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Introduction: DUNE and P5 
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Paraphrasing P5  
• Called for the formation of LBNF: 

– as a international collaboration bringing together the LBL community 

– ambitious scientific goals with discovery potential for: 
• Leptonic Charge-Parity (CP) violation  

• Proton decay 

• Supernova burst neutrinos 

Resulted in the formation of the DUNE collaboration with    
strong representation from: 

– LBNE 

– LBNO 

– Other interested institutes 



DUNE is up-and-running 
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It is a rapidly evolving scientific collaboration… 
• First formal collaboration meeting April 16th-18th 2015  

– Over 200 people attended in person 
• Conceptual Design Report in June (foundations from LBNE/LBNO) 
• Passed DOE CD-1 Review in July 
• Second collaboration meeting September 2nd-5th 2015 
• Successful CD-3a Review in December 2015 (last week) 

– paves the way to approval of excavation in FY17  



The DUNE Collaboration 
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As of today: 
 803 Collaborators 

 
 

from 
 27 Nations 

 
 

Armenia, Belgium, Brazil, 
Bulgaria, Canada, Colombia, 
Czech Republic, France, 
Germany, Greece, India, Iran, 
Italy, Japan, Madagascar, 
Mexico, Netherlands, Peru, 
Poland, Romania, Russia, 
Spain, Switzerland, Turkey, UK, 
USA, Ukraine 

DUNE already has attracted broad international support 

+ soon to add Finland 



Organizational Challenges 
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• Large and diverse international collaboration  
– Need to fully engage broad spectrum of collaborators in the DUNE 

scientific and detector activities 

• The collaboration is likely to grow significantly 
– Management structures need to be scale effectively to a 

collaboration of >1000 scientists, c.f. ~3000 in ATLAS or CMS 

• CD-2 in 2019 is a major goal 
– Need to effectively utilize the collaboration resources, both financial 

and people 
– Further engage international community  
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Guided by experience from LHC experiments and elsewhere 



Collaboration Management 
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• Collaboration rules adopted in April  
– Defined high-level management structure and executive committee 
– Initial focus was the preparation of the draft CD-1-R documents  

• Set up temporary task forces to draft CDR 

• Since CD-1-Refresh review in July: 
– Implemented collaboration working group structure and leadership 

• Put in place a very strong far detector leadership team 
– Set up 3 task forces to addresses strategically important questions 
– Defined technical board membership 

• Played an important role in defining/validating the far site requirements 
for detector grounding and DAQ power  

– Currently developing the work plan for progress towards CD-2 in 
2019 and identifying resources required 

– Now in “normal” operational mode with regular WG meetings   
 



DUNE Management  
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Experienced team in place since April 
 

Resource 
coordinator: 
C.K. Jung 

Technical 
coordinator: 
E. James 

International 
project manager:  

S. Kettell 

Co-spokespersons: 
A. Rubbia 

M. Thomson 



DUNE Coordination Team 
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T. Bolton S. Mishra T. Kutter 
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T. Junk 
Dep:  

A. Farbin 

J. Urheim 
Dep:  

R. Patterson 

Far 
Detector 

WG 

Near 
Detector 

WG 

CERN 
prototyping 

WG 

Computing
&Software 

WG 

Physics 
WG 

Accelerator 
& Beam 
interface 

WG 

A. Marchionni 
Dep: Mary Bishai 

• By September all coordinators were in place  
– Searched widely within the collaboration 
– Ended up with a very strong team 
– Responsible for coordination of DUNE working groups 

• Organize scientific and detector activities of the collaboration  



DUNE Task Forces 
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• In addition to WGs, we have set up three “Task Forces” to 
address strategically important issues: 

– Task force leadership reports the DUNE executive committee 
– Focus on collaboration goals/open questions for CD-2 
– Activities cross boundaries of various working groups 

• For example physics, reconstruction software and far detector WGs 
– Limited duration: deliver report in 18 months 

• Assembled strong teams   



DUNE Task Forces cont. 
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• TF1: Near detector optimization 
– End-to-end simulation of Near Detector design and analysis 
– Evaluate impact on far detector systematics 
– Evaluate benefits of alternative designs 
 

• TF2: Far Detector Reconstruction/Physics 
– End-to-end simulation and full reconstruction of far detector 
– Validation (optimization) of design parameters (e.g. wire spacing) 
– Update physics sensitivities with full simulation for CD-2 

 
• TF3: Beam Optimization 

– Further develop physics-driven optimization of the beam line 
– Identify options for improvements and present a first-order cost-benefit 

analysis 
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Timeline 
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• Hit many “milestones” in the last nine months 
– 11 March    DUNE Co-spokespersons elected ✔  ︎
– 18 March    DUNE technical coordinator named ✔  ︎
– 24 March    Task Force conveners named – charged to prepare CDR ✔  ︎
– 16-18 April   First DUNE Collaboration Meeting ✔ 
– 18 April        Institute Board Rules approved  ✔ 
– 19 April        First full LBNC Meeting  ✔ 
– 4 May          First DUNE Executive Committee meeting  ✔  
– 2-3 June    CD-1-R Director’s Review ✔ 
– 14-16 July   DOE CD-1-R Review ✔ 
– 27 July        Scientific/Detector Coordinators appointed  ✔ 
– 17 August   Technical Board Formed  ✔ 
– 2-5 Sept      Second DUNE Collaboration Meeting  ✔ 
– 21 Sept       Move to regular WG meeting schedule ✔ 
– 27-29 Oct    DOE CD-3a Director’s Reviews ✔ 
– 2-4 Dec       DOE CD-3a Review ✔ 

 
 

 

 
 
 
 
 
 
 



2. DUNE Science 
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A neutrino interaction in the ArgoNEUT detector at Fermilab 

ν 



DUNE Primary Science Program 
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Focus on fundamental open questions in particle 
physics and astroparticle physics:  
• 1) Neutrino Oscillation Physics 

– Discover CP Violation in the  

      leptonic sector 

– Mass Hierarchy 

– Precision Oscillation Physics: 
•  e.g. parameter measurement, θ23 octant, testing the 3-flavor paradigm 

• 2) Nucleon Decay 
– e.g. targeting SUSY-favored modes,   

• 3) Supernova burst physics & astrophysics 
– Galactic core collapse supernova, sensitivity to νe 
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Neutrino Oscillation Strategy 
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Measure neutrino spectra at 1300 km in a wide-band beam 

• Near Detector at Fermilab: measurements of νµ unoscillated beam 
• Far Detector at SURF: measure oscillated  νµ &  νe neutrino spectra  

FD 

ND 

νµ 
νµ & νe 
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… then repeat for antineutrinos 
• Compare oscillations of neutrinos and antineutrinos 
• Direct probe of CPV in the neutrino sector 

 

• Near Detector at Fermilab: measurements of νµ unoscillated beam 
• Far Detector at SURF: measure oscillated  νµ &  νe neutrino spectra  

FD 

ND 

νµ 
νµ & νe 

Neutrino Oscillation Strategy 



Neutrino Oscillation Strategy 
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Long baseline and wide-band beam enables: 
• Determine MH and θ23 octant, probe CPV, test 3-flavor paradigm       
a  and search for BSM effects (e.g. NSI) in a single experiment 

– Long baseline: 
• Matter effects are large ~ 40% 

– Wide-band beam: 
• Measure νe appearance and νµ disappearance over range of energies 
• MH & CPV effects are separable   

 νµ disappearance νe appearance 

E ~ few GeV 



DUNE CDR Reference Design =  
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Far detector: 40-kt fiducial LAr-TPC (four 10-kt modules) 
 

Near detector: Multi-purpose high-resolution detector  
 



DUNE CDR Sensitivities 
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Many inputs to calculation (implemented in GLoBeS): 
• Reference Beam Flux 

– 80 GeV protons 
– 204m He-filled decay pipe 
– 1.07 MW 
– NuMI-style two horn system 

• Optimized Beam Flux  
– Horn system optimized for lower  
     energies 

• Expected Detector Performance 
– Based on previous experience 
     (ICARUS, ArgoNEUT, …) 

 

• Cross sections 
– GENIE 2.8.4 
– CC & NC 
– all (anti)neutrino flavors 

Exclusive ν-nucleon cross sections 



DUNE CDR Sensitivities 
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Propagate to Oscillation Sensitivities 
   using assumptions for systematics (from the ND) 
 

 
 

 



DUNE CDR Sensitivities 

12/9/2015 26 Mark Thomson | HEPAP | DUNE 

Propagate to Oscillation Sensitivities 
   using assumptions for systematics (from the ND) 
 

 
 

 

+ staging from RLS 



MH Sensitivity 
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 Sensitivities depend on multiple factors: 
 Other parameters, e.g. δ 
 Beam spectrum, … 
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MH and CPV Sensitivitities 
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 Sensitivities depend on multiple factors: 
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 Beam spectrum, … 
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Beyond discovery: measurement of δ 
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CPV “coverage” is just one way of looking at sensitivity…   
Can also express in terms of the uncertainty on δ 

Start to ~approach current level of  
precision on quark-sector CPV  
phase (although takes time) 



Physics Milestones 
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Rapidly reach scientifically interesting sensitivities: 
– e.g. in best-case scenario for Mass Hierarchy : 

• Reach 5σ MH sensitivity with 20 – 30  kt.MW.year  
 

 
– e.g. in best-case scenario for CPV (δCP = +π/2) : 

• Reach 3σ CPV sensitivity with 60 – 70 kt.MW.year  
 
 

– e.g. in best-case scenario for CPV (δCP = +π/2) : 
• Reach 5σ MH sensitivity with 210 – 280  kt.MW.year  
 

Genuine potential for early physics discovery 

Discovery 

Strong evidence 

Discovery 

~2 years 

~3-4 years 

~6-7 years 



DUNE Detector Strategy 
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Staged Approach to 40 kt (fiducial) 
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Cavern Layout at the Sanford Underground Research Facility (SURF) 
discussed in detail jointly by LBNF and DUNE  

• Decision based on: strategic + technical input 
     four chambers hosting four independent 10-kt FD modules 
– Allows for staged construction of FD 
– Gives flexibility for evolution of LAr-TPC technology design  

• Assume four identical cryostats: 15.1 (W) x 14.0 (H) x 62 (L) m3 
• Assume the four 10-kt modules will be similar but not identical 



LAr-TPC Technologies 
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LAr-TPC technology has been demonstrated by ICARUS 
DUNE is considering two options for readout of 
ionization signals: 
• Single-phase wire-plane readout (reference design)  

– Ionization signals (collection + induction) read out in liquid volume 
– As used in ICARUS, ArgoNEUT/LArIAT, MicroBooNE 
– Long-term operation already demonstrated by ICARUS T600 

• Dual-phase readout (alternative design) 
– Ionization signals amplified and detected in gaseous argon above 

the liquid surface 
– Being pioneered by the WA105 collaboration 
– If demonstrated, potential advantages over single-phase approach 

Underpinned by strong LAr-TPC development program 
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Far Detector Reference Design 
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Single-phase APA/CPA LAr-TPC: 
• Design is already well advanced for CDR stage 
• Supported by strong development program at Fermilab 

– 35-t prototype (operational in 2015) 
          almost ready to fill with LAr 
– MicroBooNE (operational in 2015) 
– SBND (aiming for operation in 2018)   
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Single-phase APA/CPA LAr-TPC: 
• Design is already well advanced for CDR stage 
• Supported by strong development program at Fermilab 

– 35-t prototype (operational in 2015) 
          almost ready to fill with LAr 
– MicroBooNE (operational in 2015) 
– SBND (aiming for operation in 2018)   

• “Full-scale prototype” with ProtoDUNE at the CERN     
Neutrino Platform 
– Engineering prototype 

•  6 full-sized drift cells c.f. 150 in the far detector  
– Approved by CERN SPSC (October 2015) 
– Aiming for operation in 2018  



DUNE FD Staging Strategy 
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Far Detector Implementation strategy 
• First 10-kt will be the single-phase APA/CPA design 

– Represents lowest risk route to installation in 2021 
– Production lines set up for DUNE single-phase prototype at CERN  

• Experience at CERN and Fermilab                       … o o    
o       evolution of LArTPC design, either through: 

– Refinements of single-phase design 
– Validation of operation of dual-phase design 

• Technology choice for 2nd  & subsequent 10-kt modules: 
– Based on risk, cost and physics performance 
– Review process will organized by the DUNE technical board 
– Ultimate decision by DUNE executive committee  
– Process repeated for 3rd & 4th 10-kt module 

 
 

 



The DUNE Near Detector 
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CDR reference design is the NOMAD-inspired Fine-
Grained Tracker (FGT)  
• Consisting of: 

– Central straw-tube tracking system 
– Lead-scintillator sampling ECAL 
– Large-bore warm dipole magnet 
– RPC-based muon tracking systemsN 

Will result in unprecedented samples of ν interactions 
–  >100 million interactions over a wide range of energies: 

•  strong constraints on systematics    
•  the ND samples will represent a huge scientific opportunity 

• Also evaluating other ND options (in ND Task Force) 
– High-pressure gaseous argon TPC as a tracker 
– Augmenting the ND with a LAr-TPC 

 



5. DUNE & P5 
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DUNE Reference Design & P5  
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P5 identified the following “minimum requirements to 
proceed”:  
• reach an exposure of 120 kt.MW.years by 2035   
• Far detector underground with cavern space for expansion 

to 40 kt LAr (fiducial)  
• 1.2 MW beam upgradable to multi-MW power   
• Demonstrated capability for supernova neutrino bursts  
• Demonstrated capability for proton decay, providing a 

significant improvement over current searches    
P5 “goal” is for 3σ CPV coverage for > 75 % of δ values  
 

 



DUNE Reference Design & P5  
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P5 identified the following “minimum requirements to 
proceed”:  
• reach an exposure of 120 kt.MW.years by 2035  ✅ 
• Far detector underground with cavern space for expansion 

to 40 kt LAr (fiducial) ✅ 
• 1.2 MW beam upgradable to multi-MW power  ✅ 
• Demonstrated capability for supernova neutrino bursts  ✅ 
• Demonstrated capability for proton decay, providing a 

significant improvement over current searches    ✅ 
P5 “goal” is for 3σ CPV coverage for > 75 % of δ values  ✅ 
 

 
DUNE design meets the P5 goals  

~2030/2031 
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5. Relation to SBN & CERN ν Platform 
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• Fermilab SBN and CERN neutrino platform provide a 
strong LArTPC development and prototyping program   

DUNE Alternative 
Design 

WA105: 1x1x3 m3 

2016 2018 

WA105 

Dual-Phase 

35-t prototype 

ICARUS 

MicroBooNE 

DUNE Reference Design 

2015 

ProtoDUNE @ CERN  

SBND 

LBL 

SBL 

Single-Phase 

2018 



Relation to SBN & CERN ν Platform 
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DUNE is actively trying to build on potential synergies 
across FNAL SBN & CERN programmes 
• Single-phase vs. Dual-phase @ CERN  

– Pursuing path under DUNE organization with common/shared activities 
between WA105 & ProtoDUNE 

• Already benefiting from MicroBooNE 
– Sharing of software MicroBooNE → 35-t prototype 
– Discussing how to transfer “lessons learned” 

• Held workshops to explore potential synergies 
– DUNE – SBND TPC workshop 

• Common development of cold electronics 
– DUNE – SBN – WA105 DAQ workshop 

• Potential to share “online” tools across programme 
• Potential for common backend DAQ (ProtoDUNE-WA105-ICARUS)  

– LArTPC workshop on LArSoft Requirements & Reconstruction 
• Follow up meetings in the new year 
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Summary 
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DUNE has come together as a large international  
     collaboration to pursue physics with LBNF                              
  full collaboration structure in place and operating 
  successfully delivered CD-1-R & detector interfaces in CD-3a scope 

DUNE will deliver science that meets P5 goals                              
  and can do so in a timely manner  

DUNE has a clear strategy for the far detector                    
  backed up by a strong prototyping phase 

DUNE engaging wider community                              
  actively pursuing potential synergies  

DUNE has made a great deal of progress in the last year                              
  many challenges ahead – but believe we are on the right track 



Thank you 
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DUNE Management  
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Top-level management structure defined in collab. governance 
document – approved by DUNE institute board in April 
 

All collaboration members  
 discussion forum  

Representatives from each  
institute: defines collab. rules  

Executive Committee:  
Decision making 

Technical & Resource  
Management 

DUNE management: 
Co-spokespersons 
Technical Coord. 
Resource Coord.  

EFIG: formal interface 
between DUNE & LBNF  

DUNE project 
management 



Liquid Argon TPC Basics 
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A modular implementation of Single-Phase TPC 
• Record ionization in LAr volume        3D image   
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Systematics & Performance 
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Evaluating DUNE Sensitivities 
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• Systematic Uncertainties 
– Anticipated uncertainties based on MINOS/T2K experience 
– Supported by preliminary fast simulation studies of ND   
     Source 

 
MINOS 

νe 

T2K 
νe 

DUNE 
νe 

Flux after N/F extrapolation 0.3 % 3.2 % 2 % 

Interaction Model 2.7 % 5.3 % ~ 2 % 

Energy Scale (νµ) 3.5 % Inc. above (2 %) 

Energy Scale (νe) 2.7 % 2 % 2 % 

Fiducial Volume 2.4 % 1 % 1 % 

Total 5.7 % 6.8 % 3.6 % 

• DUNE goal for νe appearance < 4 % 
– For sensitivities used: 5 % ⨁ 2 % 

– where 5 % is correlated with νµ & 2 % is uncorrelated νe only    



Evaluating DUNE Sensitivities 
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• Assumed* Particle response/thresholds 
– Parameterized detector response for individual final-state particles   

 
 

 

Particle 
Type 

Threshold 
(KE) 

Energy/momentum  
Resolution 

Angular  
Resolution 

µ± 30 MeV Contained: from track length 
Exiting: 30 % 

1o 

 
π± 100 MeV MIP-like: from track length 

Contained π-like track: 5% 
Showering/Exiting: 30 % 

 
1o 

 
e±/γ 30 MeV 2% ⊕ 15 %/√(E/GeV) 1o 

p 50 MeV p < 400 MeV: 10 % 
p > 400 MeV: 5% ⊕ 30%/√(E/GeV) 

5o 

n 50 MeV 440%/√(E/GeV) 5o 

other 50 MeV 5% ⊕ 30%/√(E/GeV) 5o 

*current assumptions to be addressed by FD Task Force  



Proton Decay 
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Nucleon (proton) decay is expected in most new physics 
models – not yet observed 
• Image particles from a single nucleon decay in detector volume 

– For example, look for kaons (from dE/dx) from SUSY-inspired GUT p-decay  

   modes such as    

 

 

E ~ O(200 MeV) 
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Nucleon (proton) decay is expected in most new physics 
models – not yet observed 
• Image particles from a single nucleon decay in detector volume 

– For example, look for kaons (from dE/dx) from SUSY-inspired GUT p-decay  

   modes such as    

 

 

E ~ O(200 MeV) 

“simulated” 
 p-decay 

Remove incoming cosmic ray 



PDK  
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p → K ν 

• DUNE for various staging assumptions  



SNB  
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• Energy and timing sensitive to particle & astrophysics  

 

• Event Rates: 



Supernova νs 
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A core collapse supernova produces 
 an incredibly intense burst of neutrinos  
• Trigger on and measure energy of neutrinos from  
     galactic supernova bursts 

– In argon (uniquely) the largest sensitivity is to νe  

  

 
 

 
E ~ O(10 MeV) 

Physics Highlights include: 
 Possibility to “see” neutron star formation stage  
 Even the potential to see black hole formation ! 

Energy time 



Physics Milestones 
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