

ARPA-E Capability Teams

Dr. Ahmed Diallo Program Director, ARPA-E

Private Facility Research (PFR) Program Workshop

Sponsored by the U.S. Department of Energy (DOE), Office of Science (SC) Office of Fusion Energy Sciences (FES) February 29, 2024 Princeton Plasma Physics Laboratory (PPPL)

Outline

- Complete List of ARPA-E Fusion Capability Teams
- Diagnostics for Neutrons and Photons
- Diagnostics for Plasma Parameters
- Theory, Modeling and Costing

ARPA-E Fusion Capability Teams

- Fusion diagnostics (TINA Fusion) 9 total projects providing diagnostics for neutrons, photons and plasma parameters
 - Lawrence Livermore National Laboratory Absolute Neutron Rate Measurement And Non-thermal/Thermonuclear Fusion Differentiation (PANDA)
 - Lawrence Livermore National Laboratory A Portable Optical Thomson Scattering System
 - Los Alamos National Laboratory Portable Soft X-ray Diagnostics For Transformative Fusion-energy Concepts
 - Oak Ridge National Laboratory A Portable Diagnostic Package For Spectroscopic Measurement Of Key Plasma Parameters In Transformative Fusion Energy Devices
 - California Institute Of Technology X-ray Imaging And Assessment Of Non-perturbing Magnetic Diagnostics For Intermediate-density Fusion Experiments
 - Oak Ridge National Laboratory Magnetic Field Vector Measurements Using Doppler-Free Saturation Spectroscopy
 - Princeton Plasma Physics Laboratory A Portable Energy Diagnostic For Transformative ARPA-e Fusion Energy R&D
 - University Of Rochester, LLE Diagnostic Resource Team For The Advancement Of Innovative Fusion Concepts
 - University Of California-Davis Electron Density Profile Measurements Using USPR
- Theory, modeling and costing (BETHE) 5 total projects providing theory, simulation/modeling and costing support
 - University of Rochester A Simulation Resource Team for Innovative Fusion Concepts
 - Princeton Plasma Physics Laboratory Fusion Costing Study and Capability
 - Massachusetts Institute of Technology Radio Frequency tools for Breakthrough Fusion Concepts
 - Sapientai Data-Enabled Fusion Technology
 - Virginia Polytechnic Institute and State University Capability in Theory, Modeling, and Validation for a Range of Innovative Fusion Concepts Using High-Fidelity Moment-Kinetic Models

DIAGNOSTICS FOR NEUTRONS AND PHOTONS

Portable & Adaptable Neutron Diagnostics for ARPA-E (PANDA)

Lawrence Livermore National Laboratory & University of California, Berkeley

 Calibrated *neutron yield* measurement & thermonuclear fusion verification

Drew P. Higginson, LLNL PI higginson2@llnl.gov

Bethany Goldblum, UCB PI bethany@berkeley.edu

Key Properties

Calibrated neutron yields

Measurement	Measurement of total neutron yield from calibrated $LaBr_3$ detectors		
Technique	Neutron yield via ⁷⁹ Br and ⁸⁹ Y activation. Automated yields provided in <2 minutes.		
Minimum yield	Provide accurate yields at 5e6 total neutrons at 20 cm (fluence = 1e3/cm ²).		
Thermonuclear fusion verification			
Measurement	Neutron energy resolution to demonstrate thermonuclear fusion and rule out instability generation. Up to 24x independent plastic scintillators coupled to PMTs.		
Technique	<100-ns neutron pulse: time-of-flight method at different distances and angles allows for recovery of neutron energy >1-µs neutron pulse: neutron pulse-integral histogram used to infer neutron energy spectra		
Minimum yield	Measurements possible at neutron yields as low at 1e5 (see left panel).		
Small form factor, fast set-up time, and expert simulations			
Suitability	Suitable for MCF, ICF, MIF. Any pulse duration, wherever neutrons are produced > 1e5.		
Form factor	Under 10-sq-ft footprint.		
Set-up time	Diagnostics can be shipped and ready for data collection in ~2 weeks.		

Simulation Support Expert Monte-Carlo simulation (GEANT, MCNP) support to understand neutron environment.

Contact(s)

Soft X-ray, EUV spectroscopy, Neutron, & Fast-Imaging Diagnostics -Los Alamos, NM

Key Properties

Physical Property to

Special

considerations

A variety of proven soft x-ray, neutron, EUV flux and spectroscopic measurements, along with fas

ux and	be Measured	plasmas. Dynamic evolution (imaging).		
st imaging	Technique	Spectroscopy, fast imaging, filtered PMT's and photodiodes, neutron activation (arsenic and rhodium)		
	Plasma parameter range	10 ¹³ -cm ⁻³ electron density or higher. 10 ⁵ neutrons/pulse or higher. 100- eV electron temperature or higher		
8	Resolution (time)	Seconds to nanoseconds (flux dependent), or time-integrated		
	Resolution (space)	Depends on sightline, geometry, and/or pinhole diameter		
	Resolution (energy)	For x-rays, depends on choice of filter sets. Aluminum, Titanium, Nickel, Beryllium. From 10 eV to 10 keV. Ratios of x-ray measurement for electron temperature estimates.		
	Interface	50-ohm outputs to digitizers, 100-MHz preamplifiers. 12–16-bit dynamic range. Hardened to allow microamp level signal detection in the face of pulsed power noise backgrounds. Vacuum flange access required for x-ray and EUV, and pump-out protection for micron thick metal/plastic foils.		
	Suitable for MCF, ICF, MIF?	Yes		
	Form factor: transport	Various / LANL shipment		
-	Form factor: operation	Works with user data acquisition systems, although cameras come with stand-alone control computer (ethernet or USB)		
	Set-up time	Appropriate vacuum access and mechanical interface is the limiting factor for EUV and x-rays. Neutron detectors stand alone. Shielding of low level signal lines and preamps is essential.		
	Minimum time for a measurement	Two weeks, once it arrives at your facility. Data available on each pulse		
	Other characteristics	Best used with other measurements (visible, density, magnetics)		

References/Links

Contact(s)

Key

Bruno Bauer, bbauer@physics.unr.edu G. C. Idzorek, W. L. Coulter, P. J. Walsh, and R. R. Montoya, "Soft x-ray diagnostics for pulsed power machines," LA-UR-95-2336; CONF-950750-18, Aug. 1995. https://www.osti.gov/biblio/102382. G. A. Wurden and S. K. Coffey, "A multi-frame soft

x-ray pinhole imaging diagnostic for single-shot applications," Rev. Sci. Instrum. 83, 10E516 (2012), https://doi.org/10.1063/1.4733536.

R. E. Chrien, Neutron calibration for the FRX-C/LSM magnetic compression experiment, Rev. Sci. Instrum. 62, 1489 (1991), https://doi.org/10.1063/1.1142473.

Motion of the plasma, or plasma contamination and/or destruction of
foils can be a complicating issue.

X-rays, neutrons, visible and extreme ultraviolet emission from

Glen Wurden, wurden@lanl.gov

DIAGNOSTICS FOR PLASMA PARAMETERS

A Portable Thomson Scattering System to Measure Plasma Density and Temperature

Lawrence Livermore National Laboratory

UC San Diego

We use optical Thomson scattering to probe n_e , T_e , or T_i at several locations along the plasma depending on the fusion concept team's interests. A 1.5-ns, 532-nm, 8-J laser is used as a probe, and scattered light spectrum is measured by two spectrometers coupled to ns-gated CMOS cameras.

"Plasma Scattering of Electromagnetic Radiation" Froula, D. H., et al. Academic Press. 2011 Reference

Key

Portable Diagnostic Package, ORNL and Univ. of Tenn.- Knoxville, TN

Oak Ridge National Laboratory

A portable diagnostic package (PDP) provides spectroscopic measurements of key plasma parameters, supported by research personnel from ORNL and UTK.

Contact(s)	Theodore Biewer, <u>biewertm@ornl.gov</u>	
	Drew Elliott, <u>elliottdb@ornl.gov</u>	
Kev	Design and implementation of a porta	
	diagnostic system for Thomson sc and optical emission spectroscopy	
references/links	diagnostic system for Thomson scatt and optical emission spectroscopy	
references/links	diagnostic system for Thomson scatt and optical emission spectroscopy measurements	
references/links	diagnostic system for Thomson scatt and optical emission spectroscopy measurements Rev. Sci. Instr. 92 , 063002 (2021);	

ntation of a portable or Thomson scattering spectroscopy 3002 (2021); 63/5.0043818

Key Properties			
Physical Property to be Measured	Electron temperature and density, impurity ion temperature and density		
Technique	Thomson Scattering (TS) and Optical Emission Spectroscopy (OES)		
Plasma parameter range	TS: $T_e 2-1000 \text{ eV}$; $n_e 10^{19}-10^{21} \text{ m}^3$; OES: $T_i 2-100 \text{ eV}$		
Resolution (time)	TS: 10 ns, OES: >1 μs		
Resolution (space)	TS: 11 chords, ~>1 mm/chord, OES: 11 chords		
Interface	System: 120-V AC power, synchronization trigger. TS: 2 ports for laser entry and exit, 1 port for light collection OES: 1 port for light collection		
	Standard 1-3/8" or 2-3/4" conflat ports typically used.		
Suitable for MCF, ICF, MIF?	Typically for magnetically confined fusion plasmas		
Form factor: transport	Fits in a van		
Form factor: operation	3x3x4 ft optical table for laser, 2x5x6 ft cart for instrumentation		
Set-up time	OES: <1 week to measurement, TS: ~10 weeks to physics measurement including laser alignment and calibrations		
Minimum time for a measurement	TS: 10-Hz laser rep rate, OES: 2-ns phosphor gate time		
Other characteristics	On-board data acquisition and processing		
Special considerations	Class-IV laser safety protocols required		
Physical Property to be Measured	Electron temperature and density, impurity ion temperature and density		

Fusion Diagnostics Program Highlights

- LLNL deployed multiple measurement campaigns at Zap Energy test systems to provide expert neutron diagnostic capabilities
- Produced joint publications on groundbreaking results with Zap, and continued support through follow-on funding after the close of the ARPA-E project

- LLNL Thomson scattering measurements on the FuZE device (Zap Energy, OPEN 2018 & BETHE)
- Collected significant amounts of data; confirmed ≥1 keV electron temperatures, a significant result for Zap Energy

Capability teams have garnered multiple follow-on INFUSE awards (SC FES) and interest from fusion companies for direct funding.

THEORY, MODELING AND COSTING

Theory/Modeling

University of Rochester, LLE

 A theory/modeling research team at the University of Rochester to provide multi-physics simulation support for fusion concept teams

Contact(s)	Petros Tzeferacos, p.tzeferacos@rochester.edu Steven Stagnitto, ssta@lle.rochester.edu	
Key References/Links	https://www.lle.rochester.edu http://flash.uchicago.edu https://hajim.rochester.edu/me/sites/sefk ow/about/index.html https://picksc.idre.ucla.edu	

Virginia Tech & Princeton Plasma Physics Laboratory

 Fluid and kinetic plasma modeling supporting mirrors (examples shown below), pulsed concepts, and plasma-wall (solid and liquid) interactions for innovative fusion concepts, along with validation experiments for liquid-metal wall dynamics

PI: Prof. Bhuvana Srinivasan, srinbhu@uw.edu

https://www.aoe.vt.edu/people/faculty/srinivasan.html https://www.aoe.vt.edu/people/faculty/adams.html https://www.aoe.vt.edu/people/faculty/brizzolara.html https://gkeyll.readthedocs.io/en/latest/

Sapientai LLC, General Fusion, UT (Austin)

- Machine Learning/AI Applied to Fusion
- Anomaly Detection, Optimization, Analysis

MIT, ORNL, and LLNL

 Leveraging SciDAC developed tools to model RF actuators in fusion devices

ontact(s)	John C. Wright, jcwright@mit.edu	6
ey eferences/Links	http://www.compxco.com/stella.html https://bitbucket.org/lcarbajal/prometheus- upgrade/src/master/ https://github.com/compxco/genray https://github.com/ORNL-Fusion/aorsa	

Costing

CHANGING WHAT'S POSSIBLE

Princeton Plasma Physics Laboratory and Woodruff Scientific

- Developing a soon to be released flexible fusion costing framework that works for any fusion energy system, producing standardized cost reports, costdriver analysis, and cost-reduction programs
 - Building a web interface to the costing tool with a simple user interface under nTtau Digital LTD
 - Also releasing the code under a BSD license for others to use as open-source software
- Planning to continue development of the code under the Clean Air Task Force to integrate safety and hazards analysis by cost category

Key Properties	Key Properties	
Physical Property to be Measured	Total Capital Cost (TCC) and Levelized Cost of Electricity (LCOE)	
Technique	Power balance coupled to a radial build and balance of plant	
Interface	Web-based forms and in-person interviews	
Suitable for MCF, ICF, MIF/MTF?	We have developed a flexible costing framework applicable to all fusion systems.	

[1] ARIES, see archives at <u>qedfusion.org</u>

[2] J. Sheffield and S. L. Milora, Generic magnetic fusion reactor revisited, Fusion Science and Technology, vol. 70, no. 1, pp. 1435, 2016. [https://doi.org/10.13182/FST15-157]

[3] Conceptual Cost Study for a Fusion Power Plant Based on Four Technologies from the DOE ARPA-E ALPHA Program, Bechtel National, Inc. Report No. 26029-000-30R-G01G-00001

[4] WHAT WILL ADVANCED NUCLEAR POWER PLANTS COST? A Standardized Cost Analysis of Advanced Nuclear Technologies in Commercial Development, Energy Options Network

[5] The Future of Nuclear Energy in a Carbon-Constrained World, AN INTERDISCIPLINARY MIT STUDY, MIT Energy Initiative 2018

[6] Revisit of the 2017 ARPA-E Fusion Costing Study (2020), <u>https://arpa-e.energy.gov/sites/default/files/2021-01/Final%20Scientific-Technical%20Report %20Costing%20%284%29.pdf</u>

BACKUP

1D Coded Aperture X-ray Camera - Pasadena, California

Caltech

- Take high-speed 1D X-ray movies
- S/N much better than pinhole

С	Contact(s)	Paul Bellan, pbellan@caltech.edu	1
	Contact(S)	Seth Pree, sethpree@caltech.edu	
	Key References/Links	Visible-light prototype described in Haw and Bellan, Rev. Sci. Instrum. 86 , 043506 (2015), <u>https://authors.library.caltech.edu/57176/1/</u> <u>1.4917345.pdf</u> Group:	
		http://www.bellanplasmagroup.caltech.edu	

Key Information	Key Information		
Physical Property to be Measured	Image X-rays with both space and time resolution		
Technique	Imaging via coded aperture on scintillator array Any plasma that produces x-ray pulses		
Plasma parameter range			
Resolution (time)	40 ns (determined by current scintillator's fall time)		
	Can be reduced to 8 ns with faster scintillator		
Resolution (space)	Camera has 128x1 pixels on a 1-mm pitch.		
	Resolution is determined by mask element size (> 300 µm)		
Sensitive Spectrum (energy)	5–100 keV+ (depending on mask material)		
Interface	Diagnostic is controlled by a laptop. Triggering can be done with a TTL signal.		
Suitable for MCF, ICF, MIF?	MCF, MIF, marginally suitable for ICF depending on duration		
Form factor: transport	The camera head and attached fiber bundle need to be shipped in a box which is ~3'x2'x1'. Amplifier and digitizer have a combined size comparable to a desktop PC.		
	Camera head is located near plasma and requires installation of an x- ray transparent vacuum window with line of sight to plasma.		
Form factor, operation	Amplifier and digitizer are electrically isolated by 12 m of optical fiber and can be mounted in 10U of a 19" computer rack.		
Set-up time	1 day		
Maximum record time	64 μs at maximum sample rate.		
	Digitizer can record 8000 samples/event.		
Minimum time for a conclusive physics measurement, but a conclusive measurement may require many shots to adjust alignment and gain.			
Minimum plasma	For a video, the plasma should exist for more than \sim 100 ns.		
duration or # of pulses for a good measurement	For plasma durations shorter than the resolution, the detector can generate a 1-frame, 1D image of x-ray bursts.		

Ion energy analyzer (IEA) - Princeton, NJ

Princeton Plasma Physics Laboratory

 Measure the energy of ions in warm or hot plasmas or ion beams

Key Properties Physical Property to Ion energies: 0.05-5 keV be Measured Stripping cell to form ions of escaping charge-exchange neutrals, Technique followed by an ion energy analyzer **Plasma parameter** Size: 1-30 cm, Ion energy 0.05-5 keV, line density to 10¹⁴ cm⁻² range Resolution (time) <0.1 ms Resolution (space) 1 cm Resolution (energy) 10% Channeltron detector, followed by pre-amplifier, amplifier, and Interface information storage and processing equipment. Computer control of IEA instrument. Suitable for MCF, ICF, MCF. ion beams MIF? Form factor: transport 0.5m x 2m x 2m, 300 lbs Form factor: Power 300 W Set-up time 2 days Minimum time for For a time resolution of 5 ms and one line-of-sight, 20 seconds of complete machine cumulative plasma time per machine condition. parameter scans Minimum plasma duration or # of One second of plasma time for a time resolution of 0.1 seconds. pulses for a good measurement Gas supply line (2 sccm), exhaust line for pumps are needed, Other characteristics synchronization with plasma, local control of SC-IAE.

Doppler-Free Saturation Spectroscopy (DFSS) - Oak Ridge, TN

Oak Ridge National Laboratory

 Non-invasive 2D map of magnetic-field vector via Zeeman splitting of H_α/D_α spectra.

Counter propagating probe/pump beams provides extreme spectral resolution via suppression of Doppler broadening.

Laser and	
Controller	
The second	Inclus
THORE	

Contact(s)	Elijah Martin, <u>martineh@ornl.gov</u>
Key References/Links	Rev. Sci. Instrum. 87 , 11E402 (2016); https://doi.org/10.1063/1.4961287

Key Properties	
Physical Property to be Measured	Magnetic-field vector
Technique	Systematic analysis of spectra data obtained using DFSS
Plasma parameter range	<i>n_e</i> between 1e16 m ⁻³ and 1e22 m ⁻³ Atomic H/D neutral density between 1e10 m ⁻³ and 1e16 m ⁻³ B ≥50 Gauss (no upper limit)
Resolution (time)	Local: 5 to 10 ms 2D Map: 0.5 to 2 seconds
Resolution (space)	1 to 3 mm perpendicular to laser beam 10 to 20 mm parallel to laser beam
Interface	Two optical window ports sharing unobstructed sightline. Window clear aperture diameter of 0.5 to 3 inches, depending on desired 2D measurement geometry.
Suitable for MCF, ICF, MIF?	MCF
Form factor: transport	Air-ride truck
Form factor: operation	3'x6' optical table, 19" equipment rack, x2 mobile 2'x2' tables
Set-up time	3−5 days
Minimum time for a measurement	5 to 10 ms (set by maximum wavelength scan frequency of laser). A sub-5 ms measurement time can be achieved by accumulating data over multiple shots.
Other characteristics	2D Map is obtained by sweeping measurement location using piezo- driven mirror. Sweep pattern programmable.

Ultrashort Pulse Reflectometer – Davis, CA

University of California at Davis

- Portable pulsed radar system for density profile measurement
- Measures time-of-flight at 48 frequencies every 3 µsec

Contact(s)

References/Links

CHANGING WHAT'S POSSIBLE

Key

Neville C. Luhmann, Jr. Calvin W. Domier **Distinguished Professor** ncluhmann@ucdavis.edu

Development Engr. **Project Scientist** cwdomier@ucdavis.edu dannenberg@ucdavis.edu

A next generation ultra short pulse reflectometry (USPR) diagnostic, Rev. Sci. Instrum. 92, 034714 (2021) https://doi.org/10.1063/5.0040724

Neutron Diagnostics, Laboratory for Laser Energetics - Rochester, NY

University of Rochester, LLE

CHANGING WHAT'S POSSIBLE

Three plastic scintillator-based neutron detectors: 7x4, Large, Fast for increasing yields, Fast can determine neutron-averaged ion temperature.

Interface Suitable for MCF, ICF, MIF? Form factor: transport Form factor: operation Set-up time Minimum time for a measurement Other characteristics Special considerations	J Clin diameter		
Suitable for MCF, ICF, MIF?an Davies, jdav@lle.rochester.eduorrest, cforrest@lle.rochester.eduorrest, cforrest@lle.rochester.edudoi.org/10.1063/1.1788875doi.org/10.1063/1.5090785Other characteristicsSpecial considerations		Interface	ם צ
Form factor: transportSectiondoi.org/10.1063/1.1788875Minimum time for a measurementMinimum time for a measurementdoi.org/10.1063/1.5090785Other characteristicsMinimum time for a measurement		Suitable for MCF, ICF, MIF?	ŀ
an Davies, jdav@lle.rochester.eduForm factor: operationIorrest, cforrest@lle.rochester.eduSet-up time2doi.org/10.1063/1.1788875Minimum time for a measurement3doi.org/10.1063/1.5090785Other characteristics4Special considerationsSpecial considerations4	¥	Form factor: transport	S
Arrest, <u>cromestane.rochester.edu</u> Set-up time 2 doi.org/10.1063/1.1788875 Minimum time for a measurement 3 doi.org/10.1063/1.5090785 Other characteristics 4 Special considerations 1	n Davies, jdav@lle.rochester.edu	Form factor: operation	[
doi.org/10.1063/1.1788875Minimum time for a measurementdoi.org/10.1063/1.5090785Other characteristicsSpecial considerationsSpecial considerations	rest, <u>crorrestanen ochester.edu</u>	Set-up time	2
doi.org/10.1063/1.5090785 Other characteristics A Special considerations Special considerations A	doi.org/10.1063/1.1788875	Minimum time for a measurement	ç
Special considerations	doi.org/10.1063/1.5090785	Other characteristics	ł
		Special considerations	ſ

Key Properties	
Physical Property to be Measured	Neutron yield and neutron-averaged ion temperature
Technique	Scintillation
Plasma parameter range	> 10^2 incident neutrons, >10 ⁴ for ion-temperature measurements
Resolution (time)	0.1 ns
Resolution (space)	None
Resolution (energy)	0.1 keV
Interface	Data can be recorded from an oscilloscope 8-channel scope available
Suitable for MCF, ICF, MIF?	Any
Form factor: transport	Ships in Pelican cases 31.28 x 24.21 x 17.48 in
Form factor: operation	Detector(s) plus cables to digitizer, scope and HV supply
Set-up time	2+ hours
Minimum time for a measurement	Single shot
Other characteristics	Active areas: 7x4 248 cm ² , Large 177 cm ² , Fast 100 cm ²
Special considerations	Mounting the responsibility of the concept team

A Simulation Capability Team for Innovative Fusion Concepts -**Rochester**, NY

University of Rochester, LLE

A theory/modeling research team at the University of Rochester to provide multi-physics simulation support for fusion concept teams

ontact(s)	Petros Tzeferacos, p.tzeferacos@rochester.edu Steven Stagnitto, ssta@lle.rochester.edu
ey eferences/Links	https://www.lle.rochester.edu http://flash.uchicago.edu https://hajim.rochester.edu/me/sites/sefk ow/about/index.html https://picksc.idre.ucla.edu

I ri	Force		Contraction Contra
		245	

LE	Key Properties	
ersity of n support for	Physical models used	 Fluid, hybrid, and kinetic simulations FLASH is a finite-volume Eulerian, radiation extended-MHD code with extensive HEDP capabilities. TriForce is a C++ framework for open-source, parallel, multi-physics, 3D, particle-based hybrid fluid-kinetic simulations. OSIRIS is a massively parallel, fully relativistic PIC code with binary collisions and a QED module.
	Codes	FLASH, TriForce, OSIRIS
	Fusion concepts/types that can be modeled	MIF, ICF, MCF, with an emphasis on laser-driven and pulsed-power- driven plasma and fusion experiments.
Ostris 4.0 Ostris	Key physical processes that can be modeled	Multi-temperature hydro & MHD, SPH, EM-PIC, heat exchange & transport (local/non-local), radiation transport, laser deposition, extended MHD (full Braginskii), multi-material EoS and opacities, material properties, nuclear physics, burn, gravity, self-gravity, EM solvers, current circuit, QED, synthetic diagnostics.
	Dimensionality	1D, 2D, 3D simulations in multiple geometries.
	Meshing details	 FLASH: Block-structured (oct-tree) adaptive mesh refinement (AMR) and uniform grids. TriForce: Meshless approach for fluid dynamics and Lagrangian particle-based description – integration of nonpolar geodesic polyhedral, as well as rectangular and triangular AMR. OSIRIS: EM-solves on a Cartesian mesh with advanced dynamic load balancing.
	Other considerations	All three codes are high-performance computing (HPC) codes that scale well on > 100,000 cores, on modern architectures. This is achieved through MPI, threading, vector parallelism, and GPU accelerators to optimally utilize compute resources.

Theory, Modeling, and Validation for a Range of Innovative Fusion Concepts Using High-Fidelity Moment-Kinetic Models

Virginia Tech & Princeton Plasma Physics Laboratory

 Fluid and kinetic plasma modeling supporting mirrors (examples shown below), pulsed concepts, and plasma-wall (solid and liquid) interactions for innovative fusion concepts, along with validation experiments for liquid-metal wall

erences/	https://www.aoe.vt.edu/people/faculty/adams.ntml
(S	https://www.aoe.vt.edu/people/faculty/brizzolara.html
	https://gkeyll.readthedocs.io/en/latest/

2D, 3D
Meshi
Bound
Other

Key Properties	
Physical models used	 Multi-moment, multi-fluid models for plasma modeling, including coupled incompressible/compressible fluid models Fully kinetic and gyrokinetic models for plasma equilibrium and dynamics
Codes	 Gkeyll (PPPL code developed collaboratively with a number of academic partners) In house incompressible/compressible research code
Fusion concepts/types that can be modeled	 MCF (e.g., mirrors, field-reversed configurations, Z-pinches, spheromaks) MIF (e.g., plasma-jet-driven MIF) Plasma-wall (solid and liquid wall) interactions for a variety of fusion concepts
Key physical processes that can be modeled	 Plasma equilibrium and dynamics Turbulent transport and collisional phenomena Plasma shock formation and dynamics (fluid and kinetic) Plasma-wall interactions with solid (absorbing, reflecting, and electron emitting) walls, and with liquid metal wall dynamics
2D, 3D ?	- 3D fluids - 6D kinetics
Meshing details	Eulerian meshes with mapped mesh capability for body-fitted grids
Boundary conditions	A suite of boundary conditions can be used depending on the fusion concept being study (periodic, walls, conductors, insulators, electron emitting boundaries, etc.)
Other	The team is performing in-house validation experiments to study liquid-metal response to large current pulses

Data-enabled Fusion Technology (DeFT) - Austin, TX

Sapientai LLC, General Fusion, UT (Austin)

- Machine Learning/AI Applied to Fusion •
- Anomaly Detection, Optimization, Analysis lacksquare

drhatch@austin.utexas.edu https://sapient-a-i.com/ references/links

Kev

CHANGING WHAT'S POSSIBLE

CCO, PhI

Co-Founder

David Hatel

CSO, PhD

Siwei Lu

Physicist/Da

Scientist, PhD

Key Capabilities	
Physical models used	Model discovery, model extraction, system identification, model enhancement, e.g., reduced models, gyrofluids, MHD, gyrokinetics electrostatics, electrodynamics, full kinetics, physics constrained, structural mechanics, etc.
Codes	The Ousai platform allows rapid prototyping of highly customized, state-of-the-art solutions to the specific needs of the customer
Fusion concepts/types that can be modeled	Magneto-inertial fusion, magnetic fusion, fluid, general plasma, electrical, mechanical, inline processing subsystems, etc., e.g,. anomaly detection, performance optimization, system identification of fusion subsystems, such as from spectrometers, interferometers, derived diagnostics, etc.
Key physical processes that can be optimized	Any physical process that can be measured or simulated can be modeled / predicted / enhanced by Ousai, and made first-principles consistent, e.g., diagnostics, control parameters, output quantities of interest, derived features, etc.
n-dimensional models	We use machine learning to model <i>n</i> -dimensional systems
Computational efficiency	Ousai is capable of finding fast, efficient, and highly accurate solutions that can run in real time on desktop and laptop computers
Boundary conditions	Unlike forward simulation models, which are constrained to physically idealized and simplified BCs, Ousai can incorporate / predict observation data directly into its modeling space / workflow
Other considerations	Ousai is a highly flexible, highly practical, prediction and analysis platform for rapid and deep examination of experimental and/or simulation-based data

Radio-Frequency Scenario Modeling for Fusion Concepts

► MIT, ORNL, and LLNL

Leveraging SciDAC developed tools to model RF actuators in fusion devices

lon cyclotron wave trajectories in a mirror device launched above the 3rd harmonic.

Contact(s)	John C. Wright, jcwright@mit.edu
Key References/Links	http://www.compxco.com/stella.html https://bitbucket.org/lcarbajal/prometheus- upgrade/src/master/ https://github.com/compxco/genray https://github.com/ORNL-Fusion/aorsa

Key Properties		
Physical Property to be Modeled	Electron and Ion cyclotron RF heating and synergy with neutral beams and their effect of fusion yield.	
Technique	Monte-Carlo and continuous Fokker-Planck along with ray tracing and full-wave codes.	
Plasma parameter range	1D, 2D models which can accommodate a very wide range in plasma conditions from exploratory to fusion relevant	
Resolution (time)	RF phenomenon: sub-microsecond; plasma response: millisecond	
Resolution (space)	~1 mm for ECH waves, ~1 cm for heating profiles	
Resolution (energy)	~1 keV for ion and electron distributions	
Interface	GUI and commandline.	
Suitable for MCF, ICF, MIF?	MCF	
Form factor: operation	Executes on desktops and HPC.	
Set-up time	~1 week to define a scenario	
Minimum time for a measurement	Execution time ~30 min or less for most work flows	
Special considerations	As a predictive tool, parametric scans are generally needed.	

Fusion Costing Capability Team

Developing a flexible fusion costing framework

Costing analysis traditionally is a multi-year team activity. We have adapted the costing process, based on ARIES [1] and Sheffield [2], to work for any fusion energy system, producing standardized cost reports, cost-driver analysis, and cost-reduction programs.

	Simon Woodruff (505) 316 3130	
ct(s)	simon@woodruffscientific.com	
	Mike Zarnstorff (609)243-3581	
	zarnstorff@pppl.gov	
	Ronald Miller rmiller@decysive.com	
	Eric Ingersoll eric.ingersoll@lucidcatalyst.com	
nks	ALPHA program costing study:	
	Final Report 2017	
	Final Report 2020	
	Home page for costing team	

Total Capital Cost

Total Capital Cost (TCC) of

power core:

 $TCC = M_{core} \times C_{factor}$ where M_{core} is the mass of the core in kg and C_{factor} is a cost per kg, We are doing careful radial builds and applying different cost factors to different parts of the reactor.

Levelized Cost of Electricity

$$\begin{split} LCOE = & (C_{AC} + (C_{OM} + C_{SCR} + C_F)^* (1+y)^Y) / (8760^* P_E^* p_f) + C_{DD} \\ \text{where } C_{AC} \, [\$/yr] \text{ is the annual capital cost charge} \\ & (\text{entailing the total capital cost of the plant}), \, C_{OM} \, [\$/yr] \text{ is} \\ & \text{the annual operations and maintenance cost}, \, C_{SCR} \, [\$/yr] \\ & \text{is the annual scheduled component replacement costs}, \\ & C_F \, [\$/yr] \text{ is the annual fuel costs} \text{ over the expected} \\ & \text{lifetime of the plant Y [years]}, \, P_E \, [MWe] \text{ is the electric} \\ & \text{power of the plant, } p_f \text{ is the plant availability (typically} \\ & 0.6 - 0.9) \text{ and } C_{DD} \, [mil/kWh] \text{ is the decontamination and} \\ & \text{decommissioning allowance.} \end{split}$$

Key Properties		
Physical Property to be Measured	Total Capital Cost (TCC) and Levelized Cost of Electricity (LCOE)	
Technique	Power balance coupled to a radial build and balance of plant	
Interface	Web-based forms and in-person interviews	
Suitable for MCF, ICF, MIF/MTF?	We have developed a flexible costing framework applicable to all fusion systems.	

[1] ARIES, see archives at gedfusion.org

[2] J. Sheffield and S. L. Milora, Generic magnetic fusion reactor revisited, Fusion Science and Technology, vol. 70, no. 1, pp. 1435, 2016. [https://doi.org/10.13182/FST15-157]

[3] Conceptual Cost Study for a Fusion Power Plant Based on Four Technologies from the DOE ARPA-E ALPHA Program, Bechtel National, Inc. Report No. 26029-000-30R-G01G-00001

[4] WHAT WILL ADVANCED NUCLEAR POWER PLANTS COST? A Standardized Cost Analysis of Advanced Nuclear Technologies in Commercial Development, Energy Options Network

[5] The Future of Nuclear Energy in a Carbon-Constrained World, AN INTERDISCIPLINARY MIT STUDY, MIT Energy Initiative 2018

[6] Revisit of the 2017 ARPA-E Fusion Costing Study (2020), <u>https://arpa-e.energy.gov/sites/default/files/2021-01/Final%20Scientific-Technical%20Report %20Costing%20%284%29.pdf</u>

GM	pa·e
CHANGING	WHAT'S POSSIBI

Conta

Key L