ITER Physics: 2010 experiments

Ted Strait for the ITER Physics group

DIII-D Year-End Review June 8-9, 2010

Thanks to all who contributed material and suggestions for this talk!

L. Baylor N. Commaux E. Doyle N. Eidietis T. Evans P. Gohil E. Hollmann

D. Humphreys M. Jakubowski A. James R. La Haye W. Solomon F. Volpe J. Wesley J. Yu

Mission: "Provide physics solutions to key design and operational issues for ITER"

Working groups address key issues for ITER

- ELM control for ITER (T. Evans, R. Moyer)
 High Priority working group
- Hydrogen/Helium plasmas
- ITER demonstration discharges
- Disruption characterization and avoidance
- NTM stabilization

(P. Gohil)(E. Doyle)Combined for 2010 campaign

(J. Wesley)

(R. La Haye)

Urgent topics for ITER were also addressed in other groups

... including ...

- Error fields, ELM control (Nonaxisymm. Fields Task Force)
- Error fields (Test Blanket Module Task Force)
- Disruption mitigation (Rapid Shutdown Task Force)
- ITER startup & Rampdown (Plasma Control)
- Hydrogenic retention (Plasma Boundary Interface)
- Advanced inductive scenarios (Steady State Integ.)
- Feedback stabilization of RWM (Steady State Integ.)

10 experimental days were allocated in 2010 +1.5 days of Director's Reserve

	<u>Days</u>	<u>(+ DR)</u>
ELM control for ITER	4	+ 1
Hydrogen/Helium plasma operation	3	+ 0.5
and ITER demonstration discharges		
Disruption characterization and avoidance	2	
NTM stabilization	1	

TOTAL

10 + 1.5

High Priority Working Group for 2010

Goals:

- Develop the physics basis for ELM mitigation and suppression using RMPs
- Develop the physics basis for pellet pacing of ELMs
- Explore and develop alternate approaches to ELM control
 - QH-mode
 - AC magnetic perturbations

Related work also carried out in 3D Fields Task Force

ELM control for ITER - 4 days (+1)

• 31-1. 3D heat flux with RMP

- Quantify peak heat flux with ELM mitigation by RMP
- Quantify steady-state heat flux with ELM suppression by RMP

• 31-2. RMP effect on L-H power threshold

- Does n=3 RMP have a resonant effect on the L-H transition?
- 31-4. Compatibility of pellets and RMP ELM suppression (0.5 day)
 - Does pellet fueling trigger ELMs? Compare HFS and LFS pellets.
- 31-5. ELM triggering by pellet injection (0.5 day)
 - Dependence on injection location and penetration
- 31-3. ELM pacing with AC magnetic perturbation
 - Requirements for RMP amplitude & frequency, effect on heat flux
- 99-30. ELM suppression in double null plasmas with stellarator symmetry (Director's Reserve)
 - ELM suppression in balanced double null (similar to MAST, NSTX)
 - Data for input to stellarator equilibrium and stability codes

Highlights from 2009-10 ELM Control for ITER Working Group Experiments

- ELM mitigation reduces divertor energy impulses as P_{inj} increases (6 MW->9 MW)
 - ELM frequency increase and amplitude decreases
 - Energy impulses limited to less than 2 kJ (measured at 2 toroidal locations)

L-H power threshold sensitive to q₉₅ with even parity n=3 RMP fields

- No change when using off-resonance RMP fields
- Maximum 40% increase with resonant RMP fields
- Low-field side versus high-field side pellet fueling asymmetry identified during ELM suppression with RMP fields

Heat loads due to mitigated ELMs with q95 outside suppression window

ELMs in phase 4 deposit on average 3 kJ to lower divertor

- compatible with ITER guidelines
- H98 at pre-RMP value of 1.2

Without RMP: ELM evolutionWith RMP: evolution of ELM structureshows 3D dynamicsformed by stochastic boundary

RMP has a significant effect on L-H Power Threshold

<u>Goal</u>

 Determine the dependence of the Hmode power threshold on the n=3 RMP with the Icoils (D-NBI→D plasmas)

<u>Results</u>

- Clear effect of increased H-mode power threshold with RMP Icoil current
- Determined for NBI (co- and balanced) and with ECH heating
- Effect has a threshold in I-coil current
 - Discernible above 3 kA
 - H-mode power threshold increases with I-coil current
- Effect has a q dependence
 - Strong effect at same q₉₅ (~3.5) as required for ELM suppression
 - Weak effect off resonance ($q_{95} \sim 4.1$)

LFS injection could allow pellet fueling without triggering ELMs

- LFS pellet injection could be a solution to compatibility with RMP:
 - No real ELM synchronized with the injections (both LFS and HFS)
 - After HFS injection: several ELMs are triggered (observable energy loss)
 - No ELM after LFS injections
 - But fuelling efficiency of LFS pellets appears low
 - Pump-out compensated around 50% without losing the ELM suppression
- <u>BUT</u> difficult to isolate the effect of the pellet injection configuration because of significant differences in average density for the two cases

Low-Field Side pellet injection triggers ELMs

- Requires only a few cm penetration
- Fast camera images suggest a single filament is released near the pellet

ELM pacing by pellet injection

- 14 Hz pellets increase ELM frequency from ~5 Hz to ~25 Hz
 - Smaller ELM amplitude

- Little effect on core density

ELM pacing by magnetic perturbation

- Oscillating n=3 field is applied by the Icoil
- At 20 Hz, ELMs are perfectly entrained
- #140353 20 15 10 5 4900 4700 4800 5000 5100 5200 Time (ms) fs04/1e14 iu30/1e3+8 #140354 20 15 10 5 0 2600 2800 3000 3200 3400 Time (ms)
- At higher frequency, entrainment is weak
 - ELMs still appear to be synchronized to the I-coil field

ELM Amplitude Appears To Be Immediately Affected By Modulated I-coil

- Only minor reduction in amplitude with increasing frequency
- Natural ELM frequency is 30 Hz
 - Pacing with
 20 Hz I-coil
 (=40 Hz ELMs)
 already reduces
 amplitude near
 factor of 2

ELM suppression in DN plasmas with stellarator symmetry

- Goals:
 - Use n=3 magnetic perturbations to suppress type-I ELMs in DN plasmas
 - Obtain stellarator symmetric data for 3D equilibrium, stability and transport modeling
- Results:
 - Obtained DN discharges with good shape control
 - I-coil RMP fields successfully used to control early n_e
 - > I-coil current scan
 - > 0.5-1.0 kA -> mixed ELMfree and ELMing periods
 - > Above 1 kA -> large n_e pump out
 - Discharge may be in L-mode when ELMs disappear at 4.3 s
 - > Profile analysis underway

Hydrogen and Helium plasmas ... combined with **ITER demonstration discharges**

Goals:

- Determine H-mode accessibility in ITER's non-activation phase
 - Ion species dependence of L-H power threshold
- Predict ITER's performance in non-activation phase: Ion species dependence of
 - ELM, pedestal characteristics Transport, turbulence, ρ^* scaling
 - ELM control techniques
- - SOL, divertor characteristics

Hydrogen and Helium plasmas – 3 days (+0.5)

- 35-1. RMP ELM suppression in helium plasmas (hydrogen NBI)
 - Use RMP fields to control the density rise in ELM-free H-mode
 - Test RMP ELM control in helium plasmas
- 35-2. H-mode power threshold and H-mode characteristics in helium plasma with hydrogen NBI
 - Quantify the power threshold and torque dependence with $H \rightarrow He$
 - Evaluate ITER baseline scenario performance in helium plasma
- 35-3. H-mode power threshold and H-mode characteristics in deuterium plasma with deuterium NBI
 - Quantify the effects of density, torque, magnetic geometry, and RMP on the H-mode power threshold with D→D, for comparison to previous H→H, He→He, and H→He cases.
- 99-20. H-mode Power Threshold as function of helium purity (Director's reserve: 0.5 day)
 - Threshold in D plasmas with varying He dilution, after boronization

RMP density control and ELM suppression in helium plasmas

Goal:

 Use n=3 RMP fields to control the H-mode density and suppress type-I ELMs in ITER similar shaped helium plasmas with hydrogen NBI and ECH.

Results:

- Obtained density control in He plasmas with H beams
 - Collisionality was still larger than the typical range for ELM suppression in deuterium
- Obtained brief ELM suppression windows with n=3 RMPs
 - Required higher RMP fields than usual by combining I-coil fields with C-coil fields

ELM suppression in He plasmas requires a wider stochastic layer ($\Delta \psi_{N-chir}$) than in D₂ plasmas

• $\Delta \psi_{N-chir} = 0.22$ required to obtain small He ELM suppression windows compared to $\Delta \psi_{N-chir} = 0.16$ for full ELM suppression in D2 plasmas

H-mode Power Threshold and H-mode Characteristics in Helium Plasmas with Hydrogen NBI

Goal

- Determine the H-mode power threshold and H-mode characteristics in helium plasmas using hydrogen NBI and ECH
 - As function of target density, I-coil current and X-point height

Results:

- The H-mode power threshold for $H \rightarrow He$ is between those for $He \rightarrow He$ and $H \rightarrow H$
 - Expected due to dilution of He plasmas with H beam fueling
 - Still larger than $D \rightarrow D$ (in contrast to ASDEX Upgrade results: He and D ~same)
- H-mode threshold decreases continuously as He dilution of D plasma decreases
 - Separate experiment: Director's reserve day
- H-mode threshold with ECH alone is lower (no dilution effects) than with H-NBI
- Clear increase in H-mode threshold with I-coil current (effect discernable at lower I-coil current than that for D plasmas)
- Significant decrease (> factor of 2) in NBI power threshold with reduced X-point height
 - Confirms trend observed in He plasmas with ECH alone
- Performance with H-NBI into He plasmas is substantially lower than with D-NBI into D plasmas

Application of Icoil at resonant q_{95} increases H-mode Power Threshold (H \rightarrow He, Balanced NBI)

Baseline scenario performance with $H \rightarrow He$ plasma is substantially lower than with deuterium ($D \rightarrow D$)

- Piggyback experiments used "ITER-similar" shape
 - I/aB similar to ITER baseline, q95 ~ 3.2
- NBI power to maintain β_N~1.8 is 8.6 MW (H→He plasma) vs. 2.8 MW (D→ D plasma)
 - H₉₈ is reduced by about 40% (effect of Z is not included in the ITER H-mode scaling)

H-mode Power Threshold and H-mode Characteristics in D Plasmas with D-NBI

<u>Goal</u>

 Determine H-mode power threshold and H-mode characteristics in D→D plasmas for comparison with results with H and He plasmas

<u>Results</u>

- Obtained good data for D plasmas with D-NBI (co- and balanced) and with ECH on
 - Density dependence
 - I-coil current dependence
 - Dependence on X-point height above divertor
- Piggyback experiment after 3500 ms: ITER demo discharges in D plasmas for comparison with He plasmas

Disruption characterization & avoidance

Goals:

Characterize causes and consequences of disruptions

- VDE forces and thermal loads
- Runaway electron generation and loss
- Develop strategies toward disruption-free operation
 - Prediction and precursor detection
 - Active means to avoid or postpone disruption

Complementary to Rapid Shutdown Task Force

Disruption characterization & avoidance – 2 days

Focus in 2010: Runaway electron physics

• 32-1. Formation of runaway electrons

- Develop reproducible generation of runaway electrons
- Characterize mechanisms for runaway electron generation
- 32-2. Control of runaway electron current channel
 - Develop feedback control of runaway electron beam position
 - Develop a target for slow suppression of runaway beam

99-25. Control of runaway electron current channel (Director's reserve: 0.5 day in Rapid Shutdown TF)

- Improve control of runaway electron beam position
- Control runaway duration with E-coil voltage (first demonstration)

Runaways Produced by Ar Pellet Injection

• Ar pellets injected:

- Cools plasma edge, contracts profile
- Triggers thermal quench MHD
- Current profile flattening from reconnection
- Runaways produced in TQ/flattening process:
 - Large E-fields produced
 - Low kappa, limited plasmas reliably produce runaway current channel
- Runaways avalanche to become visible current channel:
 - Reduced island overlap in low kappa allows increased seed confinement

New position control scheme successfully holds runaway electron channel on the midplane

• Switch to simple R,Z position control algorithm during & after CQ

- Advanced boundary control algorithms fail during rapid CQ
- Vertical position control is effective
 - Limited ability for radial control

2010 experiments increased the magnitude and duration of runaway electron current

E-coil drive offsets the resistive decay, extends runaway current duration

Full E-coil drive sustains or increases I_{RE}

- "natural" decay γ_{RE} ~5 MA/s
- − 15 V/turn maintains I_{RE}≥300 kA

• Duration is limited by:

- Vertical instability (& increase)
- E-coil voltage, volt-sec limits

Reproducible, sustained runaway beam enables studies of generation and loss mechanisms

- Large loop voltage at end of thermal quench
 - From drop in internal inductance
 - JFIT analysis

- Rate of change of current depends on electric field
 - Allows a test of avalanche theory: $\gamma_{RE} \propto E E_{crit}$ (Rosenbluth; Parks)
 - Analysis is in progress
 - A promising result for ITER

Impurity pellet injection probes the runaway beam

- Sudden explosion of polystyrene pellet suggests volumetric heating
- Explosion ~16 cm outside LCFS consistent with relativistic drift orbit displacement (E_e ~17 Mev)
- Absence of visible synchrotron radiation suggests lower energy than in the core RE channel

NTM stabilization

Goals:

- Validate models for ECCD stabilization of NTMs in ITER
 - Effect of ECCD modulation
 - Requirements for current drive width and alignment
- Develop alternative approaches to NTM control in ITER
 - RMP "steering" of locked mode to ECCD location
 - Entrainment and acceleration of locked mode
- Develop control algorithms for NTM stabilization and disruption avoidance

Complementary to NTM stability studies in Fusion Science

NTM stabilization - 1 day

- 33-1. Active control of locked modes
 - First demonstration of stabilization of a locked mode
- (piggyback) First demonstration in DIII-D of real-time mirror steering for ECCD
 - Pre-requisite for routine NTM stabilization

Locked mode can be caught and steered by I-coil

- Locked mode is suppressed by ECCD
 - Causes disruption without ECCD

ECCD is more effective than ECH at stabilizing locked mode and depends on toroidal phasing, controlled by I-coils.

First test of real-time ECCD mirror steering

- Mirror with motor drive for poloidal scanning of ECCD beam
 - First test under PCS control

- Sweeping mirror position during 3/2 NTM
 - Dip in the 3/2 amplitude indicates optimum position

Highlights of 2010 experiments

ELM control

- ELM mitigation by RMP increases ELM frequency and reduces divertor energy impulses
- Shallow pellet injection increases ELM frequency, little effect on core n_e
- AC magnetic perturbations increase ELM frequency, reduce amplitude

Helium plasmas and ITER demonstration discharges

- Brief periods of ELM suppression were obtained in helium plasmas
- n=3 RMP at resonant q_{95} increases H-mode power threshold
- Baseline scenario performance with H→He plasma is substantially lower than with deuterium (D→D)

Disruption characterization and avoidance

- Position control extends runaway electron current duration
- Runaway current can be altered by applied electric field

Neoclassical tearing mode stabilization

• First demonstration of active stabilization of a locked mode

Directions for future research

ELM control

- Extend RMP suppression to other tokamaks e.g. MAST scenario
- Demonstrate ELM suppression in low-torque ITER-relevant plasmas
- Develop alternatives to RMP
- ITER demonstration discharges, Hydrogen/helium plasmas
 - Demonstrate ITER baseline scenario with low rotation
 - Transport physics vs. ion mass
- Disruption characterization and avoidance
 - Controlled reduction of confined runaway electron current
 - Routine control strategies for disruption detection and avoidance
- NTM stabilization
 - Develop routine ECCD stabilization with real-time mirror steering

BACKUP SLIDES

RMP reduces the variability of deposited energy and wetted area between toroidal locations

- Application of RMP significantly reduces
 <u>ELM energies</u>. Higher heating power (9 MW) results in stronger ELM mitigation.
- Without RMP some ELMs show <u>toroidal</u> <u>asymmetries</u> up to 50%. On average there is no toroidal asymmetry (R_E) between energy deposited on two toroidal locations
- Without RMP there is also rather strong variability of <u>wetted area</u> (R_w) between two locations.
 - Introducing RMP reduces variability of deposited energy and wetted area, but creates small asymmetries in deposited energy.

A significant increase in $\delta b/B_T$ is needed in He plasmas to obtain marginal ELM suppression

 Marginal ELM suppression obtained in He plasmas by: Reducing B_T to 1.5 T resulting in 8% increase in the peak (δb/B_T)^{1/2} n=3 field Plus increasing the n=1 C-coil current by 50% compared to ELM suppression in D₂ plasmas

