

X-ray light sources driven by laser plasma accelerators for

high energy density science experiments

Lawrence Livermore National Laboratory

Félicie Albert, PhD Physicist

Deputy Director, LLNL High Energy Density Science center

Collaborators

N. Lemos, P. M. King, B. B. Pollock, C. Goyon, A. Pak, J. E. Ralph, Y. Ping, A. Fernandez-Panella, S. Hau-Riege, T. Ogitsu, A. Saunders, J. D. Moody

M. Sinclair, K.A. Marsh, C.E. Clayton, and C. Joshi (UCLA)

E. Galtier, P. Heimann, E. Granados, H. J. Lee, B. Nagler, A. Fry (LCLS)

Imperial College London

mm

B. Barbrel, J. Gaudin, F. Dorchies (CELIA)

M. Berboucha, S. Mangles, J. Woods, K. Powder, N. Lopes, E. Hill, S. Rose, Z. Najmudin (Imperial College London)

D. Kraus, R.W. Falcone, C. Geddes (UCB/LBNL)

P. Zeitoun (LOA)

J. L. Shaw, D. H. Froula (LLE)

Outline

- X-rays: a powerful tool for high energy density science experiments
- Using high power lasers to generate laser plasma accelerators and x-rays
- Two applications of x-rays from laser plasma accelerators
 - Imaging complex high energy density science experiments
 - Understanding electron-ion equilibration in warm dense matter
- Conclusion

At LLNL we use the National Ignition Facility (NIF) and concentrate its 192 beams into a mm³

Such experiments create extreme, transient conditions of temperature and pressure that are hard to diagnose

100 million degrees 20x the density of lead

Many High Energy Density Science experiments rely on x-ray backlighters with unique properties

Many High Energy Density Science experiments rely on x-ray backlighters with unique properties

Unique properties of sources driven by LWFA can enable applications

Unique properties	Applications
Broadband (keV – MeV)	Shock physics
Ultrafast (fs – ps)	Phase contrast imaging of laser driven shocks
Collimated (mrad)	Hydrodynamic instabilities motion
Small source size (µm)	Radiography of dense targets
Synchronized with drive laser	MeV x-rays with small source size
(ns, fs, or XFEL) Drive laser Target X-ray probe	Opacity Broadbad backlighter over 100's of eV
	Electron-ion equilibration/warm dense matter X-ray absorption spectroscopy with sub ps resolution

Unique properties of sources driven by LWFA can enable applications

Unique properties	Applications
Broadband (keV – MeV)	Shock physics
Ultrafast (fs – ps)	Phase contrast imaging of laser driven shocks
Collimated (mrad)	Hydrodynamic instabilities motion um resolution imaging without motion blur
Small source size (µm)	Radiography of dense targets
Synchronized with drive laser	MeV x-rays with small source size
(ns, fs, or XFEL) Drive laser Target	Opacity Broadbad backlighter over 100's of eV
X-ray probe	Electron-ion equilibration/warm dense matter X-ray absorption spectroscopy with sub ps resolution

X-ray sources with MeV photons and <10 μm resolution are required to understand some of the experiments done at the NIF

We use "pump-probe" experiments and x-ray measurement techniques to understand these conditions

X-ray absorption spectroscopy

We use "pump-probe" experiments and x-ray measurement techniques to understand these conditions

Laser in at Time O (T_0)

4th generation x-ray light sources used for scientific applications could be used but are billion dollar-scale national facilities

X-ray free electron laser: LCLS

Synchrotron: APS

Laser plasma accelerators offer a compact alternative to these big machines

X-ray free electron laser: LCLS

Laser plasma accelerator

Accelerating electrical field is 1000 times stronger than in a regular accelerator

Using high power lasers to generate laser plasma accelerators and x-rays

An intense laser pulses drives electron plasma waves

Plasma wave behind a laser

Nuno Lemos, LLNL

Laser-produced plasmas can naturally sustain large acceleration gradients which makes laser plasma accelerators 1000 x smaller

Gas cell – laser plasma

Acceleration gradient Plasma frequency $n_e e^2$ $n_e = 10^{18} \text{ cm}^{-3} \rightarrow E_0 = 96 \text{ GV/m}$ $mc\omega$ $n \mathcal{E}_{0}$

Trapped Electron

Betatron X-ray beam

Electron plasma wave

F. Albert et al, Plasma Phys. Control. Fusion (2014)

Laser wakefield acceleration can produce x-rays using several processes

Most of these sources are typically produced with ultrashort laser pulses in the blowout regime ($c\tau \sim \lambda_p/2$)

Condition to be in the blowout regime $c\tau \sim 1/n_e^{1/2}$ \longrightarrow 30 fs $n_e^{\sim} 10^{19}$ cm⁻³

Self modulated laser wakefield acceleration is easier to achieve with picosecond scale lasers ($c\tau >> \lambda p$)

Condition to be in the self-modulated regime $c\tau >> 1/n_e^{1/2} \longrightarrow 1 \text{ ps } n_e^{-10^{19}} \text{ cm}^{-3}$

High charge, relativistic electron beams are accelerated through self-modulated laser wakefield acceleration

Imaging complex high energy density science experiments

Our project is developing laser plasma accelerators on large kJ-class picosecond lasers

Laser wakefield – betatron experiments – Titan LLNL

We have developed a platform to produce x-rays in the self modulated laser wakefield acceleration regime

Electrons accelerated in the SMLWFA regime produce betatron x-rays

Electron's accelerated in the SMLWFA regime produce betatron x-rays

Electron's accelerated in the SMLWFA regime produce betatron x-rays

Electron's accelerated in the SMLWFA regime produce betatron x-rays

Electrons accelerated in the SMLWFA regime produce betatron x-rays

Best fit for $E_c = 10 \text{ keV} + / - 2 \text{ keV}$ (least squares fit) $- 10^9 \text{ photons/eV/Sr}$

Betatron x-rays have critical energies of 10-40 keV

Measured/calculated x-ray spectrum $E_c = 40 \text{ keV}$ 10⁹ Photons/eV/Sr $E_c = 10 \text{ keV}$ Noise level 10⁶ 10⁵ 5 10 50 100 Photon energy [keV]

Betatron - Experiment PIC simulation

Optimized betatron radiation produces the most photons for energies <40 keV

Compton scattering allows for increased photon flux up to a few 100 keV

Compton scattering allows for increased photon flux up to a few 100 keV

LWFA-driven bremsstrahlung produces the most photons at MeV energies

We can control the x-ray flux and energy by combining several processes

N. Lemos et. al, In preparation

Spectral and flux tuning allows for optimized radiography applications

We can reproduce radiographs of test objects using the x-ray ray tracing code HADES

I. Pagano et. al, In preparation

SM-LWFA driven x-ray source shows 1.4x higher radiography SNR for the same conditions

I. Pagano et. al, In preparation

Understanding electron-ion equilibration in warm dense matter

Betatron x-ray source development at LCLS-MEC

Application: detection of nonthermal melting in SiO2

Absorption spectroscopy of SiO_2 a the O K-edge (535 eV)

No absorption of x-ray probe photons below O K-edge energy

Sharp transition corresponds to strong absorption of x-ray photons for energies above the O K-edge

Multiphoton absorption causes electrons to cross the bandgap and leave vacancies in the valence band

1s-valence band transitions are now authorized: strong absorption peak 9 eV below the edge

Defect states also allow absorption within bandgap upon heating, K-edge is broadened and red shifted

Defect states also allow absorption within bandgap upon heating, K-edge is broadened and red shifted

We have demonstrated the use of betatron xrays as a tool for absorption spectroscopy

We have demonstrated the use of betatron xrays as a tool for absorption spectroscopy

We have demonstrated betatron x-rays absorption spectroscopy with sub ps resolution

We still have a lot of ongoing exciting projects

New acceleration

- Acceleration in Selfmodulated LWFA*
- 3D OSIRIS PIC simulations confirm observation (UCLA collaboration)

✓ *P.M. King et al, PRAB (2021)

- radiography applications LaserNetUS experiment at
- Texas Petawatt on radiography

N. Lemos (in prep) 2 new students: B. Pagano (UT Austin) and A. Aghedo (FAMU)

*J.L. Shaw et al, Sc. Rep (2021)

LaserNetUS experiments using betatron source

- Study of warm dense iron with XANES
- Phase contrast imaging of laser-driven shocks in water

*M. Berboucha, E. Galtier et al **C. Kuranz et al

Conclusions and future work

- We have demonstrated the production of novel x-ray sources from laser-plasma accelerators on several laser facilities
- They are broadband (keV MeV), ultrafast (fs ps), small source size (μm), collimated (mrad), synchronized with drive laser
- They enable new applications
 - Study of ultrafast non-thermal melting in SiO2
 - Radiography of dense objects
 - Phase contrast imaging of laser-driven shocks and hydrodynamic instabilities
 - Study of opacity in HED matter
- Future work and challenges
 - Improving sources stability and flux
 - Applications from proof-of-principle to practical
 - LWFA sources as probes for HED science experiments, single shot and rep-rate

N. Lemos et al, PPCF 58 034108 (2016)
F. Albert et al, PRL 118 134801 (2017)
F. Albert et al, POP 25 056706 (2018)
N. Lemos et al, PPCF 60, 054008 (2018)
P. M. King et. al, Rev. Sc. Instr. 90, 033503 (2019)
F. Albert et al, Nuclear Fusion, 59, 032003 (2019)
P. M. King et al, PRAB, 24, 011302 (2021)
J.L. Shaw et al, Sci. Rep, 11 7498 (2021)
N. Lemos et. al, PRL (in preparation)

Access to this type of research will be facilitated by networks

