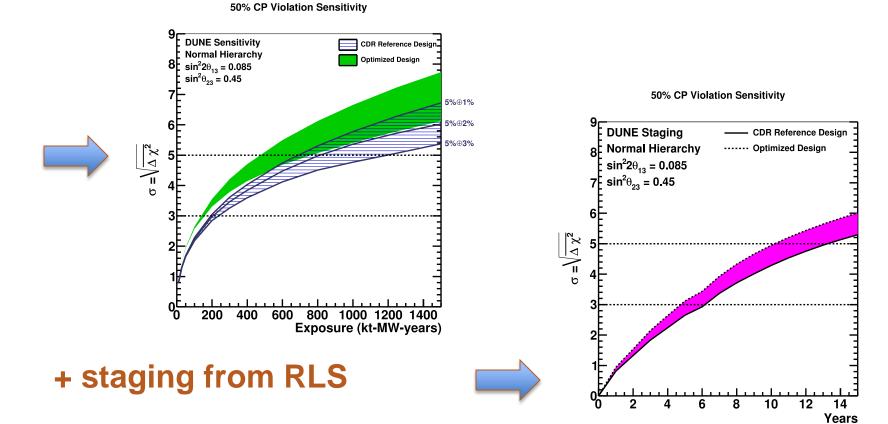
- Cross sections
 - GENIE 2.8.4
 - CC & NC
 - all (anti)neutrino flavors


Exclusive v-nucleon cross sections

DUNE CDR Sensitivities

Propagate to Oscillation Sensitivities

using assumptions for systematics (from the ND)



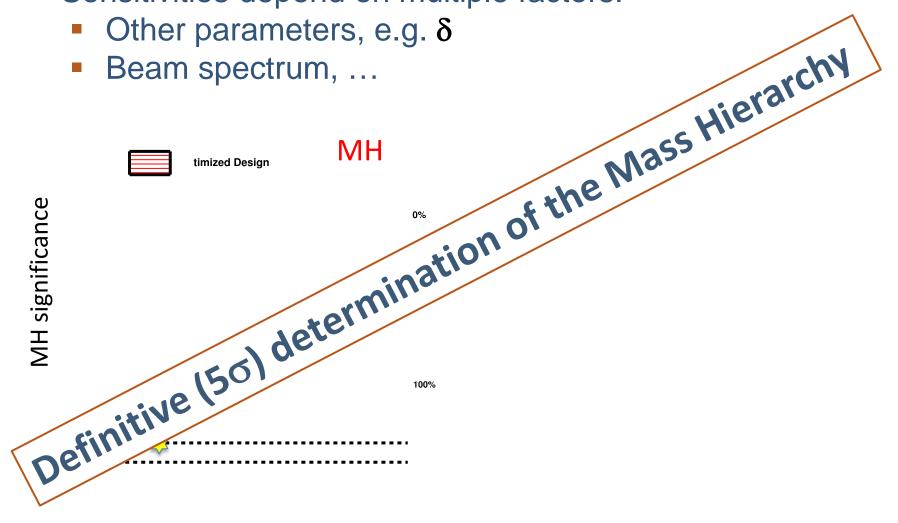
50% CP Violation Sensitivity

DUNE CDR Sensitivities

Propagate to Oscillation Sensitivities

using assumptions for systematics (from the ND)

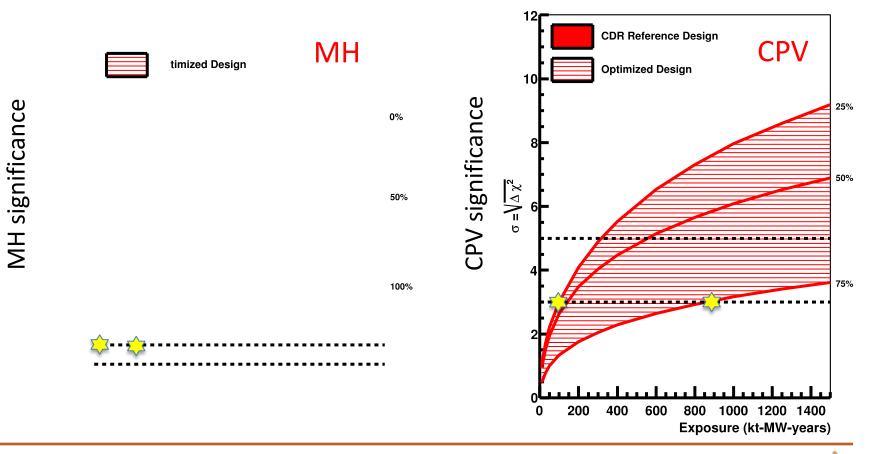
MH Sensitivity


MH significance

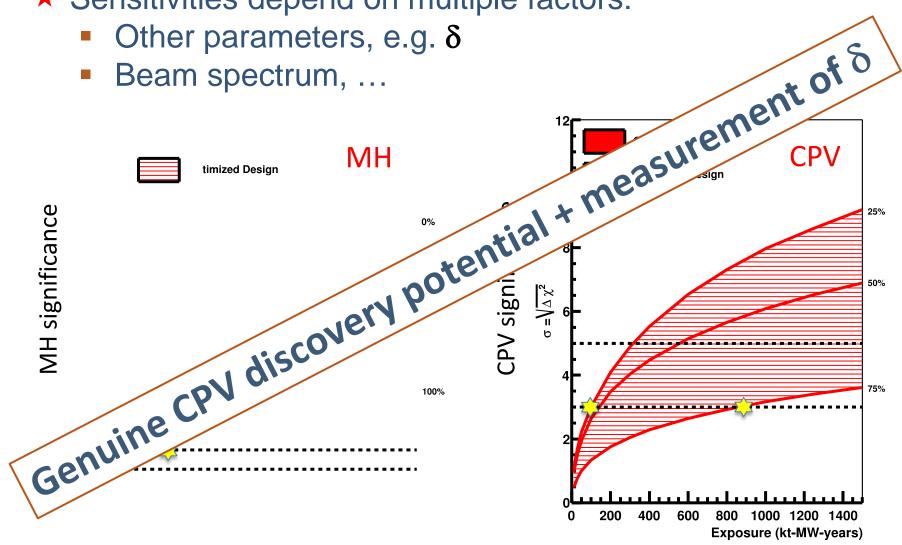
- ★ Sensitivities depend on multiple factors:
 - Other parameters, e.g. δ
 - Beam spectrum, ...

	timized Design	MH	
			0%
			50%
			100%
☆ ☆			

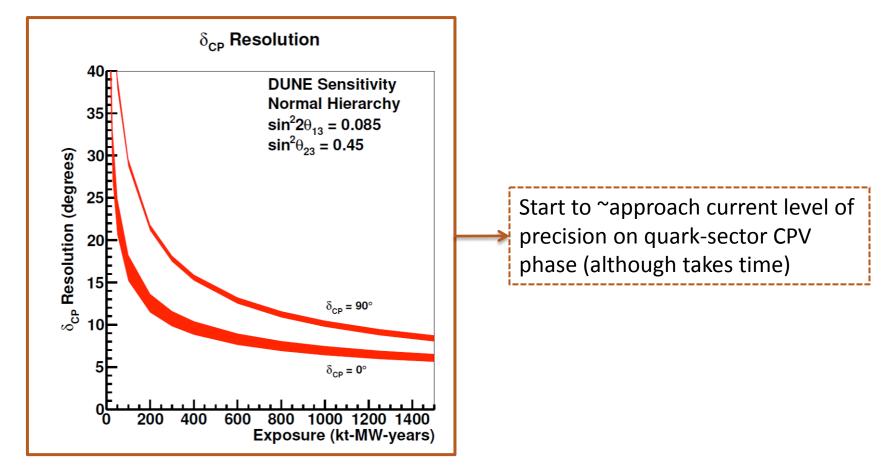
MH Sensitivity


- ★ Sensitivities depend on multiple factors:
 - Other parameters, e.g. δ

Ci


MH and CPV Sensitivitities

- ★ Sensitivities depend on multiple factors:
 - Other parameters, e.g. δ
 - Beam spectrum, ...


MH and CPV Sensitivitities

- ★ Sensitivities depend on multiple factors:
 - Other parameters, e.g. δ

Beyond discovery: measurement of δ

★ CPV "coverage" is just one way of looking at sensitivity... ★ Can also express in terms of the uncertainty on δ

Physics Milestones

Discovery

Rapidly reach scientifically interesting sensitivities:

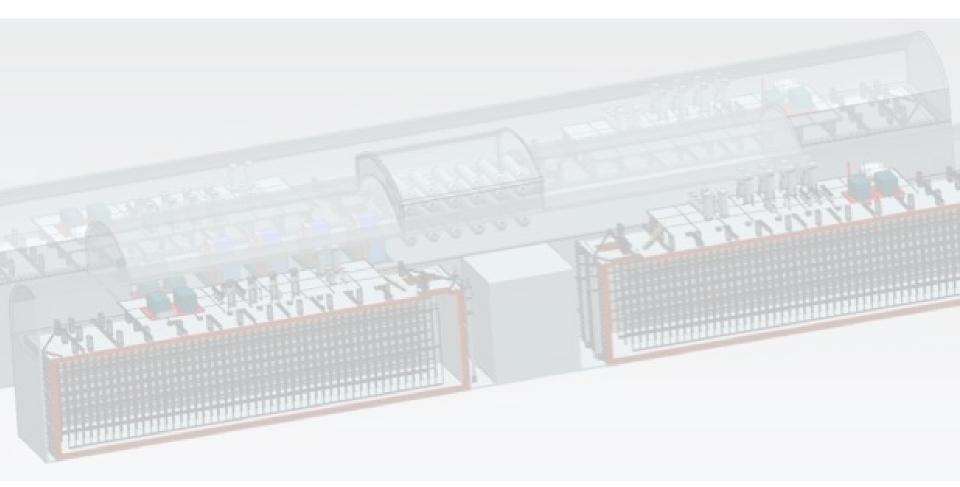
- e.g. in best-case scenario for Mass Hierarchy :
 - Reach 5σ MH sensitivity with 20 30 kt.MW.year

- e.g. in best-case scenario for CPV ($\delta_{CP} = +\pi/2$) :
 - Reach 3σ CPV sensitivity with 60 70 kt.MW.year

Strong evidence

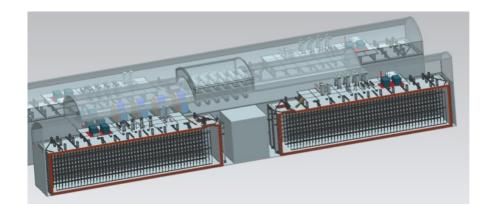
- e.g. in best-case scenario for CPV ($\delta_{CP} = +\pi/2$) :
 - Reach 5σ MH sensitivity with 210 280 kt.MW.year

★ Genuine potential for early physics discovery



~2 years

DUNE Detector Strategy



Staged Approach to 40 kt (fiducial)

Cavern Layout at the Sanford Underground Research Facility (SURF) discussed in detail jointly by LBNF and DUNE

- Decision based on: strategic + technical input
 - ➡ four chambers hosting four independent 10-kt FD modules
 - Allows for staged construction of FD
 - Gives flexibility for evolution of LAr-TPC technology design
 - Assume four identical cryostats: 15.1 (W) x 14.0 (H) x 62 (L) m³
 - Assume the four 10-kt modules will be similar but **not identical**

LAr-TPC Technologies

LAr-TPC technology has been demonstrated by ICARUS

DUNE is considering two options for readout of ionization signals:

- Single-phase wire-plane readout (reference design)
 - Ionization signals (collection + induction) read out in liquid volume
 - As used in ICARUS, ArgoNEUT/LArIAT, MicroBooNE
 - Long-term operation already demonstrated by ICARUS T600
- **Dual-phase readout** (alternative design)
 - Ionization signals amplified and detected in gaseous argon above the liquid surface
 - Being pioneered by the WA105 collaboration
 - If demonstrated, potential advantages over single-phase approach

Underpinned by strong LAr-TPC development program

LAr-TPC Technologies

LAr-TPC technology has been demonstrated by ICARUS

cryostat design DUNE is considering two options for readout ionization signals:

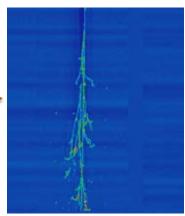
- Single-phase wire-plane readout
 - fit same Ionization signals (collection + ip in liquid volume
 - As used in ICARUS, ArgoNF MicroBooNE
 - both Long-term operation strated by ICARUS T600
- internative design) **Dual-phase**
- designs mplified and detected in gaseous argon above lonizat
 - eered by the WA105 collaboration
 - memonstrated, potential advantages over single-phase approach

Underpinned by strong LAr-TPC development program

Far Detector Reference Design

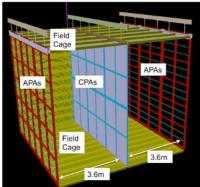
Single-phase APA/CPA LAr-TPC:

- Design is already well advanced for CDR stage
- Supported by strong development program at Fermilab
 - 35-t prototype (operational in 2015) almost ready to fill with LAr
 - MicroBooNE (operational in 2015)
 - SBND (aiming for operation in 2018)



Far Detector Reference Design

Single-phase APA/CPA LAr-TPC:


- Design is already well advanced for CDR stage
- Supported by strong development program at Fermilab
 - 35-t prototype (operational in 2015) almost ready to fill with LAr
 - MicroBooNE (operational in 2015)
 - SBND (aiming for operation in 2018)

Far Detector Reference Design

Single-phase APA/CPA LAr-TPC:

- Design is already well advanced for CDR stage
- Supported by strong development program at Fermilab
 - 35-t prototype (operational in 2015) almost ready to fill with LAr
 - MicroBooNE (operational in 2015)
 - SBND (aiming for operation in 2018)
- "Full-scale prototype" with ProtoDUNE at the CERN
 Neutrino Platform
 - Engineering prototype
 - 6 full-sized drift cells c.f. 150 in the far detector
 - Approved by CERN SPSC (October 2015)
 - Aiming for operation in 2018

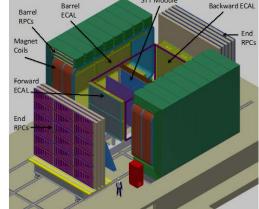
DUNE FD Staging Strategy

Far Detector Implementation strategy

• First 10-kt will be the single-phase APA/CPA design

- Represents lowest risk route to installation in 2021
- Production lines set up for DUNE single-phase prototype at CERN
- Experience at CERN and Fermilab
 evolution of LArTPC design, either through:
 - Refinements of single-phase design
 - Validation of operation of dual-phase design

• Technology choice for 2nd & subsequent 10-kt modules:

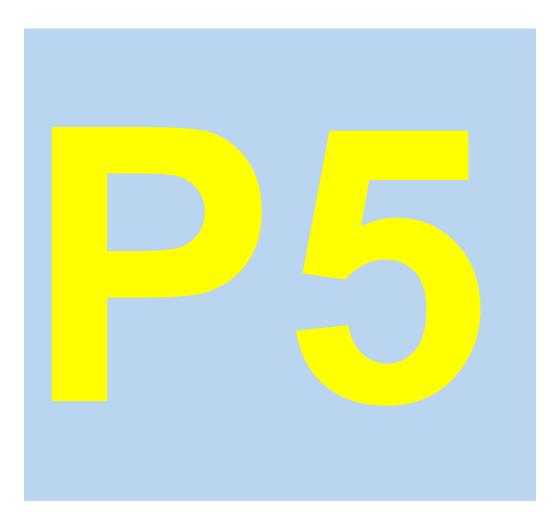

- Based on risk, cost and physics performance
- Review process will organized by the DUNE technical board
- Ultimate decision by DUNE executive committee
- Process repeated for 3rd & 4th 10-kt module

The DUNE Near Detector

CDR reference design is the NOMAD-inspired Fine-Grained Tracker (FGT)

- Consisting of:
 - Central straw-tube tracking system
 - Lead-scintillator sampling ECAL
 - Large-bore warm dipole magnet
 - RPC-based muon tracking systems

Will result in unprecedented samples of v interactions


- >100 million interactions over a wide range of energies:
 - strong constraints on systematics
 - the ND samples will represent a huge scientific opportunity

Also evaluating other ND options (in ND Task Force)

- High-pressure gaseous argon TPC as a tracker
- Augmenting the ND with a LAr-TPC

5. DUNE & P5

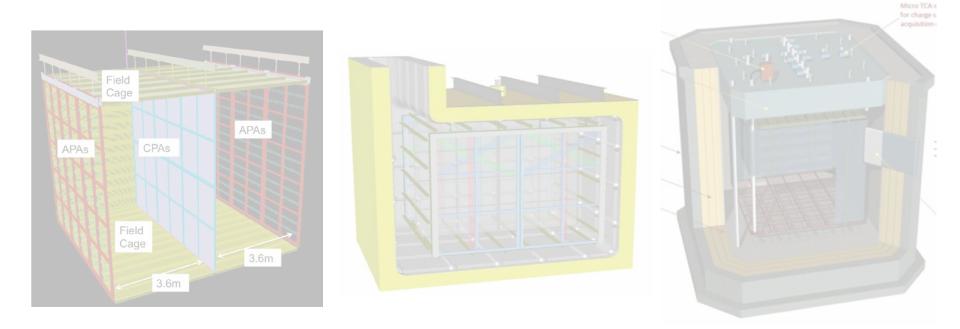
DUNE Reference Design & P5

P5 identified the following "minimum requirements to proceed":

- reach an exposure of 120 kt.MW.years by 2035
- Far detector underground with cavern space for expansion to 40 kt LAr (fiducial)
- 1.2 MW beam upgradable to multi-MW power
- Demonstrated capability for supernova neutrino bursts
- Demonstrated capability for proton decay, providing a significant improvement over current searches

P5 "goal" is for 3σ CPV coverage for > 75 % of δ values

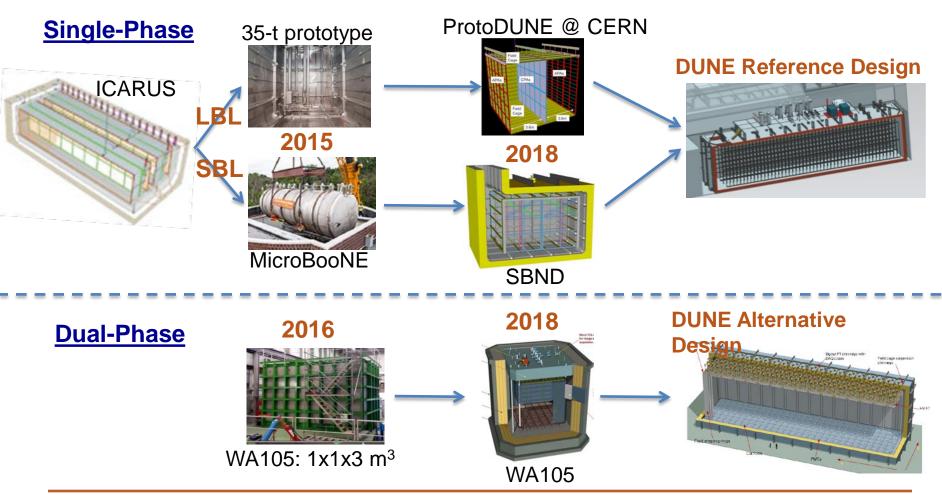
DUNE Reference Design & P5


P5 identified the following "minimum requirements to proceed":

- Far detector underground with cavern space for expansion to 40 kt LAr (fiducial)
- 1.2 MW beam upgradable to multi-MW power □
- Demonstrated capability for supernova neutrino bursts
- Demonstrated capability for proton decay, providing a significant improvement over current searches

P5 "goal" is for 3 σ **CPV coverage for > 75 % of** δ **values** \Box

DUNE design meets the P5 goals


5. Relation to SBN & CERN v Platform

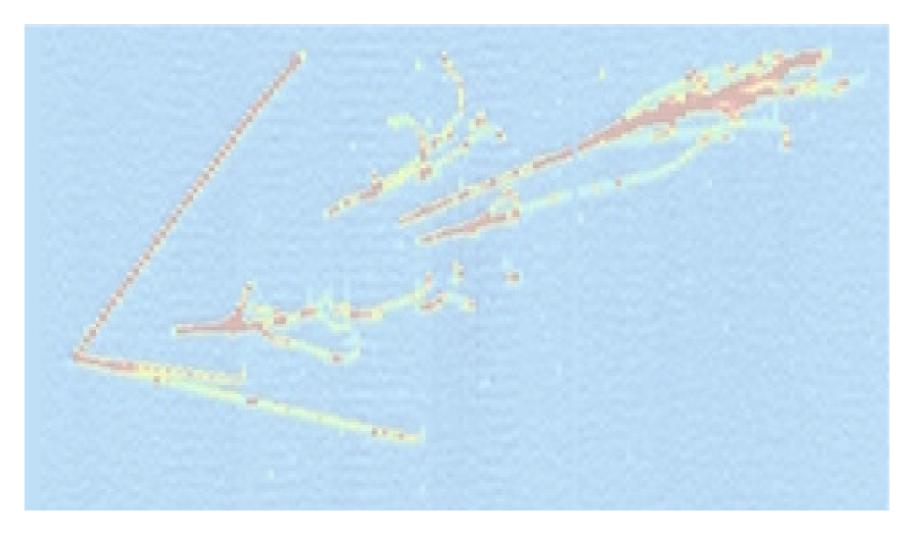
5. Relation to SBN & CERN v Platform

• Fermilab SBN and CERN neutrino platform provide a strong LArTPC development and prototyping program

Relation to SBN & CERN v Platform

DUNE is actively trying to build on potential synergies across FNAL SBN & CERN programmes

- Single-phase vs. Dual-phase @ CERN
 - Pursuing path under DUNE organization with common/shared activities between WA105 & ProtoDUNE
- Already benefiting from MicroBooNE
 - Sharing of software MicroBooNE \rightarrow 35-t prototype
 - Discussing how to transfer "lessons learned"
- Held workshops to explore potential synergies
 - DUNE SBND TPC workshop
 - Common development of cold electronics
 - DUNE SBN WA105 DAQ workshop
 - Potential to share "online" tools across programme
 - Potential for common backend DAQ (ProtoDUNE-WA105-ICARUS)
 - LArTPC workshop on LArSoft Requirements & Reconstruction
 - Follow up meetings in the new year


Relation to SBN & CERN v Platform

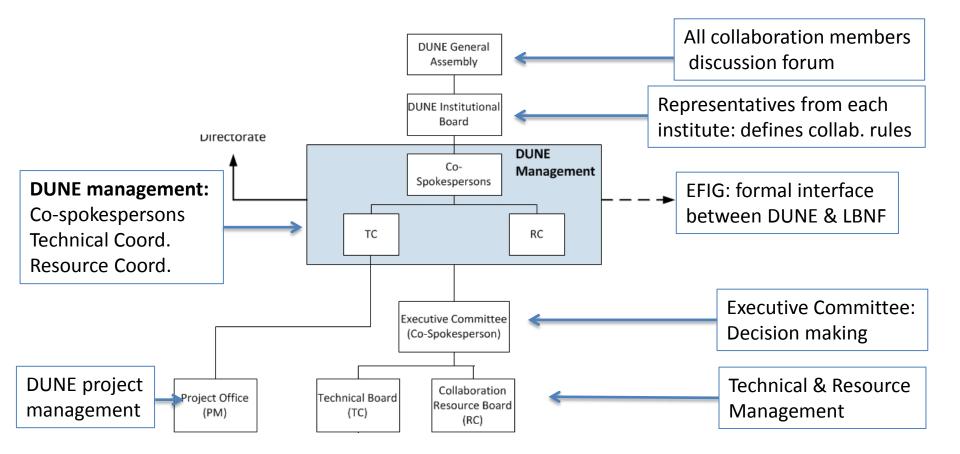
WE between all parties DUNE is actively trying to build on potential synergies

- - - - ArTPC workshop on LArSoft Requirements & Reconstruction
 - Follow up meetings in the new year

6. Summary

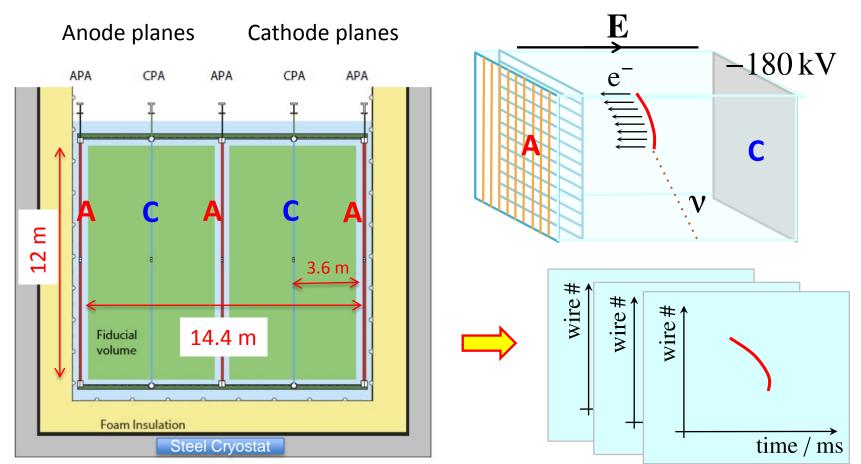
Summary

- ★ DUNE has come together as a large international collaboration to pursue physics with LBNF
 - full collaboration structure in place and operating
 - successfully delivered CD-1-R & detector interfaces in CD-3a scope
- ★ DUNE will deliver science that meets P5 goals
 - and can do so in a timely manner
- ★ DUNE has a clear strategy for the far detector
 - backed up by a strong prototyping phase
- ★ DUNE engaging wider community
 - actively pursuing potential synergies
- ★ DUNE has made a great deal of progress in the last year
 - many challenges ahead but believe we are on the right track

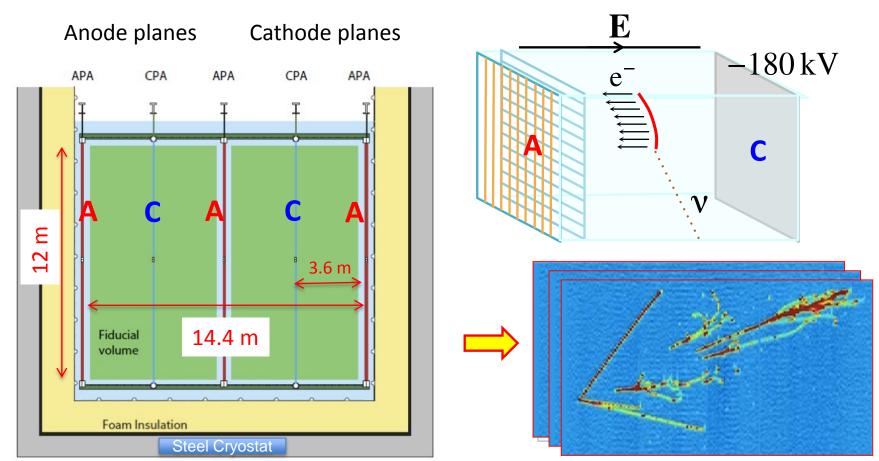


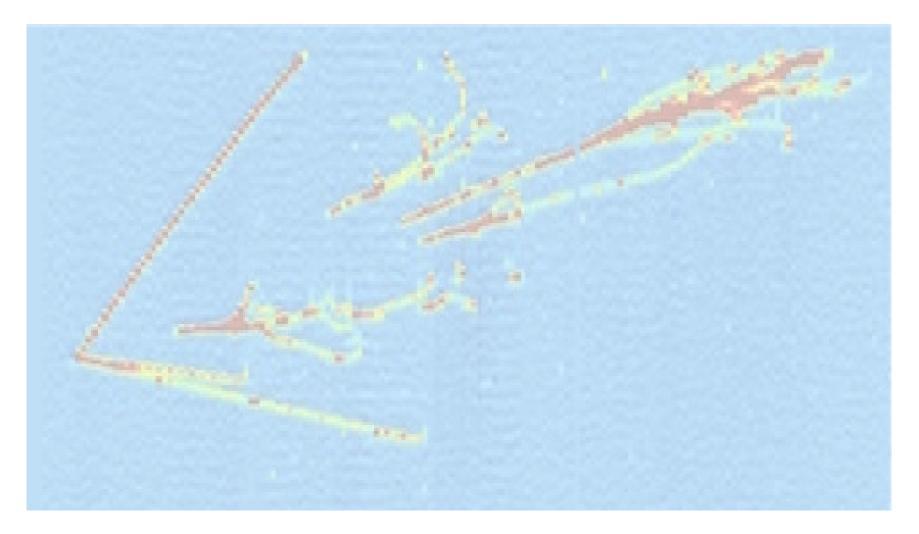
Backup Slides

DUNE Management


Top-level management structure defined in collab. governance document – approved by DUNE institute board in April

Liquid Argon TPC Basics


A modular implementation of Single-Phase TPC


Liquid Argon TPC Basics

A modular implementation of Single-Phase TPC

Record ionization in LAr volume ⇒ 3D image

Systematics & Performance

Evaluating DUNE Sensitivities

Systematic Uncertainties

- Anticipated uncertainties based on MINOS/T2K experience
- Supported by preliminary fast simulation studies of ND

Source	MINOS v _e	Τ2Κ ν _e	DUNE Ve
Flux after N/F extrapolation	0.3 %	3.2 %	2 %
Interaction Model	2.7 %	5.3 %	~2%
Energy Scale (v_{μ})	3.5 %	Inc. above	(2 %)
Energy Scale (v_e)	2.7 %	2 %	2 %
Fiducial Volume	2.4 %	1 %	1 %
Total	5.7 %	6.8 %	3.6 %

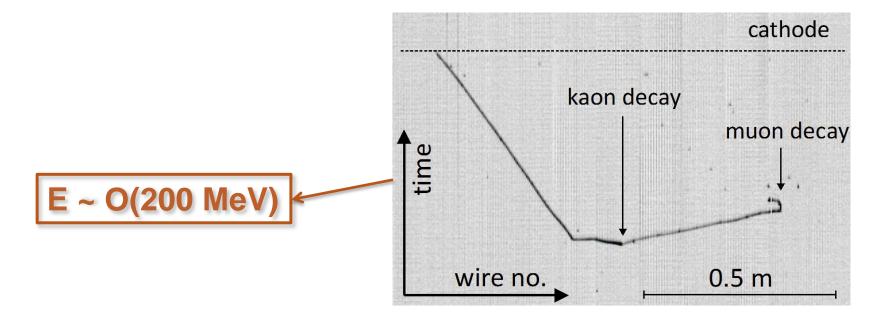
• DUNE goal for v_e appearance < 4 %

- For sensitivities used: 5 % \oplus 2 %
 - where 5 % is correlated with v_{μ} & 2 % is uncorrelated v_{e} only

Evaluating DUNE Sensitivities

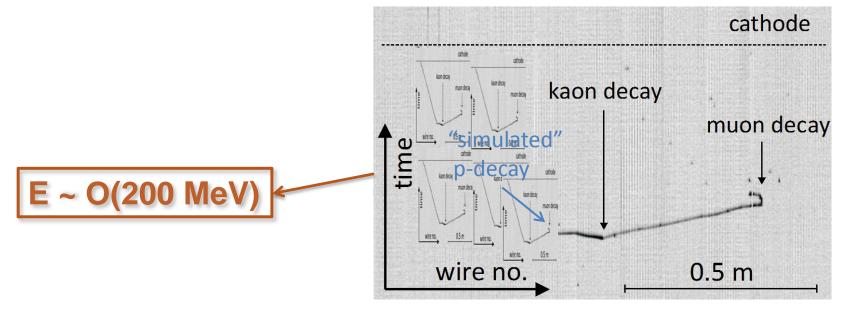
- Assumed* Particle response/thresholds
 - Parameterized detector response for individual final-state particles

Particle Type	Threshold (KE)	Energy/momentum Resolution	Angular Resolution
μ^{\pm}	30 MeV	Contained: from track length Exiting: 30 %	1°
π^{\pm}	100 MeV	MIP-like: from track length Contained π-like track: 5% Showering/Exiting: 30 %	1°
e [±] /γ	30 MeV	2% ⊕ 15 %/√(E/GeV)	1º
р	50 MeV	p < 400 MeV: 10 % p > 400 MeV: 5% ⊕ 30%/√(E/GeV)	5°
n	50 MeV	440%/√(E/GeV)	5°
other	50 MeV	5% ⊕ 30%/√(E/GeV)	5°


*current assumptions to be addressed by FD Task Force

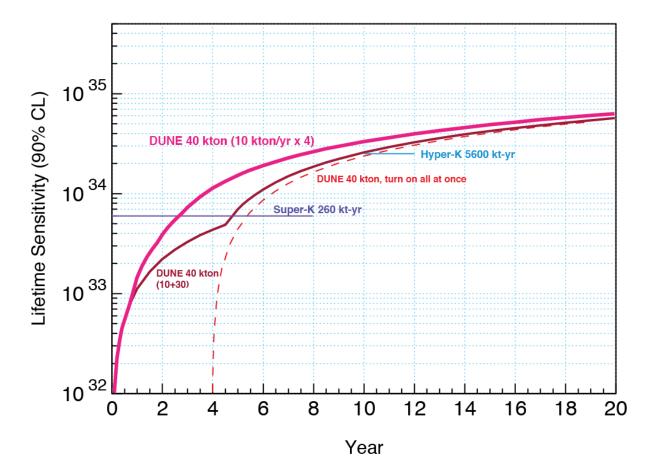
Proton Decay

Nucleon (proton) decay is expected in most new physics models – not yet observed


- Image particles from a single nucleon decay in detector volume
 - For example, look for kaons (from dE/dx) from SUSY-inspired GUT p-decay modes such as $~p\to K^+\overline{\nu}$

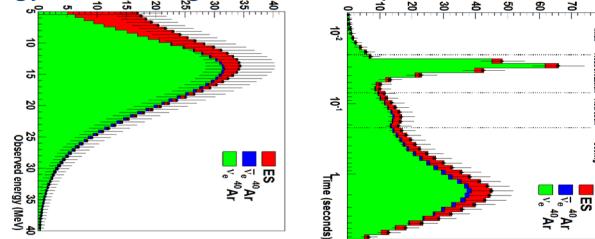
Proton Decay

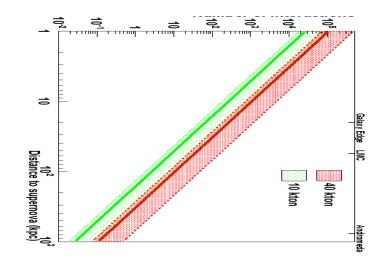
Nucleon (proton) decay is expected in most new physics models – not yet observed


- Image particles from a single nucleon decay in detector volume
 - For example, look for kaons (from dE/dx) from SUSY-inspired GUT p-decay modes such as $~p\to K^+\overline{\nu}$

Remove incoming cosmic ray

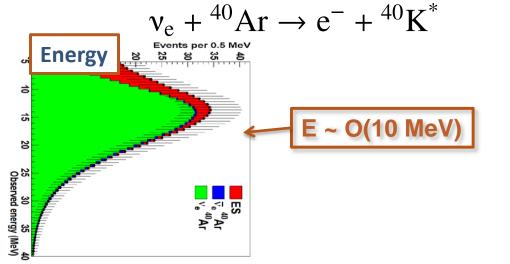
$\begin{array}{l} \textbf{PDK} \\ \textbf{p} \rightarrow \textbf{K} \ \nu \end{array}$

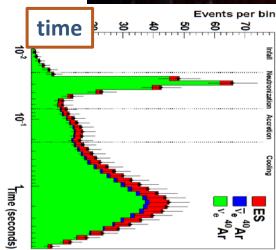

• DUNE for various staging assumptions



Energy and timing sensitive to particle & astrophysics

Event Rates:




Supernova vs

A core collapse supernova produces an incredibly intense burst of neutrinos

- Trigger on and measure energy of neutrinos from galactic supernova bursts
 - In argon (uniquely) the largest sensitivity is to $\nu_{\rm e}$

Physics Highlights include:

- Possibility to "see" neutron star formation stage
- Even the potential to see black hole formation !

Physics Milestones

Physics milestone	Exposure kt · MW · year (reference beam)	Exposure kt · MW · year (optimized beam)
$1^{\circ} \theta_{23}$ resolution ($\theta_{23} = 42^{\circ}$)	70	45
CPV at 3σ ($\delta_{ m CP}=+\pi/2$)	70	60
CPV at 3σ ($\delta_{ m CP}=-\pi/2$)	160	100
CPV at 5σ ($\delta_{\mathrm{CP}} = +\pi/2$)	280	210
MH at 5σ (worst point)	400	230
10° resolution ($\delta_{\mathrm{CP}}=0$)	450	290
CPV at 5σ ($\delta_{ m CP}=-\pi/2$)	525	320
CPV at 5σ 50% of $\delta_{ m CP}$	810	550
Reactor $ heta_{13}$ resolution	1200	850
$(\sin^2 2\theta_{13} = 0.084 \pm 0.003)$		
CPV at 3σ 75% of $\delta_{ m CP}$	1320	850