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Optimization and Geophysical Inverse Problems

1 Introduction

A fundamental part of geophysics is to make inferences about the interior of the earth on the
basis of data collected at or near the surface of the earth. In almost all cases these measured
data are only indirectly related to the properties of the earth that are of interest, so an inverse
problem must be solved in order to obtain estimates of the physical properties within the earth.

In February of 1999 the U.S. Department of Energy sponsored a workshop that was intended
to examine the methods currently being used to solve geophysical inverse problems and to con
sider what new approaches should be explored in the future. The interdisciplinary area between
inverse problems in geophysics and optimization methods in mathematics was specifically tar
geted as one where an interchange of ideas was likely to be fruitful. Thus about half of the
participants were actively involved in solving geophysical inverse problems and about half were
actively involved in research on general optimization methods. This report presents some of the
topics that were explored at the workshop and the conclusions that were reached.

In general, the objective of a geophysical inverse problem is to find an earth model, described
by a set of physical parameters, that is consistent with the observational data. It is usually·
assumed that the forward problem, that of calculating simulated data for an earth model, is well
enough understood so that reasonably accurate synthetic data can be generated for an arbitrary
model. The inverse problem is then posed as an optimization problem, where the f~nction to
be optimized is variously called the objective function, misfit function, or fitness function. The
objective function is typically some measure of the difference between observational data and
synthetic data calculated for a trial model. However, because of incomplete and inaccurate
data, the objective function often incorporates some additional form of regularization, such as
a measure of smoothness or distance from a prior model. Various other constraints may also be
imposed upon the process.

Inverse problems are not restricted to geophysics, but can be found in a wide variety of
disciplines where inferences must be made on the basis of indirect measurements. For instance,
most imaging problems, whether in the field of medicine or non-destructive evaluation, require
the solution of an inverse problem. In this report, however, the examples used for illustration
are taken exclusively from the field of geophysics. The generalization of these examples to
other disciplines should be straightforward, as all are based on standard second-order partial
differential equations of physics. In fact, sometimes the non-geophysical inverse problems are
significantly easier to treat (as in medical imaging) because the limitations on data collection,
and in particular on multiple views, are not so severe as they generally are in geophysics.

This report begins with an introduction to geophysical inverse problems by briefly describing
four canonical problems that are typical of those commonly encountered in geophysics. Next the
connection with optimization methods is made by presenting a general formulation of geophysical
inverse problems. This leads into the main subject of this report, a discussion of m~thods for
solving such problems with an emphasis upon newer approaches that have not yet become
prominent in geophysics. A separate section is devoted to a subject that is not encountered
in all optimization problems but is particularly important in geophysics, the need for a careful
appraisal of the results in terms of their resolution and uncertainty. The impact on geophysical
inverse problems of continuously improving computational resources is then discussed. The main
results are then brought together in a final summary and conclusions section.
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2 Canonical Problems

To provide specific examples that can be used to illustrate the basic properties of gBophysical
inverse problems and methods of solution, a small set of canonical problems have been selected.
The basic equations are stated and formulations as both a forward problem and an inverse prob
lem are given. Examples that involve elliptic, parabolic, and hyperbolic differential equations
are all included. Also, both linear and non-linear inverse problems are represented.

Problem 1 - Gravity

The first problem, which involves the solution of an elliptic second-order differential equation,
represents a type of geophysical inverse problem that contains a fundamental nonuniqueness.
Consider the force of gravity measured at any point within or on the surface of the earth.
Because of variations in density within the earth, this gravitational acceleration deviates from
the value expected for a radially symmetric earth. Newton's theory of gravitation says that

(1)

where

f::..g( x) is the anomaly in the vertical X3 component of gravitational acceleration at the
location x in units of m 8-2 ,

G is the gravitational constant 6.67.10-11 newton m 2 kg- 2
,

D is the spatial domain of interest, the half space X3 ;::: 0,

X3 is the vertical unit vector normal to the surface of the half space,

f::..p(0 is the anomaly in density within D in units of kg m-3.

Forward problem:

Given:

• f::..p( 0 at all points ~ within D,

Determine:

• f::..g(x) at arbitrary points x either within or outside D.

Inverse problem:

Given:

• f::..g(x) at the specified N points X n (n = 1, ... , N) located either within or outside D,

Determine:

• f::..p(~) at all points ~ within D.
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Problem 2 - Electrical Sounding

The second problem represents the class of parabolic second-order differential equations that are
quite common in the study of thermal and electrical properties of the earth (Oldenburg, 1979).
Consider an earth in which the electrical conductivity a( z) varies only as a function of depth z.
Then Maxwell's equations in the frequency domain reduce to the ordinary differential equation

d Z

dzzE(z,w) + iwp,a(z)E(z, w) =°,
where

z is depth below the surface of the earth in units of m,

w is angular frequency in units of radians s-l,

E(z,w) is the electrical field strength in units of volt m-\

p, is the magnetic permeability in units of henry m-1 ,

a(z) is the electrical conductivity in units of ohm-1 m-1 .

(2)

It has been assumed here that the frequency w is low enough so that displacement currents can
be ignored in comparison to conduction currents. The boundary conditions are that

"""

:zE(O,w) = 0,

E(Z,w) =°where Z is large compared to the skin depth d = Jp.;w'

Forward problem:

Given:

• a(z) at all depths z 2: 0,

Determine:

• E(z,w) at arbitrary depth z either within or on the surface of the half space and for
arbitrary frequency w.

Inverse problem:

Given:

• E(O, wn) at the specified frequencies W n (n = 1, ... , N),

Determine:

• a(z) for all depths °<;;; z <;;; Z.
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Notes

(3)

Because 0" can vary over extremely large ranges in the earth, it is common to write O"(z) = em(z)
and let m(z) represent the model parameter. The differential equation then becomes

d2

dz2E(z,w) + iwp,em(z) E(z,w) = 0 ,

and the inverse problem is to solve for m(z) at all depths 0 s: z s: z.

Problem 3 - Seismic Sounding

The third problem is one version of the type of hyperbolic second-order differential equations
that are common in seismology. Consider an earth in which the seismic velocities and density
vary only as a function of depth z. Then the elastodynamic equations of motion in the frequency
slowness domain can be put in the form

d
dz v(w,p, z) = w A(p, z) v(w,p, z) + f(w,p) , (4)

where

w is angular frequency in units of radians s-l,

p is horizontal slowness of the wave in units of s m-1 ,

z is depth below the surface of the earth in units of m,

v(w,p, z) is the displacement-stress vector v = [u z, ux , Tzz/W, Tzx/wJT

A(p, z) is a matrix depending upon the material properties of the medium,

(5)

-\(z)+2tt(z)
o
o
-\(z)

-\(z)
P-\(z)+2tt(z)

o
o

p2,(z) - p(z)
[

0

-p
A(p, z) ~ -p~z)

where

A(Z) and f-l(z) are elastic constants in units of kg m-1 s-2,

p(z) is the density in units of kg m-3 ,

f(w,p) is the source vector that acts at the depth zs,

f(w,p) = l ~ 1fAw,p)/w
fx(w,p)/w

(6)
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The boundary conditions are that

Uz and U x are continuous everywhere,

Tzz and Tzx are continuous everywhere except at the depth Zs where f is non-zero,

Tzz = Tzx =°at z = 0,

v consists of downward propagating waves as z -+ 00.

Forward problem:

Given:

• A(Z), j.L(z), and p(z) at all depths z ~ 0,

• f(w,p) at Zs,

Determine:

• v(w, p, z) at arbitrary depths z either within or on the surface of the half space and for
arbitrary frequency wand arbitrary slowness p.

Inverse problem:

Given:

• uzCwn,Pm, 0) and uxCwn, Pm, 0) at z = °for the specified frequencies W n (n
and for the specified slownesses Pm (m = 1, ... , M),

Determine:

• f(p, w) at the specified source depth Zs,

• A(Z), j.L(z) and p(z) for all depths z ~ 0.

Notes

1, ... ,N)

The observational data are actually acquired in the time-space domain and are of the form
uz(t, x, z) and ux(t, x, z). A Legendre transformation of the form T = t - px is then applied to
obtain data in the tau-slowness domain, uz ( T, P, z) and ux ( T, P, z). Finally, a Fourier transfor
mation of the data leads to uz(w, P, z) and ux(w,p, z).

Problem 4 - Travel Time Tomography

The fourth problem represents the general class of tomography inversions that have become the
preferred approach to the study of three-dimensional earth structure using seismic body waves.
The problem contains a nonlinearity that enters indirectly through the dependence upon the
ray path. A general discussion of one version of this problem can be found in Trampert (1998).
The travel time along a ray between points X s and X r is given by

(7)

where
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t is the travel time in units of s,

X s is the souce point where the ray originates,

X r is the receiver point where the ray terminates,

I;(xr, x s ) is the ray path between X s and X r that is obtained by finding a solution to the
two-point boundary value problem for the equation

CT is distance measured along the ray path,

v(x) is the velocity in units of m s-l.

Forward problem:

Given:

• v(x) in a domain D,

Determine:

• t(xr , x s ) for arbitrary values of X s and X r on the boundary of D.

Inverse problem:

Given:

(8)

• tmn(xm,xn ) for specified values ofxs = X n (n = 1, ... ,N) and specified valuE;.s ofxr =
X m (m = 1, ... , M) on the boundary of D,

Determine:

• v(x) within D.

Notes

A more convenient form of the ray equations is the system

d
dCTX(CT) = V(X)p(CT) ,

d 1
dCTP(CT) = V'[v(x)] ,

1
p(CT)·p(CT)= v2(x).
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3 Formulation of Geophysical Inverse Problems

In preparing to solve a geophysical inverse problem, a number of critical decisions have to be
made regarding the manner in which the problem is formulated. The success or failure of the
entire process can often be traced back to these initial choices. First, methods of parameterizing
both the data space and the model space have to be selected. Next, the solution of the inverse
problem is regularized by imposing constraints upon the model space, which may involve choos
ing criteria for measuring the "goodness" of a model. The net result of this process in practically
all cases is a problem in mathematical optimization.

3.1 Parameterization

The parameterization of the data space is determined in most cases by what is feasible in the
data collection experiment. The field that is being measured is generally continuous in space and
time, but the data are almost always given in a discrete form, representing sampled values at
discrete points in space and time. In principle, this is not a restriction, as sampling theory tells
us that the sampling can be performed with no loss of information at wavelengths greater than
some prescribed lower limit. In practice, this criterion is usually met for the sampling in time
(i.e., no aliasing), but, because of constraints on cost and accessibility, the sampling ill space is
often much less dense than optimum. For instance, in many cases it is practical to collect data
only on the surface of the earth. Finally, there is the problem of noise. The geophysical fields of
interest are often quite weak and must be observed in an environment that contains extraneous
fields that contribute noise to the observational data. In some cases it is possible to characterize
the statistical properties of this noise, particularly if it is stationary in time, but in many cases
such a characterization is not possible. So the typical situation in geophysical inverse problems
is that we must deal with data that have finite dimension, are insufficient, and are inaccurate.
In the discussion that follows these data will be represented by the symbol d.

The parameterization of the model space is much more under the control of the individual·
solving the inverse problem. The proper domain for describing properties within the earth is in
most cases that of piece-wise continuous functions. This is the starting point for one of the first
and most complete approaches to modern geophysical inverse problems, known as the Backus
Gilbert method (see Parker, 1994, for details). It was developed for linear inverse problems and
requires that a Frechet derivative of the functional relating the model to the data be available.
This approach is in a mature state, with the method fully developed and its properties well
understood, so it will not be considered further in this report.

The need to work in an infinite dimension functional space, as required in the Backus-Gilbert
method, is commonly avoided in geophysics by expanding the model in a set of basis functions,
with the expansion coefficients then becoming the model parameters. Truncating the expansion
then results in a discrete finite-dimension model space, which is similar to the data space, and will
be represented as m. This discretization of the model space is one ofthe most critical steps in the
formulation of the problem, as later steps in the process, such as regularization and optimization,
are highly dependent upon the scale of the discretization. An example of this type of approach
is matched field processing, which can be very effective for some applications. Matched field
processing uses just a small number of functions, which must themselves be determined by the
data, to characterize the model of interest (Tolstoy et al., 1991).
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3.2 Constraints

Once methods of parameterizing the data space and the model space have been selected, the
basic idea of the inverse problem is to determine what constraints can be placed upon the model
space so as to specify a model or group of models that are compatible with a particular set of
observations drawn from the data space. A number of different types of constraints are possible.
A theoretical constraint is a mapping from the model space to the data space that allows a
direct relationship to be established. An objective function is some measure of distance in the
data space that allows an evaluation of a model based on how close its simulated data are to
the observed data. Regularization is generally a measure of some property of the model that is
deemed to be desirable. Each of these will be discussed below.

It is assumed here that there exists some physical theory that relates the model to the
observational data that can be expressed in the form

f(d,m) = o. (9 )

The usual situation is that the observational data d represent the solution of the theoretical
problem, while the model m represents parameters of the equations. In many cases this becomes
more explicit because the theory can be expressed in the reduced form

d = a(m) . (10)

This theory is typically in the form of an integral equation (canonical problems 1 and 4) or a
differential equation (canonical problems 2 and 3). Thus solving the forward problem consists
of specifying the model m and then obtaining a solution d that represents the data. An inverse
problem arises when it is the data d that are given and the task is to find a model m that is
compatible with these data.

There exist a few problems in geophysics, for example the one-dimensional travel time prob
lem, where the inverse problem can be solved analytically to obtain a solution of the inverse
problem in the form

(11)

Such solutions, which are rare and need to be treated as special cases, will not be discussed
further here.

The usual situation is that only the forward problem can be solved in an analytical or semi
analytical sense. The solution of the inverse problem then proceeds by solving the forward
problem employing a candidate model m in order to obtain simulated data a(m). A comparison
between the simulated data and the observed data can then be used to make improvements to
the candidate model. This requires the use of some measure of distance in the data space, i.e.
a norm, that can be represented as

N(d, m) = lid - a(m)ll. (12)

The requirement that N(d, m) be a mInImUm represents a constraint upon the model that
incorporates both a theoretical model of the forward problem and observational data..

A variety of other types of constraints can be placed upon the model m by specifying certain
required or desirable properties that it should have, such as positivity, nearness to a particular
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model, or some measure of smoothness. These constraints can usually be expressed in the form
of equality constraints

ce(m) = 0 ,

inequality constraints

or a regularization condition

S(m) = minimum.

(13)

(14)

(15)

A typical equality constraint might be the total mass or moment of inertia of the whole Earth.
A typical example of inequality constraints is to place upper and lower bounds on the permitted
values of seismic velocity. Regularization conditions typically involve minimizing the deviation
from a known model or minimizing fluctuations in the model. Recently a method has been
introduced to minimize the total variation in the model (Rudin et al., 1992; Vogel and Oman,
1996; Dobson and Santosa, 1996).

3.3 Distinguishing Features

Most geophysical inverse problems have a number of distinguishing features that require special
attention when methods of solution are being considered. The first feature is the fact that
the observational data are usually incomplete in the sense that they do not contain enough
information to resolve all features of the model. Because of this, solving a geophysical inverse
problem generally consists of two separate stages, finding an optimum solution and appraising
the validity of that solution. The appraisal stage includes an analysis of resolution, which is
a determination of what features of the solution are necessary in order to explain the data.
Invariably the optimum solution is non-unique in the sense that some of its features could be
changed without changing the fit to the data.

The second distinguishing feature is that the data generally contain a noise component. The
relationship in equation (10) between data and model should thus be given as

d = a(m) + n, (16)

where n is the noise. This noise comes from two primary sources, a random component in the
observational data and approximations or errors contained in the theory that connects the data
and model. In either case, the model is not, and should not be, capable of completely explaining
the data. The presence of noise means that the appraisal stage of the inverse problem should
also include an analysis of uncertainty, which is a determination of how much the optimum
solution would change if a different realization of the noise were to be used.

An important consequence of the incompleteness and inaccuracy found in geophysical inverse
problems is that there are many possible solutions to the problem. The basic task, in its most
complete form, is to describe all of these possible solutions. There are a number of methods
that attempt this task by performing a general search of the model space, including grid searchs,
random searchs, and pseudo-random searchs. There are also methods that estimate a relative
probability density for the model space. All of these methods, which will be discussed more fully
in a later section, are not very efficient and so far have been used only for small and moderate
sized geophysical inverse problems.
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The most common method of addressing the fundamental non-uniqueness of geophysical
inverse problems is to impose additional constraints on the solution and in this way reduce the
number of acceptable solutions (Parker, 1994; Oldenburg et al., 1998). This general process of
introducing constraints that restrict the size of the solution space, in many cases reducing it to
a single solution, is known as regularization and was introduced earlier as equation (15). These
constraints that are imposed upon the model space are generally an attempt to rewa'rd certain
properties that are deemed to be desirable, and in this sense they can be quite subjective, relying
on information and prejudices that are independent of the data.

3.4 Optimization

With the definitions given above, it is now possible to define a typical geophysical Inverse
problem. An objective function is defined as

n(d, m) = lid - a(m)11 + f3 S(m) , (17)

where f3 is a parameter that weights the relative importance of fitting the data and satisfying
the regularization condition and where d are the observed data. Then the inverse problem is:
Given:

observational data d, of finite dimension and possibly containing noise,

Determine:

a model m* as the solution of

min lid - a(m)11 + f3 S(m) ,
s.t. ce(m) = 0 ,

ci(m) ~ 0 .

(18)

It is clear from this description that a typical geophysical inverse problem reduces to a
problem in numerical optimization. The optimization problem usually involves equality and
inequality constraints. The mathematical formulation of the optimization problem, however,
is not unique. The formulation can have significant impact on the optimization techniques
applicable and on the efficiency of the solution approach. A variety of objective functions are
encountered, linear, quadratic, and more complicated forms. The objective function is generally
smooth, although there is increasing interest in problems where it is not smooth, as in the
total variation method (Rudin et al., 1992; Vogel and Oman, 1996) or the piecewise polynomial
modification of truncated singular value decomposition (Hansen et al., 2000). The constraints,
both equality and inequality, can be linear or nonlinear.

3.5 Probabilistic approach

The optimization methods described above can be postulated directly as we have done here
so far, or the entire inverse problem can be viewed probabilistically from the outset and the
resulting optimization methods derived in that context. The least squares type of optimization
method described above follows naturally from some assumptions about Gaussian statistics for
the data errors and maximum likelihood estimators (Aki and Richards, 1980; Tarantola, 1987;
1990). The advantage of the probabilistic approach is that it helps to clarify the assumptions
that have gone into the formulation of a particular optimization scheme, which are not always
obvious, and it also suggests alternative optimization schemes for different classes of problems.
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3.6 Combined inversions

One of the most effective methods of reducing the fundamental non-uniqueness of geophysical
inverse problems is to combine the results from several different data sets. The inverse problems
for these different data sets can be solved separately and then the results compared, or the data
can be combined and a single inversion performed. So long as the separate data sets all have
similar relationships to the model parameters, this process of combined inversion presents no
new problems, except that the size of the inverse problem grows with the size of the combined
data set. The combined inversion should have advantages over the separate inversions in the
areas of improved resolution and decreased uncertainty, particularly if the different data sets
are distinct in the manner in which they sample the model. The combination of data sets that
sample different types of model parameters is also possible. Here it is necessary to assume that
the different model parameters, such as density and velocity, share a common structure and then
a combined inversion is possible (Haber and Oldenburg, 1997).

There are also situations in geophysics where what appears to be a single inverse pr,oblem can
be separated into different inverse problems with improved results. For instance, Xia et al. (1998)
show how the long wavelength and short wavelength parts of a velocity model can be separately
estimated. The primary advantage of such a separation is that different optimization procedures
can be used for the different parts of the inverse problem, allowing the optimization procedure
to be tailored to the particular attribute of the model that is being estimated. Another example
is that of Gritto et al. (1999), where it is shown that a strongly nonlinear inverse scattering
problem can be separated into a linear numerical optimization part and a nonlinear part that
has an analytical solution.

4 Obtaining a Solution

The general outline of a geophysical inverse problem presented in the preceding section has the
form of a mathematical optimization problem. Such problems have been thoroughly studied
and a large selection of methods for solution are available (see for instance Nocedal and Wright,
1999; Dennis and Schnabel, 1996; Fletcher, 1987), depending upon the type of parameterization,
objective function, and constraints. This is indeed fortunate, as, given the variety of geophysical
inverse problems that are encountered, it is unrealistic to think that anyone approach would
be optimum for all of them. Thus one of the tasks of solving an inverse problem is to chose the
optimization method that is most appropriate. In this section some of the considerations that
help determine this choice will be discussed.

It is important to point out that considerable resources are already available within the
numerical optimization community for this task of choosing the most appropriate optimiza
tion algorithm. Compilations such as the Optimization Software Guide (More and Wright,
1993) present outlines of software available for various types of optimization problems and
provide guidance in making a choice. It is actually possible to do some of this optimization
over the network through the Network-Enabled Optimization Server (NEOS) (Cryzyk et al.,
1996)(http://www.mcs.anl.gov/home/otc/).

A general finding of the workshop was that those solving geophysical inverse problems could
benefit from more familiarity and better access to the various optimization methods that are
available. Resources such as those described in the previous paragraph have so far received
very little use in the geophysical community. The concept that no single algorithm is likely
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to be best for all inverse problems is formalized in the "no free lunch" theorems (Wolpert
and Macready, 1997), which demonstrate how an algorithm that performs well for one class of
problems may perform poorly for another class. What is clearly needed is more collaboration
between geophysicists working on inverse problems and mathematicians working on optimization
methods.

A related issue is the design of software interfaces between application codes that provide
objective and constraint function information and the optimization software. Currently, many
implementations of optimization algorithms, especially those for constrained optimization, re
quire objective and constraint functions and their derivatives in formats that are not suitable
for complex, large-scale geophysical inverse problems. As a result, optimization algorithms are
often laboriously re-implemented for specific applications, numerical comparisons of different
optimization approaches for the application at hand are strongly discouraged, and the dissemi
nation of new optimization techniques into the inverse problem community is severely hindered.
This issue and remedies are discussed in Heinkenschloss and Vicente (1999a) and in Gockenbach
et al. (1999). The design of suitable interfaces between application and optimization requires a
careful software design, but also involves all phases of the problem solution from the mathemat
ical statement and parameterization of the problem to the design and analysis of optimization
algorithms.

4.1 Formulation of the optimization problem, implicit versus explicit con
straints

Choices of the parametrization, of the regularization term SCm), and of the constraints ce(m),
Ci( m) clearly all affect the formulation of the optimization problem and are crucial for the solu
tion of the inverse problem. However, even after these choices have been made, there are several
ways to formulate the resulting optimization problem mathematically. A specific mathematical
formulation of the optimization problem excludes certain optimization approaches and therefore
has an impact on the solution efficiency and possibly even robustness.

For example, in (18) we have stated a formulation of the geophysical inverse problem as an
optimization problem. There we have assumed that a solution d of the forward problem (9) is
available in the reduced form (10) and we have inserted this into our optimization problem (18).
Thus, whenever we have to evaluate the objective function (17) or, possibly, the constraints Ce or
Ci, we have to evaluate a(m), i.e., we have to solve the forward problem (9) for d. Alternatively,
we may include the equation f( d, m) = 0 that relates the model m to the data d as an explicit
constraint into the optimization problem. The problem (18) is then reformulated as

mm lid - dll + f3 SCm) ,
s.t. f(d,m) = 0,

Ce(d,m) = 0,
Ci(d,m)::::: 0,

(19)

where, as before, d denotes the observed data and d denotes the simulated data. In (19) both d
and m are optimization variables. Here we have assumed that the constraint functions ce(m) and
Ci( m) in (18) may even depend on the simulated data, i.e., are of the form ce(m) = Ce(a( m), m)
and ci(m) = Ci(a(m), m).

Often, the two formulations (18) and (19) of the inverse problem are equivalent. Solution
approaches for (18) and (19) require similar problem information (see, e.g., Dennis et al. (1998)).
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However, the formulation (19) can be tackled by a broader class of optimization algorithms,
which includes those that do not enforce the forward problem f( d, m) = 0 at every step of the
optimization. Currently, many large-scale geophysical inverse problems are formulated as (18)
and, if there are no constraints, they are solved using nonlinear conjugate gradient methods.
Line search procedures within the conjugate gradient method require repeated solves of the
expensive forward problem. The formulation (19) of the inverse problem on the other hand,
can be tackled by sequential quadratic programming (SQP) methods (see, e.g., Nocedal and
Wright, 1999), which only require that the forward problem be solved in the limit as the iterates
approach the solution, which can result in significant computational savings. For a comparison
on an optimization problem with a nonlinear forward problem see, e.g., Ghattas and Bark
(1997). Moreover, (19) reveals how the forward problem enters the optimization formulation,
which offers ways to control the accuracy with which the forward problem has to be solved within
the optimization. Inexact, inexpensive solutions of the forward problem can be admitted in the
early stages of the optimization (Heinkenschloss and Vicente, 1999b). Trust region"'strategies
guarantee the convergence from a bad initial solution estimate for nonconvex optimization.
The theory and implementation of these methods has progressed to the point that the local
convergence behavior of most SQP type algorithms is much more difficult to analyze than the
global behavior (see Nocedal and Wright, 1999, or Conn et al., 2000). Trust region methods
seem particularly appealing in the context of inverse problems because of the regularizing effect
of the trust region constraint on the optimization step.

Formulation of the geophysical inverse problem and choice of optimization algorithms for
their solution were areas identified during the workshop where usual practices in geophysics
need to be re-evaluated.

4.2 Complexity of the forward problem

Solution of the forward problem may represent a major time factor in the overall optimization
process. One of the findings of the workshop was that one of the best methods of improving
the solution of geophysical inverse problems is to develop better methods of solving forward
problems.

In addition to the development of better forward problem solvers, optimization methods
that allow greater flexibility in the integration of forward problem solves or linearized forward
problem solves should be investigated. Current optimization approaches for (18) often require
rather accurate forward solves because inaccuracies in the simulated data is a sourCe of noise
in function and derivative evaluations. Ideally one would like to adapt the accuracy in forward
or linearized forward solves to the progress of the optimization algorithm and allow coarse,
relatively inexpensive forward solves away from the minimum and only tighten the accuracy
requirements in the forwaro solve as one approaches the minimum.

An approach that appears to have obtained little notice in the field of geophysics is the use
of surrogates for the forward problem. This approach has been quite successful in engineering
design where there may be at most a few dozen optimization variables (Torczon and Trosset,
1998), and Booker, et al. (1999) have put the approach into a rigorous mathematical framework.
For many optimization methods, precise and detailed solutions to the forward problem are really
not required in all stages of the process. The point is that much of the search for a solution to the
inverse problem can be performed with a surrogate solution to the forward problem, based either
on interpolatory surfaces or simplified physical principles. The idea is that one approximates
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the essential features of the complete solution with a surrogate simulation that can be executed
much more efficiently. An example of this approach is the use of straight rays in travel time
tomography. Even though rays clearly bend in the Earth, the straight ray approximation may
nevertheless be very useful in low contrast or anisotropic media, and it is very quick to compute.

Software (C++) for incorporating surrogates into a filter pattern search method for generally
constrained problems can be found at www.caam.rice.eduj..-.dougm.Itis assumed that the user
will prefer to furnish their own specific application-specific surrogates. The work of Booker, et al.
(1999), and other work by the same group, is based on the krigiIlg surrogates from geophysics.

Still another approach that has been shown to work in difficult highly non-linear problems
is to obtain solutions to an approximate problem that behaves like the real problem in an
asymptotic limit. Approaches of this type appear to be effective for various transport problems
in high contrast media (Borcea et al., 1996; Borcea and Papanicolaou, 1998; Borcea, 1999;
Borcea et al., 1999; Dorn, 1998; Dorn et al., 1999). Work should be done to ascertain whether
these approximate solutions can be used in the surrogate management framework of Booker et
al. (1999).

4.3 Discretization

An important step in many geophysical inverse problems is the part of the parameterization
process where a continuous model space is converted to a discrete set of parameters through
an expansion in a set of basis functions. A common form of this discretization process is to
divide the model space into a set of non-overlapping cells with the parameters being the mean
values for the cells. A critical question arises in regard to the best choice for the scale of the
discretization, which often reduces to a choice for the dimensions of the cells. Awareness of the
following two points can be useful in making this choice. First, it is important to understand that
discretization is really a form of regularization, as the smoothness of the model and its ability to
fit the data are directly related to the scale ofthe discretization. For instance, whether a problem
is under-determined or over-determined is directly related to the scale of the discretization in
most problems. Second, the scale of the discretization can be included in the inversion process
as a parameter to be optimized. This is an opportunity to remove one type of subjectivity from
the inversion process, and it also has benefits in the appraisal stage.

Multiple scales can also be used to increase the efficiency of the optimization. For example,
optimization on coarse scales can give good starting values for the optimization on fine scales,
coarse discretizations can be used to obtain less expensive second derivative approximations
for the problems on fine scales, and coarse scale information can be used to design precondi
tioners for optimization subproblems on the fine grids. Finally, properties of the underlying
infinite dimensional problem and the choice of discretization provides important information
about the 'scaling' (as used in the optimization language, see, e.g., Dennis and Schnabel, 1996;
Heinkenschloss and Vicente, 1999a) of the optimization problem.

4.4 Feasibility constraints

For some inverse problems the theory constraint can be stated in the form of a variational
principle (Berryman, 1990; Berryman and Kohn, 1990; Berryman, 1993, 1997), which has several
attractive implications for the inverse problem. It may be possible to demonstrate that the set of
feasible solutions is convex, and nonlinear programming methods are well suited for these types
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of problems. As an example, in canonical problem 4 for travel time tomography it is possible to
show that the ray path I; that satisfies the ray equations (8) also satisfies

(20)

where the minimization is taken over all possible paths L;. Thus, the only velocity distributions
that are feasible are those for which

I. (21)

It has been shown that the feasible set for this problem is convex and that the solution lies
on the boundary of the feasible region. Thus, many optimization methods can be used to take
advantage of the variational structure of the travel time tomography problem.

It is also known that for some problems, such as electrical resistance tomography (Berryman
and Kohn, 1990), there are dual variational principles available, which means that data can
be used to provide rigorous bounds on the reconstructed electrical conductivity model. One
unique feature of the feasibility constraints is that their form does not change in a significant
way whether the inversion problem is linear or nonlinear, making this approach one of the few
permitting rigorous statements about nonlinear inversion problems. To date, these features have
not been very well exploited in inverting geophysical data.

4.5 Derivatives

Closely related to the complexity of t4e forward problem is the question of whether partial
derivatives of the data with respect to the model parameters are required by the optimization
process. Methods that require such derivatives, such as Newton methods and quasi-Newton
methods, typically are efficient in that they converge to a solution with a minimum number of
evaluations of the forward problem. However, evaluating the derivatives may in itself be a major
task that is even more complicated than the forward problem. A recent development in this
area that appears to be under-utilized in the field of geophysics is the availability of automatic
differentiation tools.

Automatic differentiation (AD) tools make computer models more useful by augmenting
them to provide sensitivity information in addition to the model outputs. Furthermore, the
augmentation process requires little or no user intervention (hence the "automatic"). The capa
bility of deriving accurate sensitivities from a computer model with little additional development
cost enables users of computer models to develop sophisticated applications in pleasingly short
amounts of time.

Current state-of-the-art automatic differentiation tools employ a variety of techniques to
compute derivatives. For example, a user of a modern AD tool could employ forward mode
(standard chain rule), reverse mode (adjoints), sparse vectors and matrices, univariate Taylor
interpolation, and fixed-point iteration to compute the desired sensitivities.

Current AD tools, however, are language specific. To augment a computer model with
derivatives, the user must employ an AD tool that is specifically designed for the source language
of the model. The primary language addressed by a current high-quality AD tool will almost
certainly be Fortran 77 or C. At present, this is not a serious limitation, as an overwhelming
majority of "legacy" computer models are written in Fortran or C.
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Advancing the state-of-the-art in AD will come from considering improved techniques, ad
ditional languages, and additional augmentation. The term "improved techniques" refers to
ongoing algorithm and implementation research. The AD methods that are currently consid
ered best may be supplanted by better methods. In particular, the memory requirements for
AD adjoint techniques should certainly be improved. Furthermore, parallel computing may be
better exploited by improved AD techniques.

The term "additional languages" addresses the known limitation of current AD tools to
Fortran and C. More recent (i.e. non-legacy) computer models are being implemented in more
modern languages such as C++, Fortran 90 and Java. The sophisticated semantic features of
these languages pose some interesting challenges for AD tools.

Finally, "additional augmentation" generalizes the augmentation aspect of AD. An AD tool
augments a computer model to "propagate" derivatives according to well-known rules. There
are, however, additional mathematical objects besides derivatives that might be propagated.
For examples, the "verified computing" community already constructs programs to propagate
"intervals". Augmenting a computer model to propagate intervals could certainly be poten
tial benefit when validating a computer model, or using it for robust (Le. minimum variance)
design applications. A second kind of interesting augmentation could be "probability mea
sures". For some given probability distribution of input values, computing (or approximating)
the probability distribution of model outputs could be useful for reliability modeling. A third
possible augmentation could be Fourier coefficient propagation. For a given frequency compo
nent, Fourier propagation might enable users of a computer model to assess certain stability
properties. Generalizing Fourier propagation to wavelet propagation might also produce some
interesting additional information.

4.6 Linear problems

For geophysical inverse problems where the relationship between the data and the model is
linear, the methods of solution are well developed and well understood (Menke, 1989; Parker,
1994). For model parameterizations that are either continuous or discrete, methods of solution
have been developed for a number of different optimization criteria. For instance, when noise
is present and its distribution is known, solutions that are maximum likelihood are available.
Measures of resolution in both the data space and model space can also be calculated (Berryman,
2000), thus allowing quantitative estimates of the fitting of the data and the uniqueness of the
model. An important feature of linear problems is that it is generally possible to map noise in
the data directly into a measure of uncertainty in the model.

One feature of linear problems that needs improvement is a more optimum handling of
regularization. Most geophysical inverse problems are not well posed as originally formulated,
and the usual method of alleviating this situation is to impose some form of regularization.
However, the regularization is most often imposed in an ad hoc manner and it is difficult to find
a balance between the amount of regularization necessary to make the problem well posed and
that which grossly distorts the solution. What is often possible but rarely done in geophysical
problems is to make the degree of regularization a variable parameter that is optimized as part
of obtaining the solution. This appears to be one area where the handling of linear problems
could be improved.
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4.7 Linearized problems

Given the considerable machinery that exists for solving linear inverse problems, there is a
tendency to formulate problems so that linear methods can be used whenever possible. For
problems that are not too strongly non-linear, this can be done by a process of linearization.
Consider the reduced form of the theory constraint (equation 10) and write

aa(ma )
d = a( rna + <5 m) ~ a( rna) + am <5 m , (22)

where it ha~ been assumed that rna is a reference model and that higher order derivative terms
are small enough to be ignored. Then, defining od = d - a(mo ), we have the linearized problem

od = 8a(mo ) 8m.
am

(23)

J

\

So long as the the solution does not stray too far from the reference model rna, this problem
can be solved with standard linear methods, which also includes the standard linear estimates
of resolution and uncertainty. The situation where the reference model is unknown is handled
by an iterated linearization procedure in which a new reference model is taken to be rna + Om
and the entire linearization and solution process repeated. This type of linearized approach to
the solution of an inverse problem is commonly used in the location of earthquakes where it is
known as Geiger's method (Lee and Stewart, 1981).

The process of solving a non-linear inverse problem by solving a series of linearized problems
is in principle no different from some of the standard iterative methods developed for solving
non-linear problems, such as the line search and trust region methods (Dennis and Schnabel,
1996). An advantage of using these established non-linear methods for problems of this type
is that convergence proofs exist and well-tested algorithms are available. Thus, in the case of
many geophysical problems, it is difficult to justify the linearization of a problem when efficient
methods of solving the non-linear problem are available.

4.8 Nonlinear problems

Many geophysical inverse problems fall into the category where both the objective fUIlction and
the constraints are significantly nonlinear in the model parameters. The choice of whether to
use methods that do or do not require derivatives is especially important in this case because
both first and second derivatives may be required by the methods that do use derivatives.

There is a variety of methods for this type of problem that use derivatives and global and
local convergence proofs are available for most of these methods. For a discussion of these
methods it is important to distinguish between the two related formulations (18) and (19).

For problems (18) without constraints one could apply Newton's method. This requires
both first and second derivatives, i.e. the Hessian matrix. Obtaining the second derivatives
may be difficult, either because the mathematical expressions are difficult to derive or because
they are computationally expensive. There is a class of geophysical inverse problems, such as
global seismic tomography, where the problem is so large that second derivatives are out of
the question, as are any matrix inversions. The nonlinear conjugate gradient (CG) methods
and variants such as LSQR (Paige and Saunders, 1982) have turned out to be the methods of
choice for these types of problems and their performance seems to be satisfactory (Nolet, 1984,
1985; Newman and Alumbaugh, 1997). Alternatively, inexact CG-Newton methods or limited
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memory quasi-Newton methods should be be considered (Nocedal and Wright, 1999). Inexact
CG-Newton methods do not require the explicit computation of the Hessian matrix, but only
require the calculation of Hessian-matrix-vector products. The latter is often feasible even for
very large-scale problems and the relations between the problem formulations (18) and (19)
reveal structure in the gradient and Hessian computations for (18) that can be used to imple
ment Hessian-matrix-vector products (see, e.g., Dennis et al., 1997; Dennis and Vicente, 1997;
Heinkenschloss and Vicente, 1999b). Limited memory quasi-Newton methods replace the true
Hessian matrix with low rank matrix whose storage requirement can be limited by the user.
For both methods, inexact CG-Newton and limited memory quasi-Newton, convergence of the
iterations from arbitrary starting values can be obtained by using line-search and trust-region
globalization strategies (Nocedal and Wright, 1999). For both methods the added line-search
or trust-region globalization strategy will typically become inactive near the minimum, which
eliminates the need for additional function evaluations. Nonlinear CG methods require a line
search globalization and, even near the minimum, a line-search involving expensive function
evaluations at trial steps is usually necessary. Trust-region globalizations have a regularizing
effect on the optimization step computation, since the trust-region may be viewed as a regu
larization constraint on the step with the regularization parameter adapted by the optimization
method.

Problems (19) can be solved using sequential quadratic programming (SQP) methods. In
exact step computations, quasi-Newton approximations to Hessians, and line-search and trust
region globalizations are available for this class of methods. As pointed out in Section 4.1, one
can formulate most geophysical inverse problems as (18) or (19). The formulation (19) promises
significant advantages and should be further evaluated in the context of geophysical inverse
problems.

The efficient solution of problems with many variables and many inequality constraints is
a very active area in optimization research. Optimization techniques such as projection meth
ods or interior-point methods need to be investigated for large-scale inverse problems. Since
some inequality constraints might be rather 'soft' regularization constraints, other application
dependent techniques for handling inequality constraints could be envisioned.

There has been progress in recent years on search methods that do not require derivatives.
Such methods are sometimes chosen because they are less likely to converge to a nearby local
optimum than derivative based methods. Some choices are genetic algorithms, pattern search
algorithms, and an interpolation method, DFO, of Conn et al. (1997). DFO seems very promis
ing, but there is a random component to the algorithm that makes it difficult to predict how it
will behave in a given run.

Genetic algorithms will be discussed more below, but they are thought generally to obtain
excellent initial decrease, but then to stagnate around a local optimum. A representative example
of this behavior can be found in Booker, et al. (1999), on a problem in helicopter rotor design.
Results are given there for DFO, for a surrogate management method based on kriging, and
for the parallel direct search (PDS) of Dennis and Torczon (1991). DFO and the surrogate
management method are far better for this example than the alternatives, but all the results
are given for a sequential implementation. That is important because, though all the methods
have a great deal of potential for parallelism, one can not be sure of how each would do on a
particular class of problems (see Hough et al., 2000).

As implemented, PDS fails in a completely trivial way to satisfy the general convergence
theory given by Torczon (1997), and so the PDS results can be viewed as representative of the
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results to be obtained from the generalized pattern search (GPS) class of algorithms defined
and analyzed by Torczon (1997). Torczon and Trosset (1997), Lewis and Torczon (1996, 1998a,
1998b, 1999), and Lewis et al. (1998) give useful and interesting extensions of the algorithms
and the supporting theory, especially their work on problems with a finite number of linear
constraints, which could be bounds on the parameters in geophysical inverse problems. They also
give an interesting approach related to GPS with a very satisfying convergence theory for general
constraints. Audet and Dennis (2000a, 2000b, 2000c) extend this class of algorithms to handle
mixed continuous and discrete variables and general constraints, and they give a new analysis
showing convergence for discontinuous problems with appropriate optimality conditions for limit
points at which the problem is locally smooth. Thus, the GPS algorithms are especially attractive
in that they are broadly applicable, simple to implement and supported by a stron,g proof of
convergence to local optima. When used in conjunction with the feasibility constraint methods
mentioned previously (Berryman, 1997), such methods can take advantage of the variational
structure of the fully non-linear inversion problem.

The problem of multiple solutions is particularly important for nonlinear inverse problems,
as most optimization methods only provide a local extremum and separate procedures must
be used to find a more global extremum. Methods are available that are designed to find
the global extremum. For example, one such method uses a combination of smoothing and
continuation to find global solutions (More and Wu, 1997). Another method, the terminal
repeller unconstrained subenergy tunneling (TRUST) algorithm, has been used to solve a fairly
difficult geophysical inverse problem, the estimation of residual seismic static corrections (Barhen
et al., 1997). Another approach deals directly with the nonlinear nature of the problem and
uses recent advances in computational algebra to handle the polynomial equations that must be
solved (Everett, 1996; Vasco, 1999, 2000).

Grid search and stochastic search methods are also designed to find global extrema. For
small problems it may be possible to perform a grid search in which all members of the model
space are examined and either accepted or rejected. For somewhat larger problems a Monte
Carlo search may be possible and it has the advantage of being simple to implement and easy
to check (Mosegaard and Tarantola, 1995; Mosegaard, 1998). However, for most geophysical
inverse problems the number of model parameters and the required accuracy are such that a
complete Monte-Carlo search is unfeasible simply because of the number of times t1}e forward
problem would have to be calculated to achieve sufficient sampling of the model space. The
search of the model space can also be guided by a statistical Bayesian approach in which a
combination of prior information and the information contained in the observational data are
used to construct some measure of relative probability for the model space (see for example
Tarantola, 1987, or Sen and Stoffa, 1995). While these methods that attempt a general search
of the model space are appealing because of their simplicity and completeness, they are not yet
practical for most geophysical inverse problems. This is because the size of the model space,
which is of order 10M where M is the number of model parameters, is generally much too
large to allow a general search in finite computational time. Nevertheless, there continues to be
considerable effort devoted to the task of improving the efficiency of stochastic search methods.
Bosch et al. (2000) obtain promising results using a combination of importance sampling and
multi-step sampling.

While neither enumerative nor completely random searchs of the model space have proven
to be effective methods of solving most large geophysical inverse problems, there are some
directed search methods, also called pseudo-random search, that have been more successful. Two
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examples are simulated annealing and genetic algorithms. Both of these approaches retain some
aspects of a random statistical search of the model space but use the gradually accumulating
information about acceptable models to direct the search into those parts of the model space
where good models are most likely to be found. These approaches appear to be feasible for
moderately sized problems where a full Monte Carlo approach would be prohibitive (Scales et
aI., 1992).

Simulated annealing is based upon an analogy with a natural optimization process in ther
modynamics and uses a directed stochastic search of the model space. It requires no derivative
information. Its use in numerical optimization problems began with Kirkpatrick et al. (1983)
and its first use in geophysical problems appears to be Rothman (1985, 1986). A review of the
method and its application to geophysical problems can be found in Sen and Stoffa (1995) and
examples of its use in Sen and Stoffa (1991), Mosegaard and Vestergaard (1991), and Varela et
al. (1998).

Another class of directed search methods are the evolutionary methods that make use of
analogies with the natural optimization processes found in the evolution of biological systems
(Rolland, 1975; Goldberg, 1989). One class of such methods, genetic algorithms, applies the
operators of coding, selection, crossover, and mutation to a finite population of models and
allows the principle of "survival of the fittest" to guide the population toward a composition
that contains the optimum model. This approach has been applied to a number of geophysical
problems (see for instance Stoffa and Sen, 1991; Sen and Stoffa, 1992, 1995; Sambridge and
Drijkoningen, 1992; Kennett and Sambridge, 1992; Everett and Schultz, 1993; Sambridge and
Gallagher, 1993; Nolte and Frazer, 1994; Boschetti et aI., 1996; Parker, 1999). AnotHer class of
evolutionary methods, evolutionary programming (Fogel, 1962; Fogel, 1995; Back, 1996), uses
only the operators of selection and mutation and has only recently been applied to geophysical
problems (Minster et aI., 1995; de Groot-Redlin and Vernon, 1998).

Approaches that attempt some combination of stochastic and deterministic search methods
would appear to hold considerable promise. The general idea is to combine the global search
property of the stochastic methods with the efficiency of the deterministic methods. Of course,
one must always keep in mind that global optimization of a general function is computationally
intractable and so no method is sure to work. This is understood for most general nonlinear
problems, but global optimization has a further difficulty. Specifically, even if one has found a
global optimizer, it is impossible to recognize it for a general problem (Stephens and Baritompa,
1998). This does diminish the importance of work on global optimization methods, but, on the
contrary, it just shows how difficult the problem is and what we can hope to accomplish.

4.9 Very large problems

There exist some geophysical inverse problems that are so large that special methods of solution
have to be used. Tomography problems such as canonical problem 4 often fall into this class,
where it is not unusual to have on the order of 107 data and 105 model parameters. Linearization
about a reference model rna is almost always performed in these problems, and the reference
model is usually held fixed. The choice of a method of solving such a linear system is"restricted
by the fact that it is not possible to fit the entire coefficient matrix into primary storage of most
computer systems, even though this matrix is usually sparse. This restriction eliminates many
standard solution methods, but there do exist approaches that require access to only one row
of the coefficient matrix at a time. These are iterative methods, but in this case the iterations
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are needed just to solve a linear system of equations. Two general approaches of this type have
been commonly used in geophysics, the class of algebraic reconstruction methods and the class
of projection methods (van der Sluis and van der Vorst, 1987). A more recent approach to
the solution of linear large-scale discrete ill-posed problems that only requires matrix-vector
products is described in Rojas and Sorensen (1999).

5 Appraisal of the Results

An important characteristic of geophysical inverse problems is that the solution to the optimiza
tion problem is most likely not the true model of the earth that generated the data. Thus, it is
generally recognized in geophysics that a complete solution should include a description of the
optimum model and an evaluation of how this optimum model may be related to the true model.
This latter evaluation typically includes two separate aspects, the sensitivity of the optimum
model to incompleteness in the data and the sensitivity to noise in the data.

5.1 Resolution

For most geophysical inverse problems the amount of information in the data is insufficient to
independently determine all parameters of the model (Jackson, 1972; Alumbaugh and Newman,
1997). This can be expressed as

ffiopt = R(m) (24)

where the resolution operator R maps the true model m into the model mopt produced by the
optimization procedure. Departure of R from an identity operator signifies imperfect resolution.
Typically it describes a smoothing operation because fine details of the true model can not be
resolved by the available data. Stated in another way, an imperfect resolution operator says
that the solution is non-unique, a characteristic of most geophysical inverse problems.

For linear problems the construction of the resolution operator is straightforward (Jackson,
1972; Wiggins, 1972; Menke, 1989). However, for very large problems this task may represent a
prohibitive computational burden. Recent advances have shown how to compute approximations
to the resolution operator iteratively for such large systems (Nolet, 1985; Zhang and McMechan,
1995; Minkoff, 1997; Berryman, 2000). Alternatively, resolution can be approximated by showing
how well the features of a synthetic model can be reproduced by the inversion method. The use
of such approximate measures of resolution can be misleading (see for instance Leveque et al.,
1993) unless the synthetic model contains a complete range of features.

For nonlinear problems the concept of resolution is still important but general methods for
its estimation are not available. The Occam's razor approach (Constable et al., 1987; deGroot
Hedlin and Constable, 1990) proceeds by over-parameterizing the model, including a measure
of smoothness in the objective function, and then solving for the smoothest possible model
consistent with the data. Kennett and Nolet (1978) suggested an approach that can be used
with stochastic search methods (Sen and Stoffa, 1995) to produce a suite of successful models.

5.2 Uncertainty

When noise is present in the data the inverse problem acquires a random nature and the task is
to determine how uncertainty in the data is propagated into uncertainty in the optimum model.
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This uncertainty is typically represented in terms of a covariance matrix and then

cov[moptJ = U(cov[d]) (25)

where U represents the uncertainty operator.
For linear problems explicit expressions for U are possible (Menke, 1989) and the major

difficulty lies in estimating the statistical properties of the noise. The critical element of the
analysis is that there is a linear mapping between the probability distribution of the noise and
that of the model, which means that meaningful statistics can be derived.

For nonlinear problems a measure of uncertainty is much more problematical. Analytical
expressions for the shape of the objective surface in the vicinity of the optimum model are
generally not available. When sufficient data redundancy is present, a direct exploration of this
surface with resampling methods, such as the jackknife and bootstrap, is possible (Efron, 1982).

5.3 Trade-offs

In almost all geophysical inverse problems there is a relative weighting between the objectives
of fitting the data and satisfying the regularization condition (the parameter f3 in equations
18 and 19). When the emphasis is on fitting the data the solution is likely to be unstable
and the uncertainty large. When the emphasis is on satisfying the regularization condition the
solution is likely to be inaccurate and the resolution poor. Thus there is a trade-off between
two incompatible objectives and some method of choosing the trade-off parameter is required.
This choice is often rather subjective, depending upon estimates of the accuracy of the data
and expected properties of the solution. It would be a useful contribution to geophysical inverse
problems if methods of optimizing the choice of this trade-off parameter could be included in the
solution of the problem. Lenhart et al. (1997) suggest one way of achieving this using optimal
control methods.

5.4 Posterior probability

In statistical approaches to the inverse problem, such as Bayesian inference, the concepts of
resolution and uncertainty are lumped together into a posterior probability density function.
For realistic geophysical inverse problems the calculation and display of this probability density
function can represent a major numerical task, particularly for nonlinear problems where an
alytical approximations are not valid. Sen and Stoffa (1996) have considered several different
methods of making this process more efficient.

6 Computational Needs

Throughout the history of geophysical inverse methods the improvement in computational re
sources has been just as important as the improvement in methods of analysis for advancement
in the quality and quantity of the solutions that can be obtained. This is likely to be true for fu
ture advancement also. The situation still exists in geophysics where there are significant inverse
problems that are not being solved primarily because of the lack of the necessary computational
resources.
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6.1· Infrastructure

The availability of the necessary computational facilities continues to be an important consider
ation in the choice of geophysical inverse problems that are attempted. Fast work stations have
greatly expanded the convenience of solving small to moderate sized problems. However, for
large problems there is still a need for the resources that can only be found at specialized facili
ties. This is because the large problems need not only fast computers but also large amounts of
memory and storage.

The solution of geophysical inverse problems can place demands upon a computational sys
tem that are different from those of normal usage and often in conflict with normal administrative
methods. For instance, some problems require the analysis of massive amounts of observational
data both prior to and during the actual solution of the optimization problem. These data are
typically too massive to be stored in active memory and must be continuously migrated between
memory, cache, and disk. Furthermore, with allowance for monitoring of the process and in
spection of intermediate steps, such analysis of the data could go on for weeks or even months,
even though the amount of CPU time used during that period could be quite moderate.

6.2 Massively parallel systems

There is a class of large and difficult geophysical inverse problems that at present can only be
attempted on massively parallel computer systems (Newman and Alumbaugh, 1997). This is
true of many problems that attempt a complete analysis of three-dimensional properties of the
earth, with the appraisal stage of the analysis often being more computer intensive than the
solution stage. Solving such problems on massively parallel systems usually requires special
organization of the problem and the use of special methods that take advantage of the parallel
architecture.

6.3 Visualization

Improvements in visualization equipment and software could contribute significantly to the so
lution of many geophysical inverse problems. Visualization is needed not only for the display of
final results, such as the the three-dimensional distribution of some property within the earth,
but also for the display of intermediate results, such as a depiction of the progress being made
by the search algorithm.

7 Summary and Conclusions

The workshop was successful in identifying a number of areas where improvements are needed
in our ability to solve geophysical inverse problems and in suggesting some directions of research
that might possibly achieve these improvements. A summary of these targets for future study is
listed below. It should be pointed out that this list is not complete, as only a few specific topics
of geophysical inverse practice were discussed at the workshop, with the choice controlled mainly
by the interests of the participants. The list is heavily weighted toward those areas where there
were obvious connections between the fields of numerical optimization and geophysical inverse
methods.

Two general needs that always have and always will be controlling factors in the progress of
geophysical inverse methods are:
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• Better solutions to the forward problem. It is a common situation in geophysical inverse
problems that the solution of the forward problem is extremely difficult and very time con
suming on a computer, which imposes a severe limitation upon the solution of the inverse
problem. Many problems, particularly those that involve three-dimensional distributions
of material properties within the earth, are simply not being done because of this limita
tion. In some cases it is possible to use simplified and approximate solutions, but this can
introduce additional uncertainty into the inverse problem. Thus there is a continuing need
for more efficient and more accurate methods of solving geophysical forward problems.

• More computational resources. The types and sizes of geophysical problems that are being
solved today is limited by the available computational resources, with a latent list of addi
tional problems that await improvements in those resources. In addition to improvements
in speed, the computational needs for geophysical inverse problems include:

Large amounts of memory, cache, and disk space.

Management policy that allows long residency of data.

More access to massively parallel systems.

Better visualization capabilities.

It is obvious that these two needs, better solutions to the forward problem and more compu
tational resources, are closely related, as the solution of the forward problem is often the most
computationally intensive part of the inverse problem and it is here that additional computa
tional resources would be most effective.

The traditional approach of dividing a geophysical inverse problem into the separate stages
of formulation, solution, and appraisal, with optimization included primarily in the solution
stage, should be re-thought. A more general and more effective paradigm may be:

• Optimization should be included in all stages of the inverse problem. This would allow a
number of improvements:

The scale of the discretization, which is often part of the formulation stage, could be
chosen in an optimum manner.

The role of regularization in the determination of the solution would become more
evident and could be selected in a more optimum manner.

The trade-off between fitting the data and satisfying the regularization condition
could be made more objective.

Certain general tendencies have developed in the formulation and solution of geophysical
inverse problems that need to be re-examined. Other possibilities that are available and should
be considered include:

• Include the theory connecting the data and the model as a constraint rather than as part of
the objective function. In principle, this change does not really change the formulation of
the problem, but it can have a significant effect upon the ability of optimization algorithms
to effectively find a solution. The main effects of this approach are:

Couplings between the variables that makes the problem appear more nonlinear to
the optimizer are avoided.
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The optimizer performs more efficiently in finding a local minimum.

The number of parameters that have to be optimized is increased.

• Invoke the theory part of the inverse problem as a feasibility constraint.

• Take advantage of automatic differentiation tools for problems where optimization methods
requiring derivatives have been avoided because of the difficulty involved in obtaining
analytical derivatives.

• Use well developed nonlinear optimization methods instead of linearizing the inverse prob
lem.

• Consider the possibility that non-smooth objective functions and regularization conditions
might be valid descriptions of the situation within the earth.

While very large problems that push against the limits of the available computational re
sources are likely to remain as one of the main challenges of geophysical inverse problems, there
are some approaches that might alleviate at least part of this difficulty:

• The use of surrogates to solve the forward problem may greatly increase the efficiency of
the calculations without significantly affecting the results of the optimization process.

• Asymptotic solutions to strongly nonlinear forward problems may lead to inverse solutions
that retain the main features of solutions to the exact problem.

• Depending upon the nature of the problem, there may be advantages in combining several
inverse problems into one or in separating a single inverse problem into several.

Due to the effects of nonlinearity and noise, optimization in geophysical inverse problems
often involves a function that has numerous local extrema. Thus there is a need for optimization
methods that search for a global extremum. Important aspects of this global optimization
problem are:

• There are deterministic search methods for finding more global solutions to the optimiza
tion problem, but they need further testing on geophysical problems. Examples are:

- smoothing and continuation methods.

TRUST.

pattern search methods.

computational algebra methods.

• The dimension of the model space for typical geophysical inverse problems is usually
sufficiently large so that grid-search and Monte-Carlo methods are not practical.

• Directed stochastic search methods, such as simulated annealing and evolutionary meth
ods, are being successfully used for some problems of this type, but they are not very
efficient.

• A combination of stochastic and deterministic search methods might achieve the dual
objectives of being both global and efficient.
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• Finding a global extremum does not necessarily mean the problem is solved, because,
primarily due to the effects of noise, the global solution may not be the best solution.

The fundamental non-uniqueness of geophysical inverse problems means that appraisal of the
results of the optimization process is an essential part of a complete solution. Relevant aspects
of this stage of the process are:

• Appraisal can be the most computer-intensive part of the inversion process and is often
neglected or approximated because of this.

• The proper treatment of both resolution and uncertainty remain as essentially unsolved
issues for nonlinear inverse problems.

• Methods of incorporating resolution and uncertainty more directly into the optimization
process are desirable.

All of the issues mentioned above would benefit from more interaction between the optimiza
tion community and the geophysical community. Ways of facilitating this include:

• Information about geophysical inverse problems should be more readily available, prefer
ably on the internet. Efforts that would help in this area include:

Availability of canonical geophysical inverse problems, including trial sets of data,
which could be used to test and benchmark various optimization algorithms.

Availability of well documented codes, both for forward and inverse problems.

Construction of an optimization guide for geophysical inverse problems.

• Geophysicists should become more familiar with the broad range of optimization algo
rithms that are available. Keeping abreast of developments in both geophysics and opti
mization is not a simple task, but it could be helped by:

More use of the optimization software and software guides that are available on the
internet.

More collaboration between geophysicists and mathematicians working on the same
inverse problem.
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