Report on the LHC re-start: Compact Muon Solenoid (CMS) experiment

Greg Rakness (FNAL) CMS Commissioning and Run Coordinator US CMS Ops Program – contact at CERN

> HEPAP Newport Beach, CA 10 December 2015

Outline

- LHC: expectations for Run-2
- CMS: work during Long Shutdown 1
- Successes & issues during 2015 running

• Plan for 2015-2016 Year-End Technical Stop

Run-1: instantaneous lumi evolution

https://twiki.cern.ch/twiki/bin/view/CMSPublic/LumiPublicResults

CMS Peak Luminosity Per Day, pp

Run-1 peak performance numbers

- Max. inst. lumi = 7.7x10³³/cm²/s (design = 1x10³⁴)
- Number of bunches = 1380 (design ~ 2200)
- Bunch spacing = 50ns (design = 25ns)

From the point of view of peak instantaneous luminosity *per bunch*, LHC Run-1 **exceeded the specs by ~140%**

Changes from Run-1 \rightarrow Run-2

From M. Solfaroli (CERN) at LHCC 23 Sept 2015 (https://indico.cern.ch/event/443017/)

- 160% larger collision energy $\rightarrow \sqrt{s}$ =13 TeV
- 50% smaller bunch spacing \rightarrow 25ns
- 200% larger number of bunches \rightarrow 2800 bunches
- 200% larger pileup \rightarrow 40 interactions/crossing
- 66% smaller $\beta^* \rightarrow 40$ cm
- 170-220% larger peak lumi \rightarrow (13-17)x10³³cm⁻²s⁻¹

"Priority for 2015 is to prepare 2016 as a 'physics production run' at 25ns" – M. Solfaroli (CERN)

Step-by-step approach

To bring up machine safely in 2015, LHC took it step-by-step

R. Bruce (CERN) at Chamonix '14 (<u>http://indico.cern.ch/event/315665/</u>)

Variable running conditions made 2015 a dynamic year both for LHC and for CMS

Recall CMS plan: upgrade detector to match the LHC performance

- CMS "Phase-1" upgrade (2014-2019): handle increased pileup...
 - Add another layer of silicon tracking
 - Add processing power to the Level-1 trigger
 - Refine granularity of the hadron calorimeter
- Long-Shutdown 1 (2013-2014): complete and maintain detector; lay foundation for Phase-1...
 - Next page \rightarrow

CMS work during Long Shutdown 1

- Data acquisition: new architecture, hardware, software
- Trigger Control and Distribution System: new (uTCA)
- Level-1 trigger: new calorimeter trigger (uTCA)
- Silicon pixels: new modules
- Silicon tracker: new lower temperature (-15°C)
- Electromagnetic calorimeter: new trigger optical links
- Hadronic calo: new SiPMs, back-end electronics (uTCA)
- Drift Tube chambers: new trigger electronics
- Resistive Plate Chambers: new chambers
- Cathode Strip Chambers: new chambers & electronics
- Beam Radiation Instr. and Luminosity: new detectors

Coming into 2015, CMS was a ~new detector

http://www.bbc.com/news/science-environment-32976838

Science & Environment

3 June 2015: first "Stable Beams" (collisions) at √s=13 TeV

Large Hadron Collider turns on 'data tap'

By Paul Rincon Science editor, BBC News website

O 3 June 2015 | Science & Environment

The CMS experiment team celebrated when the first collisions occurred

CMS Experiment at the LHC, CERN Data recorded: 2015-Jun-03 08:48:32.279552 GMT Run / Event / LS: 246908 / 77874559 / 86

e-environment-32976838

ns on 'data tap'

Appreciating the success of hard work

The CMS experiment team celebrated when the first collisions occurred

Examples of improvements for 2015 (1/4): new Cathode Strip Chambers

Increased coverage from new chambers increases purity of triggers on high momentum muons

G. Rakness (FNAL)

Examples of improvements for 2015 (2/4): "Stage-1" trigger upgrade

First stage of the CMS calorimeter trigger upgrade in use for 97% of the 2015 run

- Transition to the full trigger upgrade for the 2016 run
- Note: have regularly run with new trigger boards during 2015 collisions

Major improvement in τ trigger efficiency due to upgraded calo trigger

Examples of improvements for 2015 (3/4): event reconstruction

Updates to event reconstruction reduces processing time to manageable levels in a high pileup environment

Examples of improvements for 2015 (4/4): multi-threading framework

G. Rakness (FNAL)

Some unforeseen obstacles in 2015

- Rare 3ns timing steps in clock tree
 - Fixed by resetting PLLs according to Xilinx specs
- Occasional trigger rate steps in calo optical links
 - Effect mitigated with automatic masking
 - Will not be an issue with 2016 trigger
- Rare link loss in forward Hadronic calo electronics
 - Effect minimized w/automatic alarm/expert reaction
 - Data will require special handling for these cases

Another unforeseen obstacle in 2015

25ns operations

Heavy lons

= LHC collisions

These are the times when CMS must be fully operational

Another unforeseen obstacle in 2015

CERN cryo experts and CMS Technical Coordination worked extremely hard to maximize overlap of CMS magnet B=3.8T with LHC collisions

See talk by F. Bordry (CERN)

Integrated luminosity \sqrt{s} =13 TeV

https://twiki.cern.ch/twiki/bin/view/CMSPublic/LumiPublicResults

CMS Integrated Luminosity, pp, 2015, $\sqrt{s} =$ 13 TeV

Efficient data collection throughout 2015

\rightarrow Steady state recording efficiency > 90% \leftarrow

Overview of CMS work plan during the 2015-2016 Year-End Technical Stop

- Clean cold box
 - See talk by F. Bordry (CERN)
- Commission new items
 - Trigger: on tight schedule (must be ready on day 1)
 - Hadronic Calorimeter: all electronics move to uTCA (coupled with Trigger)
 - Pixel: include new Pixel blade (for 2017) in 2016 running
- Set goal to minimize data lost at certification
 - Review data monitoring to catch problems online

CMS commissioning plan

January							
Мо	Tu	We	Th	Fr	Sa	Su	
				1	2	3	
4	5	Coo	7 ling	8 w0	rk ⁹	10	
11	12	13	14	15	16	17	
18	19	20	21	22	23	24	
25	26	27	28	29	30	31	
1	2	3	4	5	6	7	
8	9	10	11	12	13	14	
15	16	17	18	19	20	21	
22	23	24	25	26	27	28	
29	1	2	3	4	5	6	
7	8	9	10	11	12	13	
14	15	16	17	18	19	20	
	22	23	24	25	26	27	
28	29	30	31				

April							
Мо	Tu	We	Th	Fr	Sa	Su	
				1	2	3	
4 C	RUZ	ЕТ7	crĂ	FT ⁸	9	10	
11	12	13	14	15	16	17	
×	19	20	21	22	23	24	
25	26	27	28	29	30	1	
2	3	4	5	6	7	8	
9	10	11	12	13	14	15	
16	17	18	19	20	21	22	
23	24	25	26	27	28	29	
30	31	1	2	3	4	5	
6	7	8	9	10	11	12	
13	14	15	16	17	18	19	
20	21	22	23	24	25	26	
27	28	29	30				

= 1st beams in
 = Stable Beams
 (from latest LHC schedule as of 18 Nov 2015)

RED	= cooling work
WHITE	= local commissioning
GREEN	= "global" runs

CMS commissioning plan: use mix with previously established track record of success...

- Short "global" runs
- Interface tests (not shown)
- Extended running campaigns

... to prepare for LHC collisions in 2016...

Expectations for 2016

CMS Peak Luminosity Per Day, pp, 2012, $\sqrt{s} = 8$ TeV

We are expecting

that 2016 will be a

production year as

was 2012...

Data included from 2015-06-03 08:41 to 2015-11-03 06:25 UTC

similar to the 2011 ramp-up...

Summary

- LHC Run-2 promises higher luminosity and pileup
 2015 successfully laid the groundwork for these conditions
- CMS is on-track with its upgrade program

 (Long-Shutdown 1 + 2015 run) made a solid step forward
- 2015 was a productive year of data collection
 ... including dealing with issues both expected and unexpected
- 2015-2016 Year-End Technical Stop will put CMS in a good position to reap the harvest from high intensity collisions

CMS is looking forward to LHC collisions in 2016

Backup

LHC schedule

- Begin lumi ramp-up with 50ns bunch spacing
- 2. Low pileup (PU≈0.01-0.4)
- 3. Scrub for 50ns operation
- 4. Continue 50ns ramp-up
- 5. Scrub for 25ns operation
- 6. Lumi ramp-up @ 25ns
- 7. Van der Meer scan
- Physics production with 25ns spacing
- 9. TOTEM run
- 10. pp "reference" run

11. Ion run

https://espace.cern.ch/b e-dep/default.aspx