

Particle Data Group

57 years of service

Where PDG is now, and where our community wishes us to be in the future

M. Barnett – December 2014

PDG Collaboration

2

206 authors from 24 countries and 140 institutions

M. Barnett – December 2014

PDG at LBNL (Central coordination and production)

Physics: 3 FTE's (6 physicists: half PDG and half research) Editor: physicist Software developer: physicist

PDG Collaborators outside of LBNL PDG

196 Physicists from 24 countries (volunteers at 5-10% level).

- Most coordinated directly by LBNL (incl. Japanese Team)
- Meson Resonances Team (Europe) 13 physicists semi-indep.
- Baryon Resonances Team (JLab) 5 physicists semi-indep.

PDG Consultants – 700 physicists

- Experiments' Physics Coordinators (etc.) verifying data listings
- Referees of reviews (3-5 for each review)
- General consultants on content

PDG Users -- tens of thousands

Clearly this cannot work without vital central coordination.

M. Barnett – December 2014

4

Central Leadership is Essential

M. Barnett – December 2014

Quality control has to be the critical path. The community relies on us.

This requires central coordination.

With 206 authors, there are <u>many</u> points of failure. LBNL's job is to oversee all and make sure there is no failure.

M. Barnett – December 2014

PDG leadership group at LBNL coordinates the entire effort

- Produce and publish the Review
- Handle all of the final checking, editing
- Major contributor to the content
- Choose the authors and the content
- Maintain & drive the schedule
- Coordinate the input of 700 consultants from HEP community
- Assure quality.

Essential for

- High-quality
- Timely publication

•

Editor.

Etc.

PDG Operations

Very successful Computing Upgrade completed in Dec. 2011

Enabled many roles: • Literature searcher: Literature Search 20 journals. PDG Main Server Editor Interface Interface Literature Encoder is Searchers Database Master Database world-class expert Database Viewer and Files Viewer who interprets papers. Encoder Editor Encoders & Auxiliary Interface **Overseer** edits work Overseers Programs of encoders. Verifier Interface Admin Apps Verifier is given Verifiers PDG Staff **Review** Author experiment's physics Interface Monitoring coordinator (or equiv.). PDG Web Server **Review authors.** Review Frozen Database Ordering System Authors Referees. and Files (for users) pdgLive (Database Viewer) Referees **RPP** User

M. Barnett – December 2014

AWRENCE BERKELEY NATIONAL LABORATORY

7

rrrr

BERKELEY

8

PDG Advisory Committee

- Appointed by LBNL Physics Division Director.
- Meets to discuss all aspects of PDG operations.
- Issues detailed report with many recommendations.
- Current committee:

Deborah Harris – Chair James Olsen Junichi Tanaka Tancredi Carli Anze Slosar Yasunori Nomura (Fermilab) (Princeton) (U. of Tokyo) (CERN) (BNL - cosmology) (UC Berkeley)

M. Barnett – December 2014

"The leadership of the PDG has done an excellent job of maintaining and expanding the relevance of the project...

The new PDG software has been very successful at producing the data analysis and the web-based interfaces that keep the effort timely, productive and efficient.

This is a laudable accomplishment in light of the recent growth in data coming from the new Cosmic Frontier efforts in the field as well as the success of the LHC."

PDG Products

M. Barnett – December 2014

What PDG Produces

Review of Particle Physics

Formats:

Printed

- Book 1675 pages 14k copies
- Booklet 328 pages 32k copies

Online

- Full content of the book (PDF)
- pdgLive Interactive database
- Detailed and Summarized versions

Schedule:

- Printed updated in even years.
- Online (including pdgLive) updated once a year.

LAWRENCE BERKELEY NATIONAL LABORATORY

Chinese Physics C

The Web allows us to see what most interest our readers.

The hits (page views) on

almost exactly equal.

Clearly people care about both.

M. Barnett – December 2014

A Highlight

Latest plot shows large mixing of neutrinos

Astrophysics & Cosmology

Downloads Astrophysical Constants 6091 0.7 Ω_{Λ} **Big Bang Cosmology** 7799 0.6 **Cosmological Parameters:** H_0 , Λ, Ω, etc. 13769 **Experimental Tests of Gravitational Theory 4234 Dark Matter** 8591 Dark Energy 7627 **Cosmic Background Rad.** 5587 **Big Bang Nucleosynthesis** 4343 Total Cosmology Downloads 58,041 (9.4%)

A Highlight: Higgs coverage

138 new papers in 2014 edition (50 in 2012)

Data Listings split into 3 sections:

- The H⁰ at 125 GeV (mass, spin, σB)
- Neutral H⁰ searches

(incl. MSSM H₁⁰, A⁰, general two-doublet models,

fermiophobic, invisible, light A⁰, others)

• Charged H[±] (doublet) and H^{±±} (triplet/singlet)

15

AWRENCE BERKELEY N

Amazing Diversity of Topics Interest Our Community

16

Covered by PDG

BERKELEY LAB

From DOE HEP homepage

M. Barnett – December 2014

IMPACT

M. Barnett – December 2014

Top Cited

BERKELEY LAB

The Review is the all-time top cited article in High Energy Physics with more than <u>51,000</u> citations (INSPIRE)

Is this just citation inflation?

Web Usage

LAWRENCE BERKELEY NATIONAL LABORATORY

.....

BERKELEY LAP

IIII

Quality Assurance

M. Barnett – December 2014

Quality Assurance

PDG Advisory Committee

PDG Workshops

Collaboration with Working Groups

PDG Research

M. Barnett – December 2014

Vital PDG Workshops

Workshops lead to improved coverage

- Searches
- Neutrino
- CKM
- D Meson
- τ lepton
- Extra-dimensions
- Statistics

M. Barnett – December 2014

Collaboration with Working Groups

Coordination with working groups at LHC, Tevatron, B-factories, LEP on:

- Higgs
- Electroweak fits,
- B lifetimes, B mixing,
- V_{cb} and V_{ub}
- top quark mass, etc.

Many of these provide fits to our data using PDG guidelines.

M. Barnett – December 2014

Research by LBNL PDG members has been recognized as the secret to the success (and quality) of PDG.

It is assures that the book is produced by highly qualified active physicists.

All are only 50% PDG

LBNL Physicists (ATLAS, Daya Bay, Theory) Juerg Beringer Dan Dywer Cheng-Ju Lin Simone Pagan Griso Weiming Yao Michael Barnett

"The PDG's authoritative nature has developed out of a dedication to comprehensive study and evaluation, pursued according to the highest scientific standards.

It's modern, immediate, online character has made it an essential daily tool for students and more senior physicists alike.

Several reviewers remarked that HEP would be a qualitatively weaker field if the PDG were not there as a current, growing resource."

Issues for PDG

M. Barnett – December 2014

Issues for PDG

Moving into electronic era of laptops, tablets and smartphones.

People are not always online (travel, planes, etc.). Need apps.

The book is growing too big.

Booklet is **big** for shirt pockets.

Computing system was built for publishing printed products.

Computing system still needs to enable new features beyond printed products.

Survey on Book, Booklet and App.

M. Barnett – December 2014

PDG Survey in 2014

Is having a copy of the full-sized book (booklet) essential to your work or study?

Is a Book without Data Listings OK? (45% as big) Is a Booklet without the condensed reviews OK?

How important is an App?

An amazing <u>6172</u> readers responded, demonstrating the very high value our community places on PDG products (and 1491 comments).

(We sent out one email; no reminders).

M. Barnett – December 2014

PDG Survey on Book, Booklet and APP

BOOK	BOOKLET	PREFERENCE (in %)
32.1	18.5	Not needed
23.5	18.4	Like but could do without
26.1	29.9	Satisfied with reduced book(let)
18.4	33.2	I need the book(let)

Only 18% say they need full-size book.

82% want the booklet in some form.

M. Barnett – December 2014

Two thirds said app was either: Important or Very important.

Comments from survey were emphatic:

Reduced printed products are dependent on producing replacement app(s).

M. Barnett – December 2014

PDG App(s)

- Summary Tables
 Basically easy;
 just formatting for readability
- Review articles
 Even easier except for formatting tables
- pdgLive

Not easy. Major programming to connect to database and to present on-the-fly. Proposal to DOE to do this.

Issue with Book is <u>cost</u> and the size and eventual binding issues. (Summary Tables, Reviews and Listings grow every edition).

Book

Five publishers bid on Book and Booklet in past (PL, PR, J. Phys., Eur. Phys., Chin. Phys.)

This year, with essentially no funds to pay for them, one publisher bid on RPP and Booklet:

Chinese Physics C, at about 8% of their actual cost.

Slow boat from China

Discussed by Collaboration and Advisory Committee

- **Book:**
- a) Keep book as is (Where is funding? How control size to avoid binding issues?)
- b) **Discontinue** (Not the preference of 68%)

Conclusion:

c) Reduce content & size to 40-45% (no data listings) Still some cost, perhaps \$80,000 (LBNL share).

Booklet

Issue with Booklet is <u>not</u> cost (paid by CERN)

It is: the number of pages and eventual binding issues.

Summary Tables grow every edition

M. Barnett – December 2014

Future of Book and Booklet

Booklet:

- a) **Discontinue** (Not the preference of 82%)
- b) Reduce content & size (Which content? How satisfy readers?).

Conclusion:

 c) Keep booklet as is – Not urgent decision, so postpone decision for two years (when app is available).

Assuring the Future

M. Barnett – December 2014

"... the age of ink marks on dead tree carcasses is over."

(Comment from 2014 PDG Survey)

M. Barnett – December 2014

"Nevertheless, keep some hard copies around for after the next big solar flare...."

- Books and booklet will still be in demand for some time
- Demand increasing for electronic distribution, including:
 - Static web pages and PDF files
 - Dynamic web pages (pdgLive many extensions possible)
 - E-books
 - App(s) for smartphones and tablets (all platforms)
 - API (access to PDG database by programs)
 - Downloadable PDG data (use of our data by others in their apps etc)

- ...

M. Barnett – December 2014

- Emphasis on searching and indexing, rather than navigation
- Cross-linking with other services (pdgLive ↔ INSPIRE available)
- pdgLive version for offline use (as an app)
- Interactive plotting, data selection and evaluation
- Interactive presentation of review articles
- User tagging or display of contributed content

Implementing some of these new features is a long-term effort given our very limited resources

Workload and Budget Issues

M. Barnett – December 2014

Workload Trends

Danare	2008	2010	2012	2014
rapers	2000	2010	2012	2014
Supersymmetry	33	34	68	123
Axions	18	21	21	36
Higgs	12	34	51	138
W', Z'	18	16	36	50
Compositeness	6	5	12	17
Extra dimensions	11	10	17	32
Other searches	4	12	37	94
Free q, monopoles	1	3	2	6
	103	135	244	496 🗲
$132 \rightarrow 120 \rightarrow 183$ B 2010, 2012, 2014 e	paper: edition	s in s		
			M. Barnett – Dec	ember 2014

Searches

The success of PDG over many years has been due to the generous support of DOE, NSF, Japan and CERN.

Current funding from DOE + Japan (Japan 6%)

NSF grant (12% of budget) ended last year (after 30 years)

DOE initial guidance during CR, 11% budget cut.

CERN in-kind funding. Covers products shipped to CERN and distributed throughout Europe. Funds Meson Team expenses. Pays all printing costs for Booklet.

The ability of PDG to meet future needs depends on adequate funding.

M. Barnett – December 2014

The PDG budget is essentially salary only.

Handled recent budget cuts by:

- Phased out rehired-retirees.
- Replaced our full-time admin with a 10% admin.
- Pocket Diary for Physicists eliminated.
- All printed products are not currently in our budget. (One-time savings with Chinese publication).

Successful operation requires stable funding at constant level of effort.

Reduced book may be about \$80,000 (every other year). Not in current budget.

To develop interactive app (like pdgLive) on one-time basis of about 0.25 FTE in FY15 and 0.25 FTE in FY16.

Then cost each year is about \$80,000 per year. Not in current budget.

M. Barnett – December 2014

Impact

M. Barnett – December 2014

PDG Summary

PDG provides a vital, dynamic, innovative service to the HEP community.

The HEP community depends on PDG to provide standards and to assure integrity and quality in summarizing particle physics.

M. Barnett – December 2014

Highlights in Listings

899 new papers with 3283 new measurements.

330 LHC papers: ATLAS, CMS, and LHCb

Extensive Higgs boson coverage from 138 papers with 258 measurements.

Supersymmetry: 123 papers with major exclusions, many from LHC experiments.

Latest from B-meson physics: 183 papers with 803 measurements, including first observation of Bs $\to \mu + \mu -$ from LHCb and CMS.

Cosmology reviews updated to include 2013 Planck.

Updated and new results in neutrino mixing on Δm^2 and mixing angle measurements, including the first Δm_{32}^2 from reactor experiment.

72 new top results since 2012, many from LHC experiments.

Final assignment of 1++ quantum numbers to the X(3872) by LHCb.

Observation of charmonium-like states X(3900) and X(4020) (BESIII and BES3). Observation of bottomonium-like states X(10620) and X(10650) (Belle).

Heavily revised Atomic- Nuclear Properties website.

M. Barnett – December 2014

112 reviews (most are revised or new)

New reviews on:

- Higgs Boson Physics
- Dark Energy
- Monte Carlo Neutrino Generators
- Resonances

Significant update/revision to reviews on:

- Top Quark
- Dynamical Electroweak Symmetry Breaking
- Astrophysical Constants
- Dark Matter
- Big-Bang Nucleosynthesis
- Neutrino Cross Section Measurements
- Accelerator Physics of Colliders
- High-Energy Collider Parameters
- Total Hadronic Cross Sections Plots

M. Barnett – December 2014

B Meson Section 1984

Entire section was one page

B-, B-,	В			
B [*]	41 CHARGED B(5271, JP-)	-		
	SEE ALSO THE LISTING FOR THE For the neutral b) for measur identify the charge state.	B (FOLLOWING THE ENTRY EMENTS WHICH DO NOT		39 B PARTIAL DECAY
M A 6 52 M A STATI	41 CHARGED B MASS (MEV) 70.8 3.0 BEHRENDS & STICAL (2.3 MEV) AND SYSTEMATICAL (2 41 CHARGED B PARTIAL DECAY A	13 CLEO +- D*- PI+ PI+ + CC 10 MEV) ERRORS COMBINED.	4/83* P5 4/83* P5 P7 P8 P9	B INTO ELECTRON NEUTRINO HADRONS B INTO MUON NEUTRINO HADRONS B INTO E+ E- ANYTHING B INTO MU+ MU- ANYTHING B INTO KAON ANYTHING B INTO J/PSI ANYTHING B INTO DA ANYTHING B INTO PROTON ANYTHING B INTO LAMBDA ANYTHING
P1 B+ INT P2 B+ INT	0 D08AR PI+ 0 D*(2010)- PI+ PI+	DECAY MASSES 1865+ 140 2007+ 140+ 140		39 B BRANCHING RATI
B- MOI R1 B+ INTO R2 B+ INTO R2 B+ INTO BEHRENDS 83 P/	41 CHARGE CONJUGATES OF THE ABC 41 CHARGED B BRANCHING RATIO 0.042 BEHRENDS 8 0.042 BEHRENDS 8 0.048 0.030 BEHRENDS 8 REFERENCES FOR CHAR RL 50 881 + (ROCH+RUTG+SYRA+ 42 NEUTRAL B(5274, JP-) I SEE ALSO THE LISTING FOR THE FOR MEASUREMENTS WHICH DO NOT STATE. 42 NEUTRAL B MASS (MEV)	VE MODES. (P1) (CP2) (P2) (CP2)	R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R	B INTO (ELECTRON MEUTRINO HADRONS A (0.13) (0.042) BE B (0.136) (0.039) SP C 0.136) (0.039) SP C 0.127 0.021 CH D 0.132 0.016 KL E (0.116) (0.027) NE A THE STATISTICAL AND SYSTEMATIC E B B THE STATISTICAL AND SYSTEMATIC E B AB B-TO-C OVER B-TO-L QUARK TRANSIT C THE STATISTICAL AND SYSTEMATIC EROR D D STATISTICAL AND SYSTEMATIC EROR D D RATIO CS(B>E NU UP)/CS(B>E N E D THE STATISTICAL AND SYSTEMATIC EROR D D NATISTICAL AND SYSTEMATIC EROR D ONLY THE EXPERIMENTS AT THE UPSI AVG 0.130 0.013 AVG 0.130 0.013 AVERAGE CH AVG 0.130 0.013 AVERAGE CH B INTO (MUON MEUTRINO MADRONS)/TO
A 5 521 A STATIS	74.2 2.8 BENRENDS 8 STICAL (1.9 MEV) AND SYSTEMATICAL (2	3 CLEO 0 D*- PI+ + CC 4 .0 MEV) ERRORS COMBINED. 4	/83* R3 /83* R3	B INTO (E+ E- ANYTHING)/TOTAL (0.05) OR LESS CL90 BI
	42 (80) - (8+) MASS DIFFEREN 3.4 3.6 BENRENDS 8 STICAL (3.0) AND SYSTEMATICAL (2.0)	CE (NEV) 3 CLEO E+E-, UPSIL(45) 3 ERRORS COMBINED. 3	R4 R4 R4 R4 R4 R4 R4	B INTO (MU+ MU- ANYTHING)/TOTAL (0.017)0R LESS CL90 (1 0.007 OR LESS CL95 AN 0.007 OR LESS CL95 AN (0.02) OR LESS CL95 AN

B Meson Section 2014

Section is 198 pages.

In 2008 was 144 pages

I, J, P need cor	nfirmation.
Quantum numbers shown are quark-model predictions	5.
B_c^{\pm} MASS	
ALUE (GeV) DOCUMENT ID TECN COM	AMENT
1.27628 $\pm 0.00144 \pm 0.00036$ 1 AAIJ 13As LHCB pp 1.2737 $\pm 0.0013 \pm 0.0016$ 2 AAIJ 12Av LHCB pp 1.2756 $\pm 0.0029 \pm 0.0025$ 3 AALTONEN 08M CDF $p\overline{p}$ 1.300 $\pm 0.014 \pm 0.005$ 3 ABAZOV 08T D0 $p\overline{p}$ 1.4 $\pm 0.39 \pm 0.13$ 4 ABE 98M CDF $p\overline{p}$ • • We do not use the following data for averages, fits, limits, et	at 7, 8 TeV at 7 TeV at 1.96 TeV at 1.96 TeV at 1.8 TeV cc. • • •
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1. by AALTONEN 08M $e^- \rightarrow Z$
² AAIJ 12AV uses the $B_c^+ \rightarrow J/\psi \pi^+$ mode and also measures the $-M(B^+) = 994.6 \pm 1.3 \pm 0.6 \text{ MeV/}c^2$. ³ Measured using a fully reconstructed decay mode of $B_c \rightarrow J/\psi$ ⁴ ABE 98M observed 20.4 $^+_{-5.5}$ events in the $B_c^+ \rightarrow J/\psi(1s) \ell \mu$ > 4.8 standard deviations. The mass value is estimated from m ⁵ ACKERSTAFF 980 observed 2 candidate events in the B_c^+ -	mass difference $M(B_c^+)$ $\psi \pi$. ψ_{ℓ} with a significance of $(J/\psi(1S) \ell)$. $+ J/\psi(1S) \pi^+$ channel

VALUE (10 ⁻¹² s)	DOCUMENT ID		TECN	COMMENT		<8.
0.452±0.033 OUR EVALUAT	ION					13
0.500 ±0.013 OUR AVERAGE					_	1.5 /
$0.509 \pm 0.008 \pm 0.012$	6 AAL	14G	LHCB	pp at 8 TeV		14
0 453 1 0 049 1 0 037	7 AALTONEN	10	CDE	an at 1 06 Tall		147

cedure takes into account correlations between the measurements.

L11	$D^{+}K^{*0}$	< 0.20
Γ ₁₂	$D^+\overline{K^{*0}}$	< 0.16
Γ ₁₃	$D_{s}^{+}K^{*0}$	< 0.28
Γ ₁₄	$D_s^+ \overline{K}^{*0}$	< 0.4
Γ ₁₅	$D_s^+\phi$	< 0.32
r ₁₆	K^+K^0	< 4.6
F ₁₇	$B_s^0 \pi^+ / B(\overline{b} \rightarrow B_s)$	(2.37 + 0.1)

B⁺_c BRANCHING RATIOS

MLUL		CL 70	DOCOMENT		TECI
$(5.2^{+2.4}_{-2.1}) \times 10^{-5}$			⁹ ABE	98M	CDF
• • • We	do not use t	he follow	ving data for average	s, fits,	limit
< 1.6	$\times 10^{-4}$	90	¹⁰ ACKERSTAFF	980	OPA
< 1.9	$\times 10^{-4}$	90	¹¹ ABREU	97E	DLF
< 1.2	$\times 10^{-4}$	90	¹² BARATE	97H	ALE
$[\sigma(B^+)]$ by usi ¹⁰ ACKE ^{6.95 >} ¹¹ ABRE $\tau_{B_c} =$ ¹² BARA	$(B^+) \times B(B^+ \rightarrow B) \times B) \times B(B^+ \rightarrow B) \times B(B^+ \rightarrow B) \times B) \times B) \times B(B^+ \rightarrow B) \times B)$	$J/\psi(15)$ alues of I reports %CL. We isted is for ts B(Z –	$\begin{array}{l} 55 \ (K^+)] = 0.132 \stackrel{+0.}{_{-0.}} \\ 8(b \rightarrow B^+) \ \text{and} \ 8(B(Z \rightarrow B_C X))/8(Z) \\ e \ \text{rescale to our PDG} \\ \text{or an assumed} \ \pi_{B_C} = \\ \rightarrow \ B_C X)/8(Z \rightarrow q q) \end{array}$	$^{041}_{037}(s)$ $B^+ - Z \rightarrow 98 va$ $^{98} va$ $^{10}_{10} 0.4 p$ $^{10}_{10} 0.4 p$	$(=_{C})^{+}$ tat) $=$ q q) alues os anc $c \rightarrow =$

candidate event is found, compared to all the known back which gives $m_{B_c}=5.96{+0.25\atop-0.19}~{\rm GeV}$ and $\tau_{B_c}=1.77\pm0.12$

$\Gamma(J/\psi(1S)\pi^+)/\Gamma_{\text{total}} \times B(\overline{b} \to B_c)$

VALUE	CL%	•	DOCUMENT ID		TECN
seen			AALTONEN	13	CDF
seen		13	LIAA	12AV	LHC
seen			AALTONEN	08M	CDF
seen			ABAZOV	08T	D0
• • We do not use	the follow	ving d	ata for averages	s, fits,	limit
$<2.4 \times 10^{-4}$	90	14	ACKERSTAFF	980	OPA
$<3.4 \times 10^{-4}$	90	15	ABREU	97E	DLP
$< 8.2 \times 10^{-5}$	90	16	BARATE	97H	ALE
$<2.0 \times 10^{-5}$	95	17	ABE	96R	CDF
¹³ AAI J 12AV report	s a measui	remen	t of $B(B_c^+ \rightarrow$	$J/\psi \pi$	+)/E

 $(0.68 \pm 0.10 \pm 0.03 \pm 0.05)\%$ at $p_T(B) > 4$ GeV and 2.5 ¹⁴ACKERSTAFE 980 reports $B(Z \rightarrow B, X)/B(Z \rightarrow aa) \times B^{-1}$