### DOE Office of Fusion Energy Sciences Announces Selectees for Negotiation of Innovative Confinement Concepts Awards

The Office of Fusion Energy Sciences (FES) has recommended 18 proposals for funding from 41 submitted to the FY 2010 solicitations, for non-laboratories and for laboratories, of the Innovative Confinement Concepts (ICC) program. The solicitations reflected the reorientation of the program to highlight research on problems that are critical to the tokamak concept. Every project in the FY 2010 ICC portfolio was given an opportunity to submit a proposal to one of the solicitations.

Subject to grant award negotiations, \$14.9 million of FY 2011 funds are expected to be allocated to the 18 projects, which should continue through FY 2013 subject to the availability of funds.

Thirty-eight of the 41 proposals were determined to be responsive to the solicitation and were subjected to an external peer review on the basis of scientific/technical merit. The principal investigators were given an opportunity to provide a rebuttal to the reviewers' comments. In addition to the results of the peer review, programmatic priorities were used in the award selection process.

The selected projects include research on stellarators, spherical tori, compact toroids, plasma turbulence, and computational predictability for ICC experiments.

A list of the institution, principal investigator, and title for each selectee is shown below.

## Auburn University, Stephen Knowlton

MHD Stability and Equilibrium in a Current-Driven Stellarator-Tokamak Hybrid

## California Institute of Technology, Paul Bellan

Enhancing Fundamental Understanding of Magnetic Confinement in the Presence of Flows, Non-Conservative Forces, Dynamics, Collisions, Relaxation, and Kinetic Effects

## Columbia University, Gerald Navratil

High Beta Tokamak Research

## Oak Ridge National Laboratory (ORNL), Jeffrey Harris

A Comparison of Edge Localized Mode (ELM) and ELM-free Regimes in Stellarators and Tokamaks

## ORNL, Rajesh Maingi

A Collaborative Program on the Lithium Tokamak Experiment

### Princeton Plasma Physics Laboratory (PPPL), Elena Belova

Advanced Simulation Studies of Innovative Confinement Experiments

### **PPPL, Samuel Cohen**

The Princeton Field-Reversed Configuration (PFRC-2): Energy Confinement and Ion Heating in FRCs Generated by Odd-Parity Rotating Magnetic Fields

### PPPL, Philip Efthimion

Off-Site University Research Support

### PPPL, Richard Majeski

The Lithium Tokamak Experiment

## PPPL/ORNL/Los Alamos National Laboratory, George Neilson/Jeffrey Harris/Glen Wurden

Control of 3D Diverted Plasmas: A Partnership with Wendelstein 7-X

## Swarthmore College/Naval Research Laboratory (NRL), Michael Brown/Vyacheslav Lukin

Relaxation of 3D Magnetic Structures: SSX Experiments and Experimentally-Validated Simulations

# University of California at Davis/Sandia National Laboratories (CA), David Hwang/Dean Buchenauer

Multiple Applications of Accelerated Compact Toroids in Magnetic Fusion Devices

### University of Texas at Austin, Kenneth Gentle

Turbulence, Turbulence Suppression, and Controlled Fluid Flows in the Helimak

## University of Washington, Thomas Jarboe

The Helicity Injected Torus (HIT) Current Drive Program

## University of Washington/University of Wisconsin/Utah State University/NRL, Thomas Jarboe/Carl Sovinec/Eric Held/Vyacheslav Lukin

The Plasma Science and Innovation (PSI) Center at Washington, Wisconsin, Utah State, and NRL

### **University of Wisconsin, David Anderson**

HSX: A Helically-Symmetric Toroidal Experiment

### University of Wisconsin, Raymond Fonck

Non-Solenoidal Startup and Stability Limits at Near-Unity Aspect Ratio

### University of Wisconsin, Chris Hegna

Targeted Optimization of Quasi-symmetric Stellarators