
 

 
  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The artwork on the cover is a conceptual image of a molecular system being interrogated by multiple US 
Department of Energy Basic Energy Sciences scientific user facility probe modalities. The data are then 
fused and interpreted by new capabilities enabled by artificial intelligence/machine learning (AI/ML). 
The arrows represent the available probe modalities: light (red is photons, yellow is x-rays [both soft and 
hard]); neutrons (the purple arrow shows the particle representation of the up(u) down(d) down(d) quarks 
of a neutron); and imaging and nanoscale (i.e., local) modalities (blue triangle). The backdrop of binary 
numbers connotes the underpinning of high-performance computing and AI/ML-aided information 
inference and data analytics. 

Image courtesy of Oak Ridge National Laboratory  
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Executive Summary 
The US Department of Energy’s (DOE’s) scientific user facilities provide access to the world’s most 
advanced research instruments and produce increasingly larger quantities of data. DOE’s Basic Energy 
Sciences (BES) scientific user facility instruments for x-ray, neutron, and nanoscale science are among 
the world’s most productive, serving over 16,000 users per year with impact reported in nearly 7,000 
publications and resulting in unprecedented quantities of scientific data. While this record is impressive, 
using the rapidly growing data stream to its full potential will require new innovations to solve a variety 
of technical challenges in data acquisition, control, modeling, and analysis. Artificial intelligence and 
machine learning (AI/ML) have opened corresponding new avenues in optimization, efficient surrogate 
models, data analytics, and inverse problems. These intriguing capabilities suggest that AI/ML can greatly 
accelerate the quest to probe and understand fundamental phenomena across a vast range of length, time  
and energy scales, potentially leading to transformative advances across scientific disciplines.  

Both industry and the scientific community already use AI/ML approaches for data analysis. User 
facilities, however, crucially require AI/ML tools throughout the lifetime of an experiment: not just for 
data analysis, but also for data creation, acquisition, and storage. In the next 10 years, AI/ML are expected 
to go beyond traditional data analysis to aid the design and control of complex facilities, enable real-time 
capabilities to acquire and analyze large data volumes, automatically steer data collection for in-the-loop 
experiments, and support experimentalists’ use of exascale computing. These advances will in turn open 
new avenues of scientific research in energy sciences and many other fields. For example, AI/ML can 
help the scientific community transition from relatively simple performance and properties measurements 
of materials and molecules to complex intertwined functionalities in batteries, information technology, 
chemical and biological systems, and quantum-based devices and sensors, where classical serendipitous 
materials discovery and sequential optimization paradigms are impractical. We envision a future of 
AI/ML-enabled scientific user facilities that maximize the DOE’s scientific impact.  

To identify specific Priority Research Opportunities (PROs) for AI/ML at the user facilities, BES 
convened a roundtable of facility experts encompassing the fields of physics, chemistry, materials 
synthesis science, computational science, detector and accelerator technology, theory, modeling, 
simulation, and atomic-scale characterization techniques. The roundtable met on October 22–23, 2019, to 
identify coordinated, long-term AI/ML research efforts that will drive major advances in neutron, photon, 
and nanoscale sciences.  

This report describes the four PROs identified at the roundtable: PRO 1 on how AI/ML can extract high-
value information from the large datasets; PRO 2 on how AI/ML can use such information in real time to 
maximize the facilities’ scientific output; PRO 3 on using AI/ML virtual laboratories (i.e., computational 
models of experimental facilities) to aid the facilities and user community in design and control of 
machine parameters and the design and execution of experiments, including training AI/ML models for 
PROs 1 and 2; and PRO 4 on how a shared scientific data infrastructure can provide tools to assemble and 
analyze the totality of data coming from user facilities. A section at the end of the report provides a 
summary on computer science and mathematics that highlights where enhanced AI/ML capabilities could 
be particularly impactful for BES user facilities. 
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PRO 1: Efficiently extract critical and strategic information from large, complex 
datasets 
Key question: How do we extract robust and meaningful information from the increasingly vast and 
complex data now being produced at BES’s scientific user facilities? 

Advances in the tools and techniques at BES’s x-ray, neutron, and nanoscale scientific user facilities 
allow capture of increasingly larger datasets, often taken in a variety of experimental modalities. 
Paradoxically, the explosion of data can make it harder to arrive at desired scientific insights, because of 
the monumental level of effort needed to process and analyze the data. AI/ML techniques have the 
potential to significantly reduce that effort while allowing rapid, real-time information extraction of 
properties from noisy, imperfect measurements. Additionally, AI/ML can help unmask the complexity 
hidden in problems in high-dimensional spaces (e.g., multimodal measurements, many experimental 
variables) by finding connections elusive to human observation. 

PRO 2: Address the challenges of autonomous control of scientific systems 
Key question: How do we address the challenges inherent in real-time operation of large, complex 
scientific user facilities? 

Realizing the full potential of current and next-generation measurement capabilities will require advanced 
methods in order to develop and maintain optimal performance as well as automated experimental 
approaches to guide scientific discovery. AI/ML-based methods are needed to efficiently search large, 
complex parameter spaces in real time and to predict the health and failure of instruments at high-power 
sources and the experiments that are run on those instruments. Such capabilities will dramatically reduce 
facility tuning time and downtime, improve facility performance, and maximize the productivity of BES 
SUFs. 

PRO 3: Enable offline design and optimization of facilities and experiments  
Key question: How do we enable virtual laboratories—offline design and optimization of facility 
operation—to achieve new scientific goals? 

Physically accurate, virtual laboratory environments of experimental facilities (i.e., a lab in the 
computational cloud) will help in guiding in silico experiments from conception to synthesis and 
measurements. Digital twins that faithfully mimic facilities, including shared workflows and continuous 
updates from real experiments, can enable the design of new facility capabilities and execution of optimal 
experimental strategies to drive physics knowledge acquisition for user facilities. These digital twins 
could also facilitate development of AI/ML methods for the other Priority Research Opportunities. 

PRO 4: Use shared scientific data for machine learning–driven discovery 
Key question: How can we catalyze scientific discovery by leveraging the wealth of diverse and 
complementary data recorded across the BES scientific user facilities? 

Radical improvement in data sharing, curation, and analysis is needed to catalyze scientific discovery 
across all facilities. Through the application of new AI/ML platforms to integrate diverse scientific data 
resources, extensive new datasets could be created from heterogeneous experimental and simulated data, 
leading to new opportunities for scientific discovery. Coordinated development of workflows on a shared 
facility–based data repository could catalyze development of data standards, formats, and priorities. These 
curated datasets could, in turn, serve as training sets for developing new AI/ML methods. 
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Introduction 
The US Department of Energy (DOE) operates a wide range of scientific user facilities (SUFs) that 
provide access to the world’s most advanced research instruments. The world-leading Basic Energy 
Sciences (BES) x-ray, neutron and nanoscale SUFs serve over 16,000 users per year and produce 
petabytes—the equivalent of a million gigabytes—of data that deliver high-impact science. Current and 
upgraded user facilities face a variety of technical challenges related to data acquisition, control, 
modeling, and analysis. Improvements to instruments will enable more sophisticated studies by providing 
a greater quantity and quality of probe particles (i.e., photons, electrons, neutrons), while concomitant 
advances in detection and data volumes demand new techniques to obtain the scientific results. The 
synchrotron light sources, neutron sources, and Nanoscale Science Research Centers (NSRCs) enable 
ambitious new experiments that can weave together complex, multimodal datasets. NSRCs further require 
active control to synthesize new materials. Therefore, advances in our ability to handle large quantities of 
data, rapidly extract useful information, and use it to guide experiments and simulations, promise to open 
new avenues of research across the physical, biological, and engineering sciences. 

As an example of an emerging challenge, 
coherent x-ray diffraction imaging (or 
“lensless” imaging) is growing rapidly in 
usage at both storage ring–based synchrotrons 
and x-ray free electron lasers (XFELs) as new 
and upgraded sources provide a higher degree 
of coherence. Because the source properties 
are critical to the experiment, sophisticated 
prediction and feedback are required to 
maintain source quality, and high-fidelity 
simulations are needed both for designing new 
capabilities and guiding online control. To 
reach peak performance, accelerators require 
frequent optimization in high-dimensional 
spaces as well as anomaly/breakout detection 
to protect the high-power, high-repetition-rate 
machines. On the experimental side, lensless 
imaging is both data- and computationally 
intensive. Sophisticated compression/rejection 
data pipeline tools operating at the “edge” 
(i.e., next to the detector or experiment) are 
needed to extract and save information “on the 
fly.” Active control is needed to automatically 
steer experiments and synthesis through a 
high-dimensional parameter space. Figure 1 

depicts an autonomous control process for experimental systems. 

Even after datasets are recorded, new tools are needed to share and analyze the enormous, multimodal 
datasets that span the SUFs, including data merges and simulations. Large-scale computation will require 
the development of automated science workflows and novel data science approaches. Example 
applications include molecular dynamics simulations for comparison to neutron scattering data, density 
functional theory (DFT) for comparison to neutron spectroscopy data, Monte Carlo ray tracing for 
simulating instrument and complex sample effects, and diffuse scattering modeling for investigating 
defects in solids and large-scale tomographic reconstructions. At the NSRCs, the ability to discover new 

 
Figure 1. Autonomous control of experimental systems 

promises to open the study of problems previously 
considered impossible. Automating the entire experimental 
workflow—instrument setup and tuning, sample selection 

and synthesis, measurement, data analysis and model-driven 
data interpretation, and follow-up experimental decision- 
making—will bring about revolutionary efficiencies and 

research outcomes.| Distributed under a Creative Commons 
Attribution International License 4.0 
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materials and chemical compounds with desired properties relevant for societal applications is primarily 
driven by a relatively slow process of intuition, design rules, models, and theories derived from scientific 
data generated by experimentation and simulation. The number of materials and chemical compounds that 
can be derived is astronomical. Finding desired properties through random experimentation is like looking 
for a needle in a haystack. 

Computational and data science challenges exist throughout the facility operations life cycle, but there is 
an expectation that artificial intelligence (AI) and machine learning (ML) methods will have a 
transformative impact on SUF science. AI/ML methods for analysis, control, and modeling will 
drastically accelerate experimental and computational discovery. AI involves machines that can perform 
tasks characteristic of human intelligence such as planning, understanding language, recognizing objects 
and sounds, learning, and problem-solving. ML is a means of achieving AI; ML refers to systems that can 
learn from data without being explicitly programmed. We envision that, in the next 10 years, AI/ML will 
be an integral part of the DOE’s discovery and design arsenal, just as experimental, theoretical, and 
computational tools are today. Scientists at the SUFs will work in synergy with AI/ML experts at the 
DOE to operate facilities and generate scientific data, formulating new physical models and theoretical 
insights that drive scientific discovery and open new paths of design of materials and chemicals. 

While AI/ML is widely recognized as a set of tools for data analysis, opportunities at the SUFs extend 
across facility operations, spanning everything from the design of new machines to the inference of new 
science. For example, AI/ML can merge physics, simulations, and data to guide online optimization of 
accelerators, enabling design of challenging configurations that will deliver new capabilities to users. 
Autonomous control of experimental systems could revolutionize the way experimentalists work, 
allowing them to explore high-dimensional problems previously considered impossible. Such advances 
could, for example, enable the discovery of targeted materials and chemicals a thousand times faster than 
current methods; resolve conformational landscapes of proteins; and reveal complex hierarchical 
correlations, from molecular-scale interactions to transport phenomena, to mapping the energy landscapes 
of chemical and materials transformations. 

To identify Priority Research Opportunities (PROs), BES convened a roundtable of experts on 
October 22–23, 2019, from the SUFs and user communities encompassing a wide range of disciplines and 
cross-cutting experimental sciences, computational science, detector and accelerator technology, theory, 
modeling, simulation, and atomic-scale characterization techniques. This roundtable generated future 
research opportunities that could form the basis of a coordinated, long-term research effort enabling major 
advances for neutron, photon, and nanoscale sciences. See Appendix A for a list of participants and their 
affiliations and Appendix B for the roundtable agenda. 

The roundtable participants were asked to provide insight on how big data and AI/ML techniques could 
be used to reach the full operational potential and scientific impact of the SUFs. Technical challenges are 
expected for simulations, control, analysis, data acquisition, and deep data analysis. Participants 
considered new technologies for speeding up high-fidelity simulations for online models, fast-tuning in 
high-dimensional spaces, anomaly/breakout detection, “virtual diagnostics” that can operate at high-
repetition rates, and sophisticated compression/rejection data reduction workflows operating at the edge 
to capture high-value data and steer experiments in real time.   

Prior to the roundtable meeting, members of the community were asked to provide a two-page summary 
of past and current work on AI/ML for machine control, data manipulation, and analysis at their facilities. 
This companion to the present report was compiled into the Facilities’ Current Status and Projections for 
Producing and Managing Large Scientific Data with Artificial Intelligence and Machine Learning, (to be 
published in https://science.osti.gov/bes/Community-Resources/Reports) which set the stage for the 
roundtable by addressing six questions that described the current AI/ML applications, developments, and 
opportunities at the SUFs:  
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1. How can AI/ML change or improve the way your lab operates its facilities? 

2. What are the detectors’ limitations, and how can AI/ML help? 

3. Can AI/ML improve DOE facility users’ experiences during data acquisition through novel 
experimental methods, data analysis, adaptive control, etc.? 

4. Do you feel there are particular limitation(s) to successful progress in AI/ML for data production 
and analysis at your facility (please elaborate)? 

5. Are there opportunities to better integrate with Advanced Scientific Computing Research (ASCR) 
data analytics, high-performance computing (HPC), and high-speed networking capabilities for 
data-intensive experimental and theoretical problems? 

6. What aspect of AI/ML is exciting to you? Explain how this could be enabling for user facilities.  

During the roundtable, an interactive discussion session of all participants identified potential themes. 
Four breakout sessions identified dominant themes in the areas of online control, data acquisition, 
multimodal analysis, and models/simulations. From the results of the first day’s discussions, the writing 
team identified four PROs, which were finalized on the second morning along with example “killer 
applications” to highlight the potential impact of each PRO. 

This report summarizes the key challenges and future research directions identified by the AI/ML 
roundtable. These are articulated through the four PROs, with each described in a detailed section of the 
report. 

PRO 1: Efficiently extract critical and strategic information from large, complex datasets  

PRO 2: Address the challenges of autonomous control of scientific systems 

PRO 3: Enable offline design and optimization of facilities and experiments 

PRO 4: Use shared scientific data for machine learning–driven discovery  

The report ends with a section highlighting the cross-cutting opportunities for collaboration with ASCR to 
help enable enhanced AI/ML capabilities relevant to the four PROs.  

Successfully addressing the PROs will establish coordinated, long-term research efforts to enable major 
advances for neutron, photon, and nanoscale sciences that propel these user facilities to next generation 
capabilities for users and for scientific discovery. 
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PRO 1. Efficiently Extract Critical and Strategic Information from 
Large, Complex Datasets 
Key question: How do we extract robust and meaningful information from the increasingly vast and 
complex data now being produced at BES’s scientific user facilities? 

Introduction 
The BES user facilities’ array of x-ray, electron, neutron, atom, and optical probes are producing 
increasingly larger and more complex data streams at a faster pace than current analysis methods can 
handle [1–10]. Scientific understanding requires the extraction of physical and chemical information from 
these data, in the form of underlying electronic, atomistic, nanoscale, and mesoscale structures and 
dynamics. AI/ML approaches, constrained and informed by physical models, are needed to enable and 
accelerate sampling of the underlying structure and dynamics spaces; efficient forward modeling; and 
pattern matching from these large, high-throughput data streams [11]. 

As tools and techniques (e.g., x-ray, neutron, optical, and electron probes, along with other microscopies) 
to study matter at the nanoscale dramatically improve, our challenges are harnessing the quantity of the 
data produced and connecting different pieces of scientific information generated from that data. 
Overcoming these challenges will lead to three dramatic advances: (1) faster time for sample 
characterization and understanding, (2) real-time analysis for online control and autonomous experiments, 
and (3) the ability to address higher levels of complexity in experiments by elucidating connections 
hidden in high-dimensional spaces. If the scientific community does not overcome these challenges, the 
scientific output realized by the SUFs may not keep pace with the facilities’ capabilities. 

Research Directions 
This PRO has three underlying themes. AI/ML techniques offer the potential to enhance the scientific 
productivity of the BES SUFs by: 

1. Accelerating the transformation of data into scientific information (i.e., taking raw, noisy, 
imperfect snapshots of observations and extracting physical quantities and useful information).  

2. Enabling rapid information extraction to provide real-time feedback to experimenters, allowing 
the modification of the course of an experiment as it is being performed; and, more broadly, as a 
foundation for autonomous smart control of the experiment (PRO 2).  

3. Delivering  enhanced analytical techniques (via AI/ML) of large, complex datasets, including 
joint analysis of experimental data and simulations, to allow scientists to observe hidden 
connections across experimental modalities in complex, high-dimensional spaces. 

Each of these themes is described in more detail below.  

Accelerating the transformation of data into scientific information  
The explosion of data volumes, and in some cases data generation rate (i.e., how fast data are produced), 
poses a challenge for effective data analysis at the SUFs. Data reduction techniques such as experiment-
specific vetoes, lossy or lossless compression, and feature extraction must be employed to achieve the 
dual goal of reducing the data volume and extracting physical information from raw measurement data. 
These techniques must be capable of adapting to frequently changing experiments, must be scalable up to 
the maximum detector input/output (I/O) capabilities and easily configurable to accommodate rapidly 
changing experimental conditions. AI/ML methods have potential to address these  challenges, with large 
datasets enabling the use of deep learning techniques [12]. 
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Extracting information from the data is likely to require a layered approach. For example, in particle 
physics, various levels of “trigger” are used, each one successively more complex, in order to determine 
whether the data from an individual event is worth recording (e.g., [13]). In particle physics today, an 
experiment may have decades of simulation studies to build confidence in the trigger algorithm. While 
such selective saving of data is also beneficial to the SUFs (e.g., shot-by-shot measurements at an XFEL), 
designing triggers is more challenging due to the short duration of experiments, which can change day to 
day (see PRO 3). An alternative data reduction approach would not discard data by a trigger but rather 
begin to extract information at a low level (i.e., as close to the detector as possible). An example is 
“clusterization,” determining the impact point of a probe particle on the detector with subpixel accuracy. 
Conventional techniques are computationally expensive and sensitive to noise and calibration errors. 
AI/ML methods may improve both the speed and spatial resolution of such tasks. As one moves further 
from the detector and more computing power is available, more sophisticated techniques can be 
employed. For example, artifacts and distortions that arise in x-ray scattering data collection might be 
healed computationally [14–15], thereby revealing the true underlying structural motifs. Data 
reconstruction methods that have been avoided historically due to the high computational cost could be 
replaced by fast-executing AI/ML methods [16]. At the broadest level, AI/ML methods could extract 
physical insights directly from raw experimental signals without any information loss from intermediate 
steps [17]. 

Enabling rapid information extraction to provide real-time feedback  
Driving an experiment in real time requires both rapid and sophisticated data analysis so that each 
measurement can inform future experiments (see PRO 2). Current analysis methods are inadequate for 
this task. For example, new and upgraded light sources dramatically increase both source brightness and 
coherence. Coherence can be exploited, for example, for lensless imaging, but with a concomitant 
increase in computational complexity. It is estimated [18–19] that a single coherent imaging beamline 
will generate approximately 130 petabytes of raw data per year and that over 30 petaflops of continuous 
computing power will be needed to keep up with this anticipated data generation rate using current 
inversion algorithms. 

Recent preliminary results [20–21] suggest deep neural networks (DNNs) can be used to learn a wide 
range of inverse problems; for example, the inversion of raw x-ray (and electron data) from the NSRCs to 
real-space coordinates. Once trained, these networks could be deployed on the edge to enable real-time 
experimental feedback. Incorporating the physics of both the sample being studied and the model 
connecting the raw data to a real-space image could further constrain the optimization space and improve 
the results of experiments that use AI/ML. Further research challenges in optimizing the tuning of 
massive DNNs and active learning will need to be explored to optimize these techniques.  

Delivering enhanced analytical techniques 
Multimodal characterization tools that provide complementary information are indispensable for BES’s 
SUFs. The challenge is to properly connect often disparate information, similar to multiscale problems in 
biological and physical sciences. For example, precise knowledge of atomistic and electronic structure of 
materials during synthesis and dynamics is needed for discovery of new materials, but combining 
scattering, microscopy, and spectroscopy data to recover structures remains a challenging inverse 
problem. Whether due to projection of a 3D structure onto one or two dimensions—as in pair distribution 
functions and transmission electron microscopy, or the reduction of a large number of matrix elements 
into an overall energy-dependent amplitude, as in x-ray absorption spectroscopy, or the interference of 
scattered coherent x-ray, as in coherent diffractive imaging and x-ray photon correlation spectroscopy—
the result is that inversion of this mapping is time-consuming, imprecise, and sometimes even wildly 
inaccurate, which limits and delays new knowledge, despite the availability of the impressive array of 
multimodal in situ/operando instrumentation at the SUFs.  
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Solving inverse problems such as these requires (1) a large number of measurements, (2) simulations and 
predictions of how to incorporate signals from different modalities, and (3) physical constraints (i.e., 
solutions need to be driven towards optimal matching with experiments while ensuring adequate physical 
representation). Fortunately, inverse problems are particularly well-served by the confluence of AI/ML, 
which can handle under-determined mappings, and atomistic and first principles modeling, which allows 
high-throughput configurational sampling, forward modeling of multimodal characterization data, and, 
most importantly, severe constraints of the solution space. 

Enabling Capabilities 
To achieve faster time to sample characterization and a deeper level of understanding of complex 
experiments, several corresponding advances in infrastructure and facilities are required.  

• Sufficient network bandwidth availability: The DOE’s Office of Science (SC) Energy Sciences 
Network (ESnet) provides high-bandwidth interconnection between national laboratories and 
universities, and it is imperative to ensure sufficient ESnet shared backbone capacity is available 
to allow data flows that adequately connect data and compute resources between HPC facilities, 
neutron and light sources, and NSRCs. 

• Analyzing data at its natural production rate: AI/ML will facilitate several key elements in 
accomplishing on-the-fly information extraction at accelerating data generation rates: (1) solving 
inverse problems, such as those listed above, which may combine measurements from different 
facilities and modalities; (2) finding surrogate models covering the transitions between discrete 
measurements; and (3) parameter-space learning, which enables more efficient experimental 
searches through that parameter space. A wide range of classification and regression ML 
approaches, together with stochastic, decision tree, evolutionary, active learning, and Bayesian 
optimization methods, are applicable to these problems. Methods for training models on sparsely 
labeled data will be critical. 

• Ability to leverage domain knowledge in analysis: Extraction of physical and chemical 
information from large and fast data streams using AI/ML approaches must be constrained and 
informed by physical models to efficiently enable and accelerate the sampling of the underlying 
parameter space and allow for pattern matching and forward modeling.  

• Simultaneous analysis of all the data, no matter the source, machine, or format: A 
comprehensive dataset representative of the SUFs’ science interests must be generally available 
to train and validate AI/ML models. To support such a dataset, centralized storage capabilities 
and policies that encourage data sharing across facilities will need to be implemented. It will be 
critical to devise metadata standards because experimental metadata are not systematically 
collected across facilities and most metadata are not standardized and are recorded in user 
logbooks [5]. A uniform metadata tagging process would make it easier for users and developers 
of AI/ML methods to locate and use relevant data by enabling data searchability. Both PRO 4 and 
the report titled Data and Models: A Framework for Advancing AI in Science cover this topic in 
more detail [22].  

• Validation and verification (trust but verify): How does one provide evidence that a model is 
sufficiently accurate for its intended use? Each AI/ML data reduction method that is developed 
must work reliably and robustly. Standards must be developed for validation and verification of 
AI/ML methods to convince users that these methods are accurate and do not systematically bias 
results. 
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Harnessing Complexity for Multicomponent, Multifunctional Materials Design 
Many material systems 
comprise complex, 
heterogeneous phases. 
Damage-tolerant [23] and 
self-healing [24] structural 
materials or multi-
component catalysts for 
cascade reactions [25] all 
rely on heterogeneity. The 
exact nature of these 
phases, their distribution, 
and any correlation 
between them is often not 
apparent until after an 
experiment is performed. 
To design and optimize 
multicomponent 
materials, where direct 
observation of underlying 
structures may be 
impossible,  experiments 
must navigate the 
resulting relevant 
functional properties. This 
goal necessitates high-
throughput experimental 
tools that employ 

immediate data reduction to navigate a complex experimental parameter space. For example, an 
experimentalist may need to classify and interpret raw electron microscopy images or x-ray ptychography 
data during an experiment, as illustrated in the figure above. AI/ML approaches, which automatically 
classify features, detect patterns and correlations, and interpret data can therefore significantly impact the 
development of heterogeneous material systems. To enable these capabilities, the advances outlined in 
PRO 1 will be required. 

A practical example involves identifying crystallization 
conditions and crystal structure in organic–inorganic hybrid 
perovskite materials. This is a time-consuming, “needle in a 
haystack” search through thousands of combinations of 
reaction parameters, even when those parameters are 
known for materials with similar organic components. 
Robotic workflows at the Molecular Foundry nanoscience 
user facility at Lawrence Berkeley National Laboratory 
recently performed over 9,000 perovskite reactions and 
screened over 50 different organic precursors for single-
crystal formation in perovskites [26]. ML algorithms classified 
reaction outcomes such as crystal size, crystal structure, 
dimensionality, and material properties (see figure at right). 
A network of ML experts, acting as “virtual users,” used a 
software pipeline [27] developed by Molecular Foundry 
users to propose new experiments using the robots. These 
data are uploaded automatically into the software 
database and then used to train learning algorithms using 
transfer learning or Bayesian optimization. A major 
challenge for such ML modeling of materials, and thus an 
ultimate goal, is to extrapolate outcomes from one 
chemical system to untested systems.  

 
Measured values of interest often are not apparent to the researcher during 
data collection. For example, many material properties are encoded in 
scanning electron nanodiffraction datasets. Properties such as crystalline 
phase, strain, and polarization and any correlations between them are 
typically discovered only after an experiment. Immediate data reduction into 
relevant physical properties alters the way an experimentalist interacts with 
the system, allowing direct navigation through complex experimental 
parameter spaces on the time scale of the experiment. | Image courtesy of 
Mary Scott, National Center for Electron Microscopy, Lawrence Berkeley 
National Laboratory 

 

Nine hundred sixty-eight perovskite 
reactions were performed by a robot to 
explore conditions for producing single 
crystals (red dots) of ethylammonium lead 
iodide. | Distributed under a Creative 
Commons Attribution Noncommercial 
License 4.0 
(https://creativecommons.org/licenses/by-
nc/4.0/) 
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• Provenance preservation: Provenance in computational science is the record of data lineage and 
software processes that operate on these data to enable the interpretation, validation, and 
reproducibility of results. In experimental science, provenance includes experimental conditions, 
calibrations, and notes that contain the record of how the data were produced and analyzed. 
Similar to metadata, provenance for data and software is crucial to enable transparency and trust 
in experimental and computational results. Provenance provides a record for the numerous 
transformations in the scientific process of discovery and in the design of new materials. An 
accurate provenance record provides a measure of quality for results. Such a record should 
include references to the software code and initialization conditions used to produce particular 
datasets, samples, and experimental conditions such as motor positions at a beamline and the 
names of researchers and facilities involved in a particular project. With AI/ML and 
computational algorithms increasingly guiding more steps in the discovery process, detailed and 
comprehensive provenance is required to trace how results are obtained, especially in dynamic 
settings, when computer-driven decisions guide autonomous experiments. 

Potential Impact 
The ability to extract key features of data generated at SUFs confers a number of advantages. Overall 
throughput and storage requirements are reduced, and the ability to stream data to DOE’s ASCR 
computing facilities becomes possible. Information extraction allows for crucial real-time feedback to 
drive experiments toward the highest value measurements and reduce the time from measurement to 
scientific insight (see PRO 2). Furthermore, compact information in relevant physical units can be more 
easily shared across facilities, enabling multimodal data analysis and synthesis. AI/ML methods for data 
reduction and feature extraction will enable BES facilities to process higher rates of streaming data to 
characterize heterogeneous ensembles, capture rare transient events, and map spontaneous dynamics in 
operando. AI/ML techniques make it possible to address new levels of complexity such as mapping 
reaction landscapes or capturing rare events via automatic pattern recognition and to probe high-
dimensional space. 

If a real-time data reduction capability is not delivered, the consequences for the BES SUF mission are 
significant. Facilities would be forced to artificially limit the delivered particle flux or the readout rates of 
future detectors, constraining both the quality and number of experiments that can be performed at the 
SUFs, which in turn limits the science output of the facilities. Many experiments requiring high statistics 
would not be feasible without some form of on-the-fly feature extraction to handle the throughput. 
Experiments that require complex multimodal analysis would not be possible, reducing the potential 
scientific impact of the SUFs. The inability of SUF users to efficiently acquire, manage, and analyze their 
data would increase the time to understanding and publication.  

Current research in AI/ML has been shown to be effective in feature identification and processing of large 
datasets, helping data analysis and visualization keep pace with the explosion of experimental data. In 
moving from capturing data to recording information, fast extraction of information from experimental 
measurements underpins the autonomous control and experimentation discussed in PRO 2.  
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PRO 2. Address the Challenges of Autonomous Control of Scientific 
Systems 
Key question: How do we address challenges inherent in real-time operation of large, complex scientific 
user facilities? 

Introduction 
Advances in AI/ML approaches are fueling a new paradigm wherein any and all automatable tasks might 
be ceded to machine control and human experts are liberated to work on the challenging high-level 
problems of understanding the underlying science. For example, AI/ML-driven autonomous control of 
scientific systems promises to deliver scientific systems that self-regulate to yield ultra-high performance 
and experimental platforms that can autonomously explore scientific problems, optimally selecting 
experimental sequences and synthesizing the accumulating datasets into human-readable physical 
insights. This could radically improve facility operation efficiencies and provide a means to discover and 
understand new scientific phenomena, ultimately accelerating delivery of new scientific discoveries and 
next-generation technologies for energy production, storage, utilization, and national security. 

Within the SUFs, a pertinent case is that of accelerators, which underlay the large photon, electron, and 
neutron science communities. For an accelerator to operate efficiently, thousands of component systems 
must work together within tight tolerances, providing nonlinear and highly coupled responses. 
Conventional control approaches, such as relying on static design models and manual tuning cannot hope 
to contend with the real-world complexity of these systems, especially as the SUFs move toward physics-
limited sources. Future online control systems will require AI/ML methods that leverage known device 
physics (via detailed modeling) and real-world operational knowledge (via data mining the system’s 
archive). Similarly, modern experimental tools—including synchrotron and neutron endstations, electron 
microscopes, scanning probe instruments, and advanced optical systems—are becoming more complex 
and require precisely controlled, interconnected hardware systems that must handle a high-volume of data 
generated at a high rate.  

AI/ML methods also hold promise in controlling user experiments through autonomous selection of 
measurement conditions. By leveraging fast, real-time data analytics, this approach will increase the 
quality of experimental datasets, reduce wasted instrument time, and accelerate experimental studies. 
Such improvements would have immediate impact across the entire SUF program. 

Research addressing modern materials, chemistry, and biosciences faces a similar problem, with frontier 
experiments probing vast and complex parameter spaces. The study of multicomponent, hierarchical, and 
nonequilibrium materials requires exploring the enormous spaces defined by material composition and 
processing history. Searches to identify target functional materials, or to uncover salient trends, are very 
difficult to achieve using traditional approaches. Instead, the field requires the ability to efficiently 
predict, explore, and navigate materials and processing parameters. This necessitates the development of 
autonomous experiment control to adaptively update data gathering. AI/ML autonomous experimentation 
will similarly help enable real-time material synthesis, allowing potential access to metastable and 
nonequilibrium materials that can only be realized via active control of the synthesis pathway. Steered 
synthesis will also allow study of additive manufacturing technologies that rely on active computation 
and controlled processing to yield desired materials and structures. 

Research Directions 
Autonomous control of experimental systems promises to open study of problems previously considered 
impossible to address. The research goal is to automate the entire experimental workflow, from 
instrument setup and tuning to sample selection and synthesis, measurement and data analysis, model-
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driven data interpretation, and follow-up experimental decision-making. As such, a coordinated set of 
advances is required across a range of systems.  

The PRO identified two broad areas of research that could add value to BES research programs:  

1. Automating facility control, enabling higher reliability, increased efficiency from self-regulation, and 
ability to reach physics-limited capabilities. Examples are given for both accelerators and beamlines. 

2. Automating the experimental process such as automated measurement and synthesis platforms 
coupled with AI/ML algorithms allow intelligent exploration of complex problems. Examples are 
given for both scientific discovery and synthesis of new materials. 

Automating facility control 
With each successive generation of the SUFs, the complexity of the operational and experimental 
challenges increases. A successful experiment at an SUF requires real-time control and tuning in a high-
dimensional space, where response is nonlinear and parameters are strongly coupled. For example, 
achieving high coherent flux in a focused spot in a modern synchrotron beamline currently relies on 
simple feedback loops that maintain beam intensity; ideally, they would directly guarantee stability of the 
coherent wavefront at the sample position. Advanced AI/ML-driven control that leverages physical 
simulation of beamline systems would enable previously impossible performance and stability. Existing 
AI/ML methods will need to be adapted to the specific challenges associated with distinct experimental 
tools. Simultaneously, an opportunity exists to define a common toolset of AI/ML methods useful across 
a variety of control problems.  

The SUFs face a looming challenge in the need to control and tune in a truly end-to-end manner. For 
example, a synchrotron beamline experiment can be viewed as a distinct set of systems that must be 
optimized individually, or it can be viewed as a large coupled problem, where accelerator performance, 
beamline optics, endstation measurement systems, and the experiment itself must all be co-optimized to 
maximize a target scientific objective. Similarly within an electron microscope, the source, optics, 
detector, and sample environment can be viewed as a coupled system that must be tuned for a particular 
objective, whether that is high-resolution imaging or in situ atomic-scale synthesis [28]. 

A critical example of the need for online control comes from SUF accelerators, which deliver photon, 
electron, and neutron beams to a large community of researchers. Modern accelerators are enormously 
complex, with thousands of components, each having dozens or even hundreds of control parameters that 
must be modulated in a concerted fashion. The impact of a parameter on the performance of any of these 
complex systems is often realized through complicated, nonlinear physical processes. For example, in a 
storage ring, nonlinear beam dynamics determine the ring’s injection efficiency and beam lifetime; in a 
self-amplified spontaneous emission XFEL, nonlinear beam dynamics determine the self-bunching of the 
electron beam. The control parameters may be coupled, and the optimal configuration may drift as the 
environment changes. The traditional control approach consists of setting parameters according to a static 
design model, and manually tuning subsystems. This approach has many limitations that ultimately stunt 
scientific productivity. Real-world performance typically falls short of simulated predictions, owing to 
environmental variables omitted from design models. Manual tuning can improve performance but is 
time-consuming and depends strongly on the training and experience of the operator. For complex 
machines such as the Linac Coherent Light Source (LCLS), preparation of the machine for some special 
operation modes can take hours of tuning—time that would be better spent conducting user science. Some 
exotic beam characteristics may not even be offered, owing to the underlying tuning challenge.  

After achieving the desired accelerator setup, it is equally important to maintain the conditions during user 
operation. At present, feedback loops are used to stabilize subsystems, typically assuming simple linear 
relationships; orbit feedback is one such example. However, in many cases, machine performance is 
affected by the environment through unknown connections, which require continual compensation by 
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adjusting control parameters [29–30]. Typical tuning methods may not be suitable for this purpose because 
they would exert large changes to the control parameters and perturb user experiments. In recent years, 
automated tuning has become increasingly popular on machines ranging from colliders to light sources [31–
41], with solutions addressing complications of noise, drift, and outliers. While examples of accelerator 
control using AI/ML methods already exist (e.g., Gaussian process optimization) [34, 38], effectively 
searching large, complex parameter spaces remains a substantial challenge. Smart control methods that can 
rapidly and smoothly tune a coupled set of nonlinear control parameters are needed. 

High reliability and availability are important for an SUF, which may serve thousands of users a year on a 
strict schedule. While each individual component in a facility is expected to operate reliably for a long 
time, it is not uncommon to have component failures in a large system. Because one failure can bring 
down the entire system, and the recovery time from a failure is typically much longer than replacing 
components during scheduled maintenance, it is critical to understand the health and failure of the 
accelerator components and subsystems. For example, knowledge of failure patterns enables quick 
identification of the root cause of failures, which helps expedite recovery. The ability to predict failures is 
even more important, as it can prevent failures through preemptive maintenance or reduce downtime by 
initiating protective procedure before failures occur. The failure prediction capability is especially 
important for superconducting systems as failure-induced quenches can cause substantial loss of operation 
time. 

AI/ML provides a unique opportunity to address challenges in the operation of large, complex SUFs. For 
example, while traditional tuning methods treat the target system as a black box, AI/ML-based methods 
can learn a model that approximates the physical behavior of the complex machine (see PRO 3). An 
online learning model can be continuously updated and refined using new machine measurements. The 
ability to make accurate predictions with a model opens up the possibility of dramatically increasing the 
efficiency of optimization algorithms for high-dimensional parameter space.  

AI/ML control methods can also be applied to compensate for environmental drift; minimizing 
perturbation to ongoing user experiments can naturally be included as part of the ML target–reward 
function. Such methods could enable previously impossible maximization of both performance and 
stability. Integrating the advanced tuning, control, and prognostics methods made possible by AI/ML into 
operations will make it feasible to operate an SUF largely through an intelligent, autonomous program, 
minimizing the need for human intervention while maximizing key metrics. Advances are required in 
tuning algorithms, parameter-space searching methods, fast modeling of components, and integration of 
these advanced methods into real-world hardware systems. Properly implemented, these methods will 
deliver novel beam capabilities and system reliability to the scientific user community, empowering a 
new generation of leading-edge BES research. 

Automating the experimental process 
In addition to instrument tuning, AI/ML methods could revolutionize experimental platforms by 
automating selection of measurement conditions, experimental conditions, sample measurement 
sequence, and overall experimental execution. Such automation—necessarily leveraging accelerated real-
time data analytics—would dramatically increase the quality of experimental datasets, reduce wasted 
instrument time, minimize sample damage from probes, and accelerate experimental studies. 

Modern experimental measurements are high-dimensional and multimodal; the traditional approach of 
exhaustively probing a sample will be impossible as complexity and resolution increase. For example, 
imaging of dynamic materials implies a 4D space, while multimodal acquisitions that combine rich 
spectra with scattering/diffraction patterns further broadens signal complexity. Autonomous control of 
experiments will allow the parameters of each measurement to be informed by previous measurements, 
focusing the SUFs’ resources to always capture the highest value data. For example, studying dynamic 
processes under operando conditions requires the identification, tracking, and quantification of the most 
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relevant volumes within the sample as a function of the applied stimuli. In addition to the choice of the 
most important volumes to sample, researchers can also choose the imaging modality to apply to this 
subvolume. This situation presents a vast measurement parameter space that is very difficult to navigate 
when seeking concrete connections between sparse local phenomena (e.g., dislocation motion and grain 
boundary stress concentration) and bulk irreversible processes. AI/ML agents that can make real-time 
decisions are needed to navigate these parameter spaces. The higher brightness afforded by new and 
upgraded light sources and the development of ultra-fast electron microscopy methods coupled with 
advances in detector technologies enables the study of interesting dynamic phenomena at time scales that 
were previously inaccessible. These advances in sources and detectors will result in the generation of 
orders of magnitude more data over exceedingly shorter time scales. As experiments progress beyond 
speeds at which humans can make real-time decisions, AI/ML-informed adaptive control becomes 
imperative.  

 

Monitoring the Heartbeat of an Accelerator 
A self-healing accelerator would achieve record-setting reliability. 

 

Modern accelerators rely on the operation and high-precision tuning of hundreds of thousands of 
parameters simultaneously. Traditional human-driven control of these complex, nonlinear, and coupled 
systems does not scale when one desires physics-limited performance and uninterrupted operation. Using 
AI/ML, one can build a “self-driving” accelerator that is able to monitor its own health through AI/ML analysis 
of its operation, predict failures, avoid downtime, and automatically retune in real time using physical 
models to maintain stable high performance. This would enable customizable shot-by-shot configurations for 
XFEL experiments, reductions in reconfiguration time between experiments from days to minutes, and orders 
of magnitude increases in source-to-detector beam stability. 

Left image courtesy of Christopher Smith, SLAC National Accelerator Laboratory | Middle image courtesy of 
Terry Anderson, SLAC National Accelerator Laboratory | Right image courtesy of Genevieve Martin/Oak 
Ridge National Laboratory, US Department of Energy. 

 

Similar opportunities exist in the autonomous guidance of materials synthesis. Modern materials are 
inherently complex, owing to the compositional complexity of formulations, blends, and composites; the 
structural complexity of hierarchical materials exhibiting order at multiple length scales; and the 
processing complexity of nonequilibrium materials exhibiting pathway-dependent ordering. While the 
search spaces are exponentially large, the subset of materials exhibiting desired characteristics is 
extremely small, thus defining an exceptionally challenging “needle in the haystack” search problem. In 
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contrast to stability control problems, where anomalous events are generally to be avoided, searches in 
material physics must emphasize variability to identify the interesting anomalies that represent radically 
new materials with record-setting material properties. Traditional correlative searches will generally fail 
to find important outliers, as they emphasize interpolation, perform poorly at extrapolation, and tend to 
average out potentially relevant variations. AI/ML methods hold promise to accelerate the searches of 
these spaces [42], because they can handle the scale of data as well as the search for subtle correlations. 
AI/ML methods can further accelerate discovery through physics-informed search, constraining the 
search space to physically reasonable regimes while also guiding scientific examination toward areas of 
predicted novelty or experimentally identified “surprise,” such as mismatches with established theories. 
Physics-informed search methods are poised to significantly enhance materials discovery [41–53], by 
providing scientists with the ability to rapidly explore materials problems, uncovering the underlying 
physics and identifying target materials. 

Moreover, the simultaneous or sequential use of multiple probes (e.g., optical, electron, x-ray, neutron, 
scanning probes) represents an opportunity to more deeply interrogate a material because the probes 
provide complementary information about material makeup. Autonomous experimentation would benefit 
enormously from control methods tailored to take full advantage of these rich datasets. For example, 
sample measurements in one modality should leverage any preexisting measurements in different 
modalities to identify optimal measurement strategies (e.g., concentrating points to leverage the new 
modality and resolve ambiguities associated with previous measurement methods). Moreover, the real-
time data reconstruction associated with autonomous data-taking must leverage all available multimodal 
signals. For example, in tomographic experiments, the reconstruction should yield the actual material 
composition, structure, and subvoxel ordering based on constraint satisfaction of all available signals, 
rather than reconstructing a parallel set of tomograms for the distinct imaging modes. Here, AI/ML 
approaches can offer excellent performance because their architecture lends itself natively to handling and 
reconciling multiple data channels. Artificial neural networks enable complex information processing by 
combining nonlinear response nodes through a dense set of interconnects; the connecting network weights 
are tuned to yield the desired input–output response and thus encode the desired complex computation. 
These networks can be physics-constrained through a variety of methods, including pretraining on 
physically constrained synthetic data, sophisticated constraints on the loss function, or tailoring the 
network architecture by enforcing physically meaningful output to certain intermediate layers. 

To realize the full potential of autonomous experimentation, new decision-making algorithms that allow 
integration of material physics must be developed. Existing work in Bayesian frameworks can be adapted 
to allow for arbitrary physics “priors” to constrain models. Such priors can guide experimentation by 
focusing results on a target or parts of the parameter space where models are uncertain. Moreover, such 
systems can be used for hypothesis testing where multiple competing models are available because they 
can localize measurements in regions that distinguish between model predictions. More sophisticated 
methods should also be sought by which surrogate models can be dynamically composed by smoothly 
transitioning among different physical models over different parts of the space. An outstanding challenge 
in the field is to combine input knowledge that spans the full gamut of experimental reality—from 
rigorous analytic theories, to parametric simulation studies, to coarse-grained models that may capture 
relevant trends but miss the absolute scale, to fuzzy heuristics and experimenter intuition. 

Figure 2 depicts an optimal autonomous experimental design. Autonomous experimentation will also 
benefit from AI/ML approaches that can handle sparse data and finite time-horizon predictions. A 
promising approach is reinforcement learning (RL), a type of ML capable of dealing with unlabeled and 
sparse data and learning from “experience” in dynamic environments with limited foresight [54–60]. RL 
is based on goal-oriented algorithms, where suitable actions are taken to maximize reward and to identify 
a policy the algorithm should apply in a specific situation. Unlike in supervised learning, in RL there is no 
single correct answer; instead, an agent decides how to best perform the given task, learning in a trial-
and-error manner. The learning agent formulates optimal policies while simultaneously maximizing its 
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reward with respect to the situation it currently faces. Current RL approaches have been largely developed 
for small-scale problems, with enormous success. They have been enormously successful in navigating 
tasks like playing games such as Go (AlphaGo) [55, 59]. Further research efforts could lead to RL 
approaches adaptable for SUFs’ needs, in particular handling large state spaces and continuous reward 
problems. 

 

 
Figure 2. Autonomous experimental workflow being developed for the Complex Materials Scattering 

beamline at the National Synchrotron Light Source II; similar motifs can be envisioned for a wide range of 
experimental tools. By incorporating input from theory and fast real-time modeling into the decision-

making algorithm (here, a method developed by the CAMERA [Center for Advanced Mathematics for 
Energy Research Applications] project [41]), material synthesis can be controlled and driven in real time. 
This enables access to previously impossible classes of materials, especially metastable states that appear 
during nonequilibrium ordering. | Image courtesy of K. G. Yager, Brookhaven National Laboratory 

Enabling Capabilities 
Online control of accelerators, measurement instruments, and experimental platforms requires 
corresponding advances in infrastructure and facilities. 

• Computing infrastructure: Real-time control coupled with material modeling requires fast and 
flexible access to databases of precomputed results, as well as the ability to trigger model 
computations. This requires the development of new computing infrastructure that can handle the 
intense and unsteady workload that will arise in response to dynamic experimental execution. Ideal 
solutions will need to combine edge computing, elastic access to centralized HPC resources, and 
cloud computing integration. Moreover, new access modes to DOE compute infrastructure for on-
demand HPC should be investigated. 

• Edge computing: Ultra-fast recomputation of large and complex models will require computing at 
the edge, exploiting specialized hardware (including graphics processing units [GPUs] and field-
programmable gate arrays [FPGAs]) where appropriate.  

• Data practices: Integration of experiment, theory, simulation, and AI/ML will require significant 
changes in the scientific community with respect to data practices. Community members will need to 



15 

share data more broadly while being mindful of credit and incentives and will need to establish 
standards for data curation, annotation, and aggregation. Mixing theory and experimental results will 
require planning with respect to consistent tagging, nomenclature, and data representation formats, 
such that results from different models can be compared and seamlessly integrated into experiment. 

• Workflow infrastructure: Infrastructure development will need to integrate existing materials and 
chemistry databases into autonomous workflows. Simple, flexible standards should be agreed upon 
such that new databases from collaborators and industry partners can be easily adapted to online 
control environments. Autonomous experimental control should leverage the multiple probes and 
imaging modalities available across the DOE complex (e.g., x-ray, neutron, electron, optical, and 
scanning probes). Development of multimodal science will require collaboration across user facilities, 
amplifying the needs discussed above with respect to data curation and sharing. 

Autonomous, smart control attempts to automate a complex control loop, requiring integration of 
improved data collection, data analysis, system modeling, and decision-making. Development in this area 
thus requires corresponding advances in the other PROs. 

• PRO 1:  Advanced analytic and collection strategies are required to intake and process data, 
delivering derived insights suitable for driving online control. 

• PRO 3:  Decision-making algorithms should be pretrained based on synthetic data obtained by 
running virtual experiments and continually updated based on advanced physical models. 

• PRO 4:  The training sets required for AI/ML algorithms must have a shared data infrastructure. 

The most crucial required advances are the AI/ML method developments that have been noted that will 
enable unprecedented computational efficiency and complexity (see section on Enabling Capabilities in 
Computer Sciences and Mathematics) 

• Search/optimization: Advances in data mining and search/optimization methods are required to 
handle the complex, high-dimensional spaces inherent to scientific problems. 

• Correlation analysis:  Advanced correlation detection would enable fault prediction for accelerators 
and self-calibration for experimental tools. Identifying correlations between datasets would also 
empower new sets of multimodal measurement schemes. 

• Uncertainty quantification: Online control algorithms that correctly incorporate experimental 
uncertainties and costs are required. The variety of use cases requires a range of strategies, including 
Bayesian methods, RL, and active learning. 

• Approximants: Fast approximants for both data analysis and system or material modeling are critical 
for the autonomous experimental loop to run in real time. 

• Physics from AI/ML: Equation-learning methods can contribute to theory building in physics and 
chemistry, as these methods enable the direct determination of physical equations from the data [61–
62]. From a theoretical perspective, purely numerical solutions, while valuable, limit further 
development that can be done with analytic solutions. While ML tends to produce numerical 
solutions, developments are ongoing in learning equations. Obtaining equations from the data 
provides a more easily, thoroughly interpretable result that is more easily converted into other forms 
and a compact formulation of the result. 
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Potential Impact 
Intelligent automation has the potential to revolutionize science, allowing scientists to tackle more 
challenging problems while also liberating them to think about science at a higher level. Conversely, it is 
becoming increasingly clear that the current approach does not fully leverage the capabilities of modern 
scientific tools. The rapid growth in brightness of synchrotrons [63] and similar trends for other high-end 
experimental tools (e.g., modern electron microscopes that can achieve enormous frame rates approaching 
100,000 images per second) may not be fully utilized owing to the currently limited analysis pipelines. 
Advanced automation of experimental workflows will allow scientists to take full advantage of the 
capabilities of modern tools, while also allowing them to investigate problems of a complexity previously 
considered too daunting. Figure 3 shows the expansion of synchrotron publications output and improved 
brightness over time. 

 
Figure 3. The brightness of synchrotron light sources has grown enormously over time (left), even outpacing 

the rapid scaling observed for microelectronics (Moore’s law). The publication output (right) from 
synchrotrons has also increased, but not as dramatically as source characteristics. This implies that 
existing light sources have untapped potential (i.e., more efficient use of existing resources could lead to 
dramatic improvements in scientific productivity). | Left image reprinted with permission from J. Stohr 
and H. C. Siegmann, Magnetism: From Fundamentals to Nanoscale Dynamics (Springer, 2006). | Right 
image courtesy Apurva Mehta, SLAC National Accelerator Laboratory 

 

New accelerator capabilities are generally associated with more difficult setup and operation. For 
example, a storage ring with ultra-high brightness often has an ultra-small stable operating space known 
as the dynamic aperture. Dynamic aperture is especially small during commissioning, when a host of 
errors have not yet been compensated. The performance of a future storage ring design may also be 
limited by the need to reserve a dynamic aperture overhead, which could be eliminated by advanced 
tuning methods. Similarly, fast implementation of challenging XFEL operation modes will enable new 
types of scientific experiments by delivering exotic beam configurations to users. The development of 
autonomous accelerator operation will revolutionize the design and operation of future accelerators as 
well as large SUFs in general: machine control will be largely automated; accelerator tuning will be 
carried out by efficient, consistent computer programs; the central control program will be fully aware of 
the status of accelerator components and subsystems and thus able to make tuning and maintenance 
decisions. The ability to ensure design performance through advanced tuning methods will have a 
substantial impact on accelerator design. AI/ML methods have the potential to achieve unprecedented 
capabilities and availability for future accelerators. 

Advanced autonomous experimentation holds promise for revolutionizing materials, chemistry, and 
bioscience discovery by providing means of identifying exotic and high-performance materials previously 
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hidden in a sea of complexity. It is difficult to overstate the potential impact and the breadth of 
experiments that will benefit. One can anticipate significant impact to problems currently hindered by 
material compositional complexity, including formulations and blends, biomaterials and biomimetic 
systems, and alloys. For example, certain classes of metallic glasses may hold promise for yielding ultra-
high strength-to-weight ratios [64]. The ideal “steel of the future” material that would yield 
transformative improvements in demanding applications (e.g., aerospace) is currently hidden in the 
enormous space of different alloys that can be envisioned and exacerbated by the enormity of the 
processing space one must consider to correctly form and quench glassy metastable states. More 
generally, the study of pathway-dependent phenomena would be revolutionized by autonomous 
exploration. Self-assembling materials exhibit a set of nonequilibrium states that can only be accessed 
using the correct processing history [65–66]. In narrow cases, researchers have been able to perform 
“pathway engineering” wherein a desired target that cannot be achieved with equilibrium processing 
methods is selected and enforced by using the correct sequence [67]. Online control of synthesis 
platforms would generalize upon these early successes, allowing researchers to navigate complex 
assembly landscapes and guide the full spectrum of complex self-assembling materials, including block 
copolymers [68–69], liquid crystals [70], supramolecular structures [71], nanoparticle superlattices [72–
75], and DNA [76–78] into vital structural motifs. The exploration of many classes of functional materials 
could be greatly accelerated by tight coupling with appropriate material modeling. For example, design of 
advanced thermoelectrics would benefit from experimental searches with coupling of 
structural/spectroscopic probes, operando functional measurements, and structure–property modeling. 
Similarly, studies of quantum heterostructures already benefit greatly from detailed physical simulations. 
Integration of these predictive theories into the measurement loop would optimize experimental searches 
for unique materials geared towards quantum information science applications. 

A broadened research program in autonomous experimentation would be expected to yield both near-term 
and long-term impacts. In the near term (3–5 years), dedicated research should yield a set of specialized 
tools including models, AI/ML methods, and hardware systems for autonomous exploration of samples. 
In the long term (10 years), it should be possible to deliver robust generalized autonomous synthesis 
platforms, which can tackle a wide range of materials, chemistry, and bioscience problems while 
simultaneously revealing new physics. Overall, the goal of autonomous experimentation is to liberate 
scientists from the task of micromanaging the execution of experiments, including optimizing 
experimental conditions, which will allow them to tackle scientific problems at a higher level. 

Many of the experimental tools developed within the DOE complex could benefit from advanced AI/ML 
control methods. Proposed AI/ML methods will improve performance and stability, benefitting all user 
experiments through enhanced uptime and reliability, while also increasing the sophistication of 
experiments that can be executed, benefitting the most ambitious and cutting-edge research programs. As 
these advanced experimental tools underlie a wide variety of modern scientific studies—from geosciences 
chemistry to biosciences to energy research—improvements would have broad benefits throughout the 
BES research program. 
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“Steel of the Future” 
Amazing new materials are waiting to be discovered. How can we find them? 

 
Conventional alloys are prepared by mixing together a small number of metals. Conceptually, such 
materials access only a tiny fraction of the total possible space of alloy materials. High-entropy alloys 
contain a higher number of elements than conventional alloys, enormously expanding the parameter space 
of possible compositions. Such materials hold promise for record-setting mechanical properties (e.g., 
strength-to-weight ratio), especially if frustrated and metastable states such as found in metallic glasses can 
be accessed. However, the enormity of these parameter spaces cannot be explored using conventional 
methods, or even naïve high-throughput searching, because high-performance materials represent an 
infinitesimal island in an enormous ocean of uninteresting materials. Autonomous experimental modes, 
leveraging input from accelerated physical modeling, can efficiently search such spaces, identifying 
interesting outliers and guiding further studies in meaningful directions. Properly implemented, such methods 
could yield the high-performance alloys of the future that would have important applications in 
transportation, aerospace, and energy harvesting. | Left image courtesy K. G. Yager, Brookhaven National 
Laboratory. | Right image distributed under a Creative Commons Attribution Noncommercial License 
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Decoding the Structure of Intrinsically Disordered Proteins 
The structural characterization 
of flexible biosystems poses a 
major challenge in biology 
because of intrinsic protein 
disorder. It is critical to gain 
structural information to 
understand protein function. 
To help decode the 
complexity of a disordered 
biomolecule, a combination 
of neutron scattering and 
high-performance molecular 
simulations can be used to 
generate the configurational 
ensemble (i.e., the collection 
of 3D structures the 
biomolecule adopts)[79]. 
However, this combination 
currently can require weeks to 
gather the appropriate 
information for a single 
biomolecule. AI/ML approaches could be used to learn how to optimally couple neutron scattering data 
with high-performance molecular simulations in real time. This would enable AI/ML-driven steering of 
simulations toward experimental neutron scattering results that in turn would significantly reduce the time to 
solution. Such a tremendous acceleration in the ability to decode structural characterization could have 
tremendous impact on the structural biology of flexible biosystems. Similar challenges are feasible in x-ray 
and electron microscopy; while current approaches reconstruct the average structure, new methods in 
AI/ML are starting to reveal conformational changes [80–81]. 

Top left image reprinted from https://www.energy.gov/ne/articles/7-fast-facts-about-high-flux-isotope-
reactor-oak-ridge-national-laboratory. Courtesy Oak Ridge National Laboratory. | Bottom left image 
reprinted from https://www.ornl.gov/news/supercomputing-neutrons-unite-unravel-structures-intrinsically-
disordered-protein. | Right image reprinted from Shrestha, U. R.; Juneja, P.; Zhang, Q.; Gurumoorthy, V.; 
Borreguero, J. M.; Urban, V.; Cheng, X.; Pingali, S. V.; Smith, J. C.; O’Neill, H. M.; and Petridis, L. “Generation of 
the Configurational Ensemble of an Intrinsically Disordered Protein from Unbiased Molecular Dynamics 
Simulation.” Proc. Natl. Acad. Sci. U.S.A. 116 (2016): 20446–20452. doi: 10.1073/pnas.1907251116. 
 

 
Small-angle neutron scattering and Hamiltonian replica exchange 
molecular dynamics simulation can synergistically generate the 
configurational ensemble of a flexible protein.  
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PRO 3. Enable Offline Design and Optimization of Facilities and 
Experiments 
Key question: How do we enable virtual laboratories—offline design and optimization of facility 
operation and experiments—to achieve new scientific goals? 

Introduction 
A key challenge within the SUFs lies in the design and optimization of facilities and experiments to 
achieve scientific goals. On the facility side, modern SUFs house expensive and complex accelerators, 
which are challenging to design, build, and operate. Experiments are time-consuming and require 
carefully planned sequences of steps, including formulating the scientific hypothesis, performing the 
experiment(s), modeling the results, and theory–experiment matching with data analytics to draw 
conclusions. A key challenge is to optimize experimental planning at both the individual and facility 
levels to reduce time to discovery of scientific knowledge, minimize redundancy, and maximize physics 
knowledge from each experiment. 

Due to the complexity and high cost of experiments conducted at the SUFs, and the difficulty in 
simulating all parts of the experiment and facility, lengthy iterations of trial and error to achieve optimal 
experiments are rarely feasible. This can substantially reduce the scope of possible experiments. 
Moreover, complete knowledge of the probing signal (e.g., at a beamline) can potentially be brought to 
bear on postexperiment data analysis, but this is rarely done due to unavailability or invasiveness of 
measurements and incompatibility with experiments. For example, the wavefront of the x-ray pulses from 
an XFEL can be useful information for users, but its measurement precludes delivery to the sample on the 
same pulse. Thus, some combination of simulations and virtual diagnostics is necessary. 

Examples of planning and optimization challenges at modern SUFs include determining optimal synthesis 
conditions for a new material; selecting the correct set of multimodal experiments to solve a structural 
inverse problem; optimizing the parameters of specific tools to achieve computational and experimental 
end goals; and generating precise, continuously calibrated models of accelerators for data analysis and 
interpretation. Recently, the use of AI/ML approaches has shown promise in situations involving path 
planning and optimization under uncertainty [82]. At the same time, experimental design and 
optimization is best performed in a simulated environment to allow for exploration of the parameter space 
in silico, as only a small number of experiments can ever be conducted in real laboratories and 
experimental time is costly. 

Key to achieving this objective is the need for a digital twin of each SUF that enables users to design, 
operate, and optimize experiments in a safe, virtual environment guided by AI/ML so they can seamlessly 
transition to the real facility, reducing the time to scientific discovery [83]. Such virtual laboratory 
environments (figure 4) will need to be closely coupled with the experimental facilities to continuously 
update their simulations to reflect objective reality (e.g., to run virtual experiments off-line that reflect 
what would happen at the SUFs). Furthermore, these virtual environments require high fidelity as well as 
a mix of accurate and fast simulations optimized for efficient reproduction of the essential physics of the 
laboratory measurement or synthesis process.  
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Figure 4. Virtual laboratories can enable optimization of experimental plans, accelerate training, provide 
starting points, and enable automated generation of analysis codes and workflows for end-to-end scientific 
experiments, from hypothesis to execution to analysis. | Image courtesy Rama Vasudevan, Oak Ridge National 

Laboratory 

 

Research Directions 
The primary research objective is to create physically accurate, virtual laboratory environments of 
experimental facilities that guide conception to synthesis and/or characterization in silico, closely coupled 
to the actual facilities and continuously updated based on real experiments to ensure faithful reproduction. 
This will enable automated and/or AI/ML-assisted design of optimal experimental strategies and analysis 
workflows for physics knowledge acquisition.  

These virtual laboratory environments should include: 

• Rapid simulations 
— Rapid on-the-fly methods (including surrogate modeling) within the virtual environment for 

simulating results 
— Acceleration of simulations via both hardware methods (e.g., FPGA, GPUs) as well as more 

efficient numerical approximators, such as DNNs 
• Accurate simulations and theory–experiment matching 

— First-principles modeling (e.g., of predictions from heterostructures) 

— Calibration of physics models to observations in a continuous fashion, and appropriate 
theory–experiment matching routines 

• User interfaces 
— Immersive, interactive 360° environments delivered to train and enable users to design and 

conduct virtual experiments, analyze data, and modify scientific hypotheses 
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Once built, these digital twins would then enable: 

• Experimental planning and design 
— AI/ML-enabled context-specific experimental design, along with ML-generated analysis 

workflows 

— AI/ML-guided planning using, for example, reinforcement learning [84] or genetic 
algorithms to discover the optimal sequence of measurements to answer a scientific question 

— Virtual diagnostics that provide real-time input to both accelerator operation and user 
experiment data analysis 

• Facility optimization 
— Expedited accelerator design and precise accelerator control 

— Statistics on the common use patterns of instruments and potential opportunities for 
optimization (e.g., co-location of different 
instruments and staffing) 

More generally, the digital twins are expected to expand the 
scope of possibility for experiments, given that advanced 
planning can enable tackling of more ambitious projects.  

One example of the envisioned utility of digital twins and the 
challenges involved arises from modern accelerators. Creating a 
high-fidelity digital twin implies an accurate model that can 
predict the accelerator performance and the particle beam 
characteristics. Such an accelerator model is critical to the 
design, analysis, and interpretation of user experiments, as well 
as the continuous improvement of the machine, as the model can 
be used in accelerator tuning and control and upgrade studies.  

An accelerator is always built with a design model, which is 
based on simulation of the physics processes involved. The design model is the basis for machine 
operation, for example, setting the working point of accelerator components. However, the actual 
machine often deviates significantly from the design model. Owing to the differences between the model 
and the machine, the accelerator typically does not reach the desired performance without extensive 
efforts to adjust experimentally the control parameters.  

Calibration of a physics model with measurements can bridge the gap between the model and the 
machine. It would enable the discovery and compensation of errors in the machine and precise prediction 
of the machine performance. Presently, model calibration is typically based on minimizing model 
predictions and measurements with least-square fitting. It is applicable only to some limited subsystems 
with strong measurable signals, such as storage ring and linac linear optics [85–88] and may suffer from 
significant under- or over-fitting [89]. New AI/ML methods, such as Bayesian inference techniques [90], 
can enable precise and comprehensive model calibration, with coverage wider and deeper than traditional 
techniques. Examples include the calibration of storage ring nonlinear beam dynamics or start-to-end 
models of XFELs. AI/ML may also be deployed to model accelerator subcomponents, especially with 
regard to predicting anomalies or imminent failure. Predictive models will enable preemptive 
maintenance so facilities avoid unscheduled downtime. Such models will also enable rapid identification 
of the root causes of faults, expediting recovery and minimizing recurrence of the fault. Rapid tuning and 
fault prediction both require fast execution of modeling and control algorithms, which can be AI/ML-
accelerated.  

Virtual laboratories could 
additionally assist with 
user onboarding and 
training procedures, 

making facility 
operations more 

efficient, and aid in 
planning and design of 

existing and new 
facilities. 
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It should be noted that complete physics modeling of a complex system may involve intensive computer 
simulation. The complexity of the accelerator and experimental systems, and the level of accuracy 
required for simulations, demand costly computing resources. This limitation precludes digital twin 
applications that require frequent and fast model evaluations. For example, experiments on the LCLS-II 
could benefit from knowledge of photon beam characteristics, which could be predicted with the model, 
but only through hours of computer simulation; thus, this knowledge would not be available in real time. 
AI/ML can enable modeling that is millions of times faster than physics-based modeling by employing 
flexible neural networks or other models that are trained from simulation or experimental data to serve as 
substitutes for the first-principles simulations [91]. The surrogate models can be constantly updated and 
refined, enabling high-fidelity predictions of machine performance with extremely rapid predictions.  

Another example of the envisioned utility of digital twins is to reduce the time to synthesis of materials 
and chemicals with desired properties. Assuming that a target structure is predicted from a first-principles 
model, a series of syntheses could be carried out within a virtual environment, with a small subset of real 
experiments serving to ground and tune the synthesis models. Subsequently, optimal characterization 
schemes could also be found within the digital twin to determine whether the structure of interest was 
generated; ideally, the analysis routines could be self-generated within the digital twin to further reduce 
the time spent. The latter is a particularly important aspect of facility operations in addition to 
experimental design that enables both to be optimized in the same step.  

For first-principles models, fast approximants for materials’ interaction potentials used in a wide variety 
of simulation codebases would enable a considerable expansion in simulation size, as well as improved 
coupling to real-time experimental platforms (PRO 2). One of the major challenges in performing 
molecular simulations is sampling the complex phase space, which puts many phenomena outside the 
capability not only of today’s computers but also those planned in the near future. Recent advances have 
been made in sampling with ML [92]. For example, Boltzmann generators are an ML algorithm that 
determines the invertible transformation between the Boltzmann distribution and a Gaussian distribution. 
Conceptually, this work shows a path to addressing a major bottleneck in using molecular simulations to 
determine material behavior from the molecular constituents. Such developments need to be part of the 
capability development for the SUF user community as it appears to be a paradigm shift. Additionally, 
developments for other aspects of molecular simulation are still needed. For example, nonequilibrium 
dynamics are not currently handled by Boltzmann generators. 

To satisfy the diversity of SUFs problems, a wide variety of modeling approaches should be evaluated 
and implemented to achieve a digital twin. AI/ML models would ideally identify important physical 
parameters, such that these could be modified without retraining the entire network. This would allow a 
co-design approach, where the physics model parameters are identified and refined alongside data 
collection. Even more exciting would be the development of AI/ML models that are predictive for a wide 
range of analogous but distinct physical problems. Convolutional neural networks (CNNs) combine the 
computational richness of networks with nodes that perform local convolution operations on datasets. The 
hierarchy of convolution operations inherently aggregates features and can thus be used to model 
hierarchical physical phenomena. For example, the assembly of colloids, nanoparticles, proteins, block 
co-polymers, and liquid crystals could all be captured by a generalized CNN model that is trained on the 
underlying physics of interacting anisotropic building blocks, with each specific system being represented 
only by slightly different network weights. Rigorously mapping known physics parameters to the CNN 
weights would be of added value, thereby yielding an interpretable ML model where the meaning of 
retrained weights can be inferred. More generally, what is sought by scientific researchers are AI/ML 
models that return meaningful physical insights; in this sense, studies in interpretable AI/ML applied to 
specific scientific problems would be fruitful. 
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Enabling Capabilities 
To achieve the level of accuracy and speed in facility modeling required by the digital twin paradigm, 
development of new capabilities is needed, including: 

• Adoption of a unified data management system that provides coverage from facility status 
monitoring to diagnostics readbacks. This system will achieve facility operation data in a 
consistent, accessible manner to facilitate the application of ML methods for the creation of a 
digital twin. The data record across the facility needs to be synchronized. 

• Development of AI/ML methods that can train facility-scale large models on heterogeneous input 
data of different sources and format and are able to impose physics-principle constraints to the 
AI/ML models. 

• Development of facility control systems that can accommodate AI/ML data flow requirements 
(e.g., allowing local GPU integration or low-latency remote GPU access).  

• Development of AI/ML methods to reliably evaluate the uncertainty of the AI/ML models on a 
large scale and with diverse input/output data types to ensure the digital twin’s validity.  

AI/ML advances 
AI/ML advances needed to realize the virtual lab environments include: 

• Rapid inverse structure predictions from imaging or spectral data, with uncertainty quantification. 

• AI/ML-assisted speedups for dynamical simulations optimized for specific hardware. 

• RL and Bayesian learning algorithms for efficient exploration of large multidimensional 
parameter spaces under uncertainty. 

• Feature learning under realistic experimental constraints for theory–experiment matching. 

Potential Impact 
The use of digital twins of SUFs can open new paradigms for experimental science. The potential impacts 
include: 

• Order of magnitude decrease in time from theory to practical realization of a new materials 
phenomenon (e.g., of new electric topological order to a synthesis “recipe” for creating the 
material itself). 

• Optimal experimental design for specific mechanistic questions such as mechanism of long 
carrier lifetimes in semiconductors for photovoltaics or high electromechanical response in 
ferroelectric relaxors.  

• Expedited accelerator design cycles and thorough search of parameter space, which will 
maximize facility performance. 

• Noninvasive virtual diagnostics that provide real-time information to facilitate automation of user 
experiments and accelerator operation. 

• Enabling of new experiments that were previously infeasible due to perceived risk from a lack of 
analysis routines or complexity of the steps. 

• Environments to train autonomous AI/ML-driven agents for scientific exploration.  
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PRO 4. Use Shared Scientific Data for Machine Learning–driven 
Discovery 
Key question: How can we catalyze scientific discovery by leveraging the wealth of diverse and 
complementary data recorded across the BES scientific user facilities? 

Introduction 
Although scientific knowledge and operational insights are shared across the existing SUFs, most data 
analytics, infrastructure, and workflows are siloed. Operation in isolation and a lack of tools to search and 
analyze datasets leads to repeated work, unnecessary experiments, and missed opportunities to leverage 
the vast amount of data collected at facilities. Radical improvement in data sharing, analysis, and curation 
can catalyze scientific discovery across facilities, resulting in transformative tools for multimodal, 
multiuser science and creating a test bed to develop the next generation of AI/ML tools for the BES and 
SUFs communities [93].  

This section describes an opportunity to build a common facilities data repository to house the collective 
output of the BES SUFs. To facilitate data sharing, the repository would need to include infrastructure to 
support the full data lifecycle: AI/ML tools to aid automated recording and structuring of metadata; 
annotated, curated, high-quality datasets to guide future use; tools to format, search, and analyze both data 
and metadata; and finally, benchmark datasets to help train new AI/ML models and advance research 
across the SUFs. 

Development of a searchable, common repository of scientific data will accelerate experimental design 
and enable hypothesis creation and observation comparisons. Integrating diverse scientific data resources 
would enable automatic development of benchmark datasets built from heterogeneous experimental and 
simulated data; these training sets could both speed up development of AI/ML methods described 
throughout this report and contribute to development of scientific AI/ML capabilities across the DOE 
complex. A byproduct of the repository would be scientific domain-specific schemas and abstractions. 
This would expand search from simple metadata exploration to investigation driven by scientific motifs 
such as crack formation in composite materials or phase transition in simulations that can catalyze 
coordinated efforts toward defining standards, formats, and priorities across SUFs. 

Research Directions  
By 2025, the BES SUFs could generate thousands of petabytes of data per year. While individual user 
groups may extract science from their own data, at present the scientific community is missing the 
opportunity to leverage the totality of acquired data to improve the SUFs and accelerate discovery. This 
PRO provides the vision for a shared data repository that spans facilities and scientific domains. The 
repository would include infrastructure throughout the data lifecycle, with critical capabilities during 
acquisition of data and metadata; curation of high-value datasets; search; and multimodal, 
multiexperiment analysis. AI/ML could be harnessed to improve this process, with autonomous data 
curation working to capture provenance, context, and data quality and tools to enable large-scale, 
multimodal search and analysis. The ultimate goal is to coordinate continual creation, curation, and 
application of large quantities of data and knowledge as well as associated models, workflows, 
computations, and experiments. Finally, byproducts are discussed, including creation of benchmark 
datasets and coordinated efforts centered on emergent scientific motifs. Many topics in PRO 4 are 
discussed in greater detail in the ASCR Data and Models for AI Workshop report [22], the Workshop 
Report on Basic Research Needs for Scientific Machine Learning: Core Technologies for Artificial 
Intelligence [94], and the international call for FAIR (findability, accessibility, interoperability, and 
reusability) datasets [95].  
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A shared data repository 
enabled by AI/ML will 

leverage the yearly work 
of 16,000 users at 

scientific user facilities to 
accelerate discoveries. 
An easy-to-use search 

for all the data collected 
at the facilities will 

unearth new research 
targets, ideas, and 

previously undiscovered 
correlations. 

This PRO identifies four research themes associated with a shared data infrastructure: 

1. Automated capture of data and metadata to ensure all SUFs data are stored with high-quality 
metadata from every experiment and calculation. 

2. Data search functions that can locate relevant, high-value datasets. 

3. Meta-analysis for simultaneous analysis of diverse, multimodal datasets. 

4. Benchmark datasets created from the shared data that can train new AI/ML models and support 
general research and development (R&D) in scientific AI/ML. 

In brief, the research directions examine how data should be stored, how the data should be accessed once 
stored, how relevant datasets should be analyzed, and one particular application of using the data to 
develop new AI/ML models and methods. This report did not consider potentially significant issues on 
data privacy, embargo, and culture of sharing across research groups. 

• Automated capture of data and metadata: Regardless of how data are generated, automating 
manual data capture and curation is key to increasing both the quantity and quality of data 
collected and their usability. A major hurdle to sharing datasets is the acquisition and structuring 
of metadata to describe experimental conditions, samples, acquisition parameters, anomalies, and 
data quality. Current facility users may lack the time, tools, and/or incentive to collect and 
structure metadata themselves; therefore, lowering the barrier to generating complete data 
provenance will be critical to the repository's success. A major research direction will involve 
automating the collection and structuring of both data and metadata as part of typical SUF 
operation and experiment. AI/ML should be harnessed to improve this process, with autonomous 
data curation working to capture provenance and context information and to encode associated 
uncertainty ranges. AI/ML methods (e.g., natural language processing to read logbooks) are 
expected to play a role in this challenging task.  

• Data search functions: A shared repository assumes users 
are able to collect high-value data relevant to their study 
(i.e., access to a robust, sophisticated search function). To 
locate a relevant experiment or data collection, the search 
function should provide access to keywords from specific 
scientific domains. The need for keywords also presumes 
that datasets are well labeled and that facilities should enable 
automated data tagging of relevant descriptive keywords. 

A key aspect of a search is the ability to identify data quality 
to guide future selection and use. For example, metadata 
should highlight anomalous behavior to warn scientists of 
problematic content, or it could be used to identify datasets 
of particularly high quality (e.g., stable experimental setups, 
high signal-to-noise ratio). This general area of data curation 
will also require automation to be applied to large-scale SUF 
datasets. 

• Meta-analysis: The repository should enable new scientific 
approaches for meta-analysis across a large and diverse set of experimental data. The 
heterogeneity of datasets collected by different experimental groups at multiple facilities using a 
range of methods presents a host of new challenges. Datasets will come in different formats, use 
different samples, and suffer from different experimental anomalies. Moreover, meta-analysis 
methods will have to be efficient and scalable to allow application to real-time control tasks (see 



27 

PRO 2). AI/ML methods are expected to play a critical role incorporating metadata into the 
combined analysis.  

• Benchmark datasets: Though the datasets in the repository are expected to serve specific 
domain science goals, automated development of large structured, labeled datasets presents an 
opportunity for the scientific AI/ML community as well. Just as benchmark datasets such as 
MNIST and ImageNet [96, 97] played a critical role in the development of AI/ML methods in 
industry, benchmark scientific datasets can open new avenues for AI/ML in science. Given the 
differences in scale, problems, data types, and questions asked in science versus industry, it is 
expected that scientific datasets will be necessary for AI/ML to reach its potential. Development 
of benchmark datasets will require significant effort in curation; datasets should be cleaned of 
anomalies and missing data; and accuracy of labels will determine accuracy of the final model. 
Some datasets will require uncertainties on both the data and labels. Datasets should also be 
divided into train, test, and validation sets; division can be a surprisingly challenging task in 
complex scientific datasets where data leakage may introduce correlations between different 
samples. Finally, there should be a diversity of datasets to target the wide range of tasks 
encountered at the SUFs. 

Enabling Capabilities 
A shared data repository will require development of a range of enabling tools. Some of these will be 
directly related to AI/ML capabilities, and some will support knowledge representation, data curation, 
data integration, and mechanisms to access the data for a variety of purposes. 

• Workflows: Analysis requires integrated tools to sort, rank, compare, and guide scientific discovery 
at different levels of fidelity determined by different computational capabilities. Whether running 
models at ASCR facilities, leveraging edge computing resources, or using resources at an SUF, users 
require data, models, and workflows that are matched with available computational capabilities and 
different expectations of accuracy. For example, depending on the needs and resources, tested models 
may be needed for shallow neural network feature extraction for low-dimensional descriptors or DNN 
feature extraction for high-dimensional, high-fidelity description.  

• Standardized file formats: One of the main challenges in any repository is the need to standardize 
file formats to enable search and analysis to take place. In particular, data models need to be capable 
of representing most commonly observed data regardless of its size; dimensionality; or lack of N-
dimensional form, modality, precision, or even instrument of origin [98]. Most SUFs produce open 
data file formats, although some instrument vendors still output formats that are difficult to integrate 
into modern ML workflows. As a result, repositories will need to accommodate a subset of common 
file formats that can easily be addressed via appropriate translators that can ingest data from many 
formats and convert them into the repository’s allowable formats. 

• Catalogs: Search functions will require catalogs of linked data, metadata, analysis workflows, and 
results (e.g., scientific motifs that can be searched, studied, and discovered across facilities). The 
challenge with this task is to enable open and interoperable access patterns for facilities, given that 
they may be producing data from different instrument types, stored in different formats, some 
proprietary, and described using a variety of metadata without a common ontology. Adding to this 
challenge is the fact that some of that data may be incompletely described or of poor quality. A 
system to assess data quality should also be considered to address those points. 

• Assembly tools: Creating benchmark datasets will require tools to assemble training sets from 
heterogeneous experimental and simulated data. Having a common repository of tagged data will be 
useful for creating training sets for AI/ML models. Combining multifacility and/or multimodal data to 
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form a cohesive collection that can be processed by AI/ML algorithms is a challenge that will require 
new tools, such as registration methods.  

• Integration with existing databases: Many important repositories already exist from the perspective 
of SUFs. For example, theory databases with force-field or DFT calculations, experimental libraries 
of materials synthesis, and crystal structures [99]. Providing appropriate links to external libraries 
where possible (e.g., to link a particular electron microscopy image to a crystal structure) will expand 
the possibilities of ML by providing access to a richer feature space over which to mine, categorize, 
and correlate data. 

• Recommendation tools: Deployment of recommendation tools should be tied to catalogs that 
leverage metadata entered by the user in a previous interaction with the system, characterizing an 
intelligent interface that can auto-complete metadata upon request and by which the auto-complete 
function learns with each user individually, creating models that are customized for each user. By 
having such services, users may be incentivized to curate and share more of their experimental data. 

• Labeling benchmark datasets: The benchmark datasets need to consist of simulated and 
experimentally measured sets that are fully tagged and cross-verified by domain experts. The datasets 
will need to be accompanied by a set of basic AI/ML models and results to provide a baseline for new 
developments and competition. In addition, the sets will bolster new instrumentation with a baseline 
for compute, accuracy, and time requirements to provide scientists with AI/ML-driven results.  

Potential Impact 
A shared scientific data infrastructure 
is the cornerstone in development of 
AI/ML capabilities in the coming 
decades (figure 5). PROs 1 and 2 
described how AI/ML can help push  
scientific discoveries at the BES SUFs, 
and PRO 3 described how those 
capabilities can be brought to the user 
community and facility operators. All 
these advances need a shared scientific 
data infrastructure that provides the 
tools to access experimental data and 
algorithms from different instrument 
types and from all the SUFs. Having a 
shared data infrastructure linking all 
the SUFs will significantly impact 
science output in several ways: shared 
knowledge and models that accelerate 
analysis and understanding, shared 
data for validation and forensics, 
benchmark training data for AI/ML 
models that address analysis, control, 
digital twins, and validation/anomaly detection. 

Knowledge/model sharing 
A major impact of creating a linked and easily searchable data system across SUFs is the possibilities it 
opens up for sharing knowledge. Using a scientific query language, users will be able to search through 
vast amounts of tagged data produced by the16,000 yearly users across BES’s SUFs. With such a tool at 

 
Figure 5. AI-supported experiment lifecycle. | Image courtesy  

Daniela Ushizima, Lawrence Berkeley National Laboratory 
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their disposal, users will be able to assemble relevant data about their system of interest, opening the door 
to questions that are beyond the scope of a single experiment. For example, while user experiments 
typically probe one sample or a small number of samples, metastudies could enable the probing of 
material families to look for overarching patterns. The combination of data across multiple and varied 
sources could then enable better, more targeted experiments because a more holistic picture of the sample 
is created, for example using data from synchrotrons or neutrons to guide active learning via scanning 
probe microscopy and spectroscopy.  

In addition to being used for specific domain questions, integrated datasets can be used as training sets to 
develop the AI/ML methods described in the other report PROs. Information extraction (PRO 1) 
presumes analysis methods have been validated on known systems, and any technique must be 
understood prior to application to a new domain science question. Pretraining is particularly important for 
online control (PRO 2) when there may not be time to train new algorithms on the current task. Likewise, 
the digital twins (PRO 3) presume access to both simulation and experimental datasets. The shared data 
can be seen as an enabling capability for each of the other PROs described in this report. 

Knowledge sharing doesn’t have to stop at instrument data. Trained models and analysis workflows can 
also be stored, described, automatically tagged, and made available for others to leverage. That 
knowledge sharing will greatly speed up the time from idea to publication across all fields of science the 
DOE supports.  

Data validation and forensics  
Having access to a wealth of existing data will greatly impact data quality. Assessing data quality during 
acquisition will ensure that the use of BES facilities is optimal. The scientific community should, 
however, be aware of the ways acquired data can diverge from expectations. An anomaly can identify 
new science, or it can point to an instrumental problem. Key to ensuring reproducibility when performing 
experiments is the ability to validate new measurements against previous ones. A common data 
infrastructure will allow scientists to tap into existing data for this purpose. A well-curated and labeled 
data repository will allow users to quickly retrieve the right data for the right task and explore the cause of 
anomalous measurements. Tracking data provenance, for example, can help identify the experimental 
differences that led to incompatible data. Whether sample misalignment or unrecognized differences in 
sample preparation caused the incompatibilities, being able to fully understand the nature of observed 
features will improve the quality of research produced at SUFs. 

Benchmark datasets for AI/ML R&D 
A shared data infrastructure will also have an impact on DOE science beyond the SUFs. Benchmark 
datasets have played a key role in the recent AI/ML revolution, providing both data for training and a 
framework for rigorous comparison of methods. Given the scale, problems, data types, need for 
uncertainty/robustness, and differences in questions asked in science versus industry [94], it is expected 
that datasets specifically designed for scientific questions will be necessary for AI/ML to reach its 
potential in the sciences [22]. For example, while common applications of AI/ML in industry (e.g., the 
digit recognition task of MNIST) assume new examples will be drawn from an identical distribution to 
the training set, scientific problems often involve looking for novel phenomena, explicitly or implicitly 
outside the training set. The SUF tasks discussed throughout this report will require special attention to 
robustness, uncertainty, and interpretability, reaching beyond the current state of art in industrial AI/ML. 
The creation of benchmark datasets specifically designed for scientific AI/ML would not only spur 
development of new AI/ML methods but could have a significant impact on the safe, reliable application 
of AI/ML to the SUFs. 

Overall, an integrated AI/ML mechanism would enable searching for scientific motifs across all the 
SUFs’ collected data and augment the analysis and decision-making with the wealth and knowledge 
distilled by the shared data platform. This would allow users not only to accelerate their analysis and data 
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exploration, but to also leverage the combined knowledge of SUFs to build more accurate and 
comprehensive understanding of their science. Analysis workflows would not have to be remade given 
shared knowledge and analytics, as the integrated facility would allow searching for similar, past analysis 
and provide the necessary codes and references to analyze and interpret the experimental data.  

 

Example Applications 
By capturing data and provenance 
throughout the data lifecycle of an 
experiment or simulation, researchers will 
be able to use AI/ML to incorporate a 
broad spectrum of insight into their 
systems to make decisions about how 
best to approach a scientific question 
and optimize the process. Such decisions 
could be related to the measurement 
process during the experiment itself, for 
example, determining regions of interest 
in moment transfer space or determining 
a better force field where a simulation 
matches better with experiments. 
Similarly, this information can be used by 
AI/ML models to help determine 
modifications to the sample-making 
process or to develop better models. By 
leveraging previous scientific knowledge, 
such models would inform scientists 
about modifications to those processes 
that would home in on the materials 
characteristics of interest. With such 
capability in place, one can easily 
imagine having an integrated system 
where synthesis, sample-making, and 
simulations can be brought closer to the 
experiment so that scientists can make 
significantly greater progress during their 
visit to a facility. In addition to merely 
helping drive the experiment, such a data infrastructure would be the core building block to accelerate 
and drive science during experiments. 

 
Different sources (shown as blue circles) of data and 
metadata write and store data at different storage places 
(different color squares) using different access patterns and 
formats. To apply AI/ML, search and correlate data from 
different sources it will require building a common access 
platform (light blue cylinder in the center) that 
communicates with the individual storage locations using a 
“Common” access pattern. | Image courtesy Alex Hexemer, 
Lawrence Berkeley National Laboratory 
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Opportunities and Challenges in Computer Science and 
Mathematics 
The four PROs discussed in this report lay out a vision for AI/ML to transform SUF operations, creating 
new facility capabilities, maximizing performance, and opening new avenues of research for the scientific 
user community. However, in addition to investment in the SUFs’ traditional research areas, bringing the 
PROs to fruition will require substantial advances in both fundamental and applied computational 
sciences. This section describes the computational capabilities needed to enable the PROs to reach their 
full potential. 

At the heart of many of the SUFs’ challenges is the explosion in data from the latest generation of 
facilities and detectors. Advances in data acquisition have led 90 percent of the total volume of data being 
created in just the past few years [100], with current estimates of a daily output of 2.5 quintillion bytes of 
data [101]. While the ability to record data has increased exponentially, reliance on manual/visual 
inspection continues to be a roadblock in many data analytics: it delays science discovery across DOE 
SUFs, and often precludes the full utilization of data acquired at high cost with sophisticated instruments. 
Manual inspection is especially problematic at the SUFs, where real-time analysis is a critical component 
of machine control, fault prediction and recovery, and autonomous guidance of in-the-loop experiments.  

A key outcome from the BES roundtable was the identification of computational capabilities necessary to 
support each of the PROs. First, tools should be available to convert big datasets from the SUFs into 
usable and accessible forms (PROs 1 and 4). Moreover, this extraction of information should be fast 
enough to aid real-time, autonomous facility operation (PRO 2), which will itself make extensive use of 
AI/ML methods. Both information extraction and autonomous control will require AI/ML-enabled fast, 
accurate models trained on both simulations and data (PRO 3). Finally, the AI/ML tools in each 
application should be sufficiently robust and interpretable to be deployed online at a major research 
facility.  

While many of the AI/ML needs can leverage existing solutions developed by industry, the challenges 
faced by the DOE are sufficiently distinct to necessitate new research in AI/ML techniques. Examples 
include extremely high throughput (TB/s) and low latency (microseconds), extremely large (PB) or small 
(single example) datasets, and rigorous statistical analysis of uncertainties and interpretability. For more 
details on applying AI/ML to scientific discovery, see the Priority Research Directions discussed in the 
Workshop Report on Basic Research Needs for Scientific Machine Learning: Core Technologies for 
Artificial Intelligence [94].  

Tackling these challenges will require multidisciplinary teams [93] involving both domain scientists and 
applied mathematicians, computer scientists, data scientists, and skilled software engineers to ensure that 
constructed algorithms and tools are widely applicable. In this respect, there may be opportunities for 
synergy with other DOE SC programs, especially within ASCR. One example of a coordinated effort 
between BES and ASCR deploying a multidisciplinary team is the CAMERA project. The effort has 
impacted the facilities in areas such as x-ray scattering reconstruction, image analysis, computer vision, 
and autonomous self-steering experiments. Other examples have found success in accelerator physics and 
computational chemistry such as the SciDAC (Scientific Discovery through Advanced Computing) 
program. 

These efforts show that coordinated ASCR/BES efforts can have a transformative impact on the SUFs. 
Indeed, new AI/ML techniques will need to be customized and advanced to support BES emerging 
missions and enable a full utilization of next-generation facilities. For example, dependency on 
algorithms and software might need to come with some guarantees: 
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• Transparency: physics-informed strategies, software documentation, and organized data repositories 
for benchmarking, including persistent and unique identifiers, will be vital to understanding AI/ML 
tools. 

• Reproducibility:  AI/ML algorithms will require measures of reliability, uncertainty quantification, 
trustworthiness, and data ethics. 

• Instrument experience improvement: Automation must be accompanied by user-friendly systems 
for better human–machine interface and accessibility. 

• Maintenance services: Human-based teams for transition and support to new modes of operation. 

• Extensibility and modularity for software integration: Automation must allow for inclusion of 
new modules, mechanisms for interoperability, and compatibility. 

• Faster and I/O-aware: Multiscale data representations for fast access, given diverse SUF 
computational infrastructure, and for different scientific questions. 

• Portability to diverse computational platforms: From edge to leadership-class computers, 
including the ability to handle terabytes on millisecond scales across computing facilities. 

The cross-cutting issues identified by the PROs are discussed below: AI/ML algorithms, data 
management and infrastructure, HPC, and data networks, although these themes themselves are highly 
interrelated.  

AI/ML cross-cutting issues 
Successful execution of the PRO research directions 
will require both expertise and innovation in AI/ML 
techniques. Methods will extend beyond the neural 
network and deep learning approaches most commonly 
associated with ML to include Gaussian processes 
(figure 6) [102]; decision trees (e.g., Monte Carlo tree 
search) [103]; reinforcement learning; Boltzmann 
generators applied to fundamental problems in 
statistical physics [104]; Bayesian optimization [38]; 
and dimensionality reduction methods such as 
variational auto-encoders. While many of these 
innovations are driven by industry, the SUFs will also 
require AI/ML advancements that are specific to DOE 
science challenges. Examples include: 

1. Physics-based constraints: New ML algorithms 
are needed that employ physics-based constraints in 
understanding data both to ensure that models 
produce relevant information and to greatly 
accelerate convergence to reasonable models. This will require exploiting advances in underlying 
mathematics in areas such as physics-appropriate projection operators. 

2. Robustness: ML-based methods must deal with experimental conditions such as noise, jitter, drift, 
dropout, and alignment, exploiting the mathematics of multiobjective energy minimizers and deep 
convolutional denoising of Poisson noise. 

 
Figure 6. Autonomous imaging experiments 

using Gaussian processes. Here, an optical image 
of a nanoparticle coating (middle) having a 
“coffee ring” pattern and the automatically 
reconstructed image from a dense sampling 
(left) versus a sparse sample (right) [102]. 
| Distributed under a Creative Commons 
Attribution Noncommercial License 4.0 
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3. Scaling: Existing ML solutions must scale to the high dimensional parameter spaces, continuous 
variables, and extreme data sizes common to SUF applications. Real-time applications (e.g., data 
reduction) must handle both high data rates (terabytes/second) with microsecond latency. While high-
performance computing will be essential, scaling will also require innovations in the ML algorithms. 

4. Super resolution: New approaches are needed to extract subgrid resolution from coarse sampling in 
space or time, aided by ML models that learn resolution capabilities from coupled resolved or under-
resolved training data [106].  

5. Multimodal analysis: Analysis methods should handle multimodal comparisons across length scales, 
techniques, and users, enabling intelligent learning of similarities and linkages across different 
experimental modalities that allow information fusion during data acquisition to converge on physics-
appropriate models. This will require developing ML models that combine multiobjective 
descriptions across disparate sources.  

6. Automated labeling: Diverse scientific datasets require automatic ML techniques to tag and annotate 
data, making use of mathematically based networks [106] specifically designed to work with limited 
data and to determine appropriate features. This will require developing techniques that maximally 
exploit computationally expensive, complex scientific data, rather than count on vast databases of 
simplified objects, to build and determine appropriate feature vectors for reduced, efficient, and 
sparse representations (Figure 7).  

7. Fast-executing approximations: Fast-executing 
approximations are needed, including reduced coarse 
reconstruction methods, optimized inversion 
techniques, surrogate models, and data-driven 
approximation models to quickly perform “data 
triage” to determine if an experiment is on track and 
generating important data, as well as to extract critical 
features and compression opportunities to pinpoint 
key information as an experiment progresses. This 
will require exploiting advances in underlying 
mathematics in areas such as search and optimization 
methods, Bayesian experimental design, dimensional 
reduction methods to efficiently explore high-
dimensional parameterization spaces, parameter 
estimations, and reduced-order models.  

8. Data reduction: AI/ML methods are needed for 
streaming, data reduction, and storage protocols for 
heterogeneous experiments at high acquisition rates, 
exploiting computer science research on fast network 
transfer, optimal ways to load-balance computer 
resources across detectors, local compute facilities, 
HPC, and edge services. Figure 8 shows automated image search output.  

9. Data mining: The shared data repository will require new mathematics and computer science to 
exploit fast indexing, such as locality sensitivity hashing, clever feature vectors [107], ontologies, and 
inferential engines. For example, materials researchers will need key data services to promote open 
data sharing and data reuse, simplified data publication and curation workflows, and powerful data 
discovery interfaces for data of all sizes and sources.  

 
Figure 7. Deep neural network using limited 

labeled samples to classify tomographic 
images of a fiber-reinforced minicomposite. 

The top pannel shows SEM images of a 
minifiber and the bottom left shows zoomed in 

images of the red region marked at the left in the 
top pannel. The bottom middle and right panels 

show reconstructed images using sparse and 
noisy data [105]. | Distributed under the MDPI 

Open Access Information and Policy 
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10. User friendly: A form of automated AI/ML selection 
or recommendation system will be useful to encourage 
a broader range of users with limited AI/ML 
expertise.   For example, automatic selection methods 
for ML algorithms and/or hyper-parameter values for 
a given ML approach. 

Data management infrastructure 
AI/ML models are fundamentally linked to the datasets on 
which they are trained, and data infrastructure needs are 
ubiquitous in AI/ML workflows. These needs are 
highlighted by PRO 4, which discusses the opportunity to 
create a shared data repository to host the totality of data 
generated at BES SUFs. PRO 4 identifies a range of 
enabling capabilities, including standardized file formats, 
search functions, data catalogs, recommendation tools, 
autonomous data labeling, and challenges relating to 
capture of data and metadata. Data mining in the 
repository will require new mathematics and computer science to exploit fast indexing, such as locality 
sensitivity hashing, clever feature vectors [107], ontologies and inferential engines. Though less central to 
the other PROs, nearly every topic covered during the roundtable will face challenges relating to data 
workflows for training, testing, and deployment of models. The recent ASCR workshops on data and 
models for AI/ML covered many of these topics in depth [22, 94]. 

High-performance computing cross-cutting issues 
The AI/ML approaches delineated under the PROs will require access to extreme computation to process 
data, run high-fidelity simulations to generate or augment measured data, and train models. The DOE is 
well-positioned to address these challenges, with plans to deploy NERSC-9 (Perlmutter) and the first 
generation of exascale computers: Aurora at the Argonne Leadership Computing Facility and Frontier at 
the Oak Ridge Leadership Computing Facility. Already, these ASCR facilities support the most popular 
AI/ML frameworks. The research being conducted at the National Energy Research Scientific Computing 
Center (NERSC) includes examples of running extreme-scale training and optimizing DNNs for massive 
climate data, as well as computational modeling for energy-efficient industrial applications [108]. It is 
expected that additional HPC-focused AI/ML frameworks will be developed in the next decade, as 
highlighted in recent AI for Science Town Halls (e.g., see [109]). For example, AI/ML methods will 
eventually support rapid data processing at HPC facilities to enable quasi-real-time feedback on 
experiments and observations. These advances are fundamental to the PROs identified in this BES AI/ML 
roundtable.  

The scientific community has an opportunity to define a common toolset of AI/ML methods that are 
useful across a variety of control problems and available for HPC. In addition to instrument tuning, 
AI/ML methods in HPC could revolutionize experimental platforms by automating the selection of 
measurement conditions, experimental conditions, sample measurement sequence, and overall 
experimental execution. Such automation—necessarily leveraging accelerated real-time data analytics—
would dramatically increase the quality of experimental datasets, reduce wasted instrument time, 
minimize sample damage from probes, and accelerate experimental study. 

However, several research developments are needed to enable HPC AI/ML models for experimental data, 
such as verifying accuracy of high performance codes, because many discoveries result from 
serendipitous events, and it is essential to avoid confusing signal with noise. ML is often not easily 

 
Figure 8. Automated image search by 

content-based image retrieval of millions of 
grazing-incidence small-angle scattering 

patterns [107]. | Distributed under the MDPI 
Open Access Information and Policy 
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adapted to current and emerging heterogeneous instrument hardware. Experimental facilities place unique 
requirements on AI/ML systems. For example, the data streams at experimental facilities may be very 
high volume, approaching the TB/s range. This data may need to be processed by ML algorithms on the 
fly (e.g., at the edge) while meeting power requirements, and any configuration or interface to algorithms 
should be approachable by domain scientists who do not have AI/ML expertise. Future computing 
environments that can address these challenges will likely be heterogeneous, consisting of 
GPU accelerators, possibly in conjunction with FPGAs, application-specific integrated circuits (ASICs), 
and emerging hardware custom designed for deep learning workloads. These computing systems may also 
have novel memory hierarchies, involving traditional dynamic random access memory (DRAM) 
alongside technologies like nonvolatile random access memory (RAM), 3D stacked memory, and chips 
with processing-in-memory capabilities.  

Further research in edge computing can help advance solutions to these AI/ML challenges as well as HPC 
capabilities. While these systems are highly customizable and can potentially deliver orders of magnitude 
improvement over traditional systems—even those with GPUs—achieving this speedup will be 
challenging. It may require hardware modeling expertise and a large investment in porting codes to the 
new computing architectures. Therefore, intuitive programming interfaces are needed, including software 
that can automatically transfer AI/ML models developed in standard GPU/central processing unit-friendly 
frameworks onto FPGAs/ASICs and emerging deep learning accelerators. Furthermore, in cases where 
systems have multiple accelerators, it is desirable to have a turnkey solution for the device placement 
problem, which involves mapping the different operations describing an AI/ML model onto available 
hardware resources to maximize parallelism. In systems with hybrid memory hierarchies, the device 
placement problem will include determining storage locations for large arrays, be they on traditional 
DRAM, nonvolatile RAM, or other specialized memory modules. Being able to solve these problems 
automatically or online is especially important in experimental facilities, as researchers often have limited 
time with the equipment and the experimental setup changes from one user to another. 

Network cross-cutting issues 
The HPC applications discussed above 
presume the enormous datasets generated 
at the SUFs can be shipped between 
SUFs and HPC facilities at speeds that 
permit real-time analysis. The data 
movement problem will itself require 
advances to meet the needs of the PROs, 
and the DOE is already working on 
deploying ESnet6, the next generation of 
high-speed networks for science use 
cases. Figure 9 shows an example of 
real-time network traffic prediction 
output. With the new networking 
capabilities, the network will enable 
novel new research that can support BES 
workflows. Examples include: 

• Intelligent protocols that enable 
querying target subfields of an experiment: Using intent and named networking, new network 
schemes will deliver new protocols that allow scientists to query the exact datasets needed for their 
data analysis. This will streamline experiments, prioritizing the relevant data being generated by the 
facilities.  

 
Figure 9. Real-time prediction using deep learning for network 
traffic. | Image courtesy Mariam Kiran, Energy Sciences Network 
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• Data reduction for accelerated I/O: Current efforts at NERSC and ESnet are exploring how the 
speed of I/O correlates with network transfer speed and how it impacts experiments overall. Current 
projects such as SENSE (SDN for End-to-End Network Science at the Exascale) [110] and the ASCR 
Early Career Project 2017, called DAPHNE (Large-scale Deep Learning for High-Performance 
Networks) [111] have been exploring how this end-to-end workflow can be optimized to improve 
science. Current efforts will also require exploring the use of AI/ML to allow the network to make 
intelligent decisions on managing the data transfer rate. 

• Improving network utilization and enabling higher bandwidth for on-demand experiments: 
ESnet research efforts have been exploring the use of deep RL techniques to improve network 
utilization, making science transfers faster and optimizing bandwidth for experiments [112].  

• Predicting performance multiple hours ahead: Developing advanced time-series prediction 
libraries can help networks predict how they will be utilized in the future, including aspects related to 
their power consumption and required utilization. Advance knowledge will help engineers optimize 
the infrastructure use, such as diverting flows to underutilized links [113] and powering machines 
down when not needed. 

Additionally, further research is needed to develop new AI/ML algorithms that enable fast stream data 
processing leading to clustering and classification in unlabeled datasets. This capability is particularly 
important in network and compute facilities for learning behavior with fast streaming operational data. 

Summary 
Strategic findings from a recently published Workshop Report on Basic Research Needs for Scientific 
Machine Learning: Core Technologies for Artificial Intelligence [94] summarized some of the key points 
in this section as well as key thrust areas to be worked in synergy. 

1. Incorporating domain-aware knowledge: Research must develop supervised, unsupervised, and 
feature selection methods to incorporate domain qualities into the models. There are currently 
research constraints that need further work, such as unconstrained optimization and loss function 
calculations. Further work in Bayesian approaches, surrogate models, and read-only memory will be 
highly relevant. 

2. Interpretable scientific AI/ML: Effort must be made to develop methods that help organize and 
explore datasets, and building of optimized models, including comparison methods and probabilistic 
approaches that supports optimization toward the scientific problems being explored. 

3. Robust scientific AI/ML: Developments must seek out reproducible solutions in certain conditions 
and to investigate the limitations of the models. This is an important area to identify the current 
challenges of how the AI/ML models will behave under certain conditions and how methods can be 
generalized to a larger set of domains. Additionally, methods to measure the correctness of the model 
are being explored here.  

4. Working with complex datasets: Efficient sampling is required to analyze high-dimensional, noisy 
datasets. Innovative solutions that use Monte Carlo, Bayesian, and active learning methods are 
needed to make progress in this research thrust. 

5. Intelligent automation and decision support: Developments must steer experiments using AI/ML-
informed decision-making. Work on uncertainty quantification and sensitivity analysis will be 
developed further to enhance this research thrust.  

These research efforts will be essential to the success of the four PROs discussed during the roundtable. 
Scientific AI/ML faces challenges of different scales, data types, and goals compared to the challenges 
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inherent in commercial AI/ML efforts.  Academic and national laboratory research communities will need 
to develop their own computational tools. For this purpose, the benchmark datasets described in PRO 4 
could provide AI/ML researchers with large, well-labeled, realistic datasets for AI/ML algorithm R&D. 
Historically, scientific challenges have at times spurred development of new computational paradigms, 
notably the World Wide Web. A close collaboration between computer scientists and the SUFs to create 
AI/ML tools could have a transformative impact on both fields. 
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Closing Remarks 
As detailed in the Executive Summary, this roundtable has identified four key Priority Research 
Opportunities (PROs) that establish a vision for accelerating scientific discovery at the BES Scientific 
User Facilities. It is clear that AI/ML can integrate with modeling, simulation and data analysis to become 
an essential part of our scientific laboratory activities, from engineering to operations to scientific 
analysis.  AI/ML-enabled research will help power automated experiments, control of complex systems, 
discovery of new materials and processes, and application of exascale computing to maximize scientific 
output and discovery. In the next ten years it is fully expected that AI/ML will enable the DOE to attack 
and solve new problems for energy sciences. 
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