Terrestrial Sequestration of CO₂ – An Assessment of Research Needs

Patricia Dove

School of Earth and Atmospheric Sciences Georgia Institute of Technology Atlanta, GA

Jerry Harris

Department of Geophysics Stanford University Stanford, CA

John M. Logan Logan and Associates, Inc. Bandon, OR

Laura Pyrak-Nolte

Department of Physics Purdue University West Lafayette, IN

Franklin M. Orr, Jr.

School of Earth Sciences Stanford University Stanford, CA

Peter J. Ortoleva

Laboratory for Computational Geodynamics Indiana University Bloomington, IN Frank Richter Geophysical Sciences Department University of Chicago Chicago, IL

John W. Rudnicki Department of Civil Engineering Northwestern University Evanston, IL

Norman R. Warpinski

Geophysical Technology Department Sandia National Laboratory Albuquerque, NM

Wolfgang R. Wawersik

Geoscience and Environment Center Sandia National Laboratories Albuquerque, NM

John L. Wilson

Department of Earth and Environmental Science New Mexico Institute of Mining and Technology Socorro, NM

Teng-fong Wong

Department of Earth and Space Sciences State University of New York Stony Brook, NY

Foreword

Scientific debate about global warming prompted the Office of Basic Energy Sciences (OBES) of the U.S. Department of Energy to assess a broad range of research possibilities that might result in more efficient energy and reduce the amount of greenhouse gases emitted to the atmosphere. Therefore, in May 1998, the Geosciences Research Program of OBES invited eleven panelists to a workshop in order to address the potential for the sequestration of CO_2 in geologic formations as part of a possible OBES initiative on climate change technology. Starting with knowledge gained from the industrial use of CO_2 for enhanced oil recovery, the panelists were asked to identify the fundamental scientific and technical issues that would enhance the safety, efficiency and predictability of terrestrial CO_2 sequestration. This report is the product of the May, 1998 workshop and subsequent discussions among the panelists. Although many of the problems discussed cut across traditional geoscience disciplines, the background of the workshop participants naturally lead to a paper with four sections representing the perspectives of geohydrology, geochemistry, geomechanics, and geophysics.

Wolfgang R. Wawersik and John W. Rudnicki, Editors. October 31, 1998

Table of Contents

Introduction	5
Geologic Setting of Reservoirs	6
Differentiating Characteristics of Coal Reservoirs	9
Geohydrology Perspective Introduction and Experience in CO ₂ Enhanced Oil Recovery Reservoir Identification and Characterization Injection Long-Term Containment, Monitoring, and Integrity of Seals Issues of CO ₂ Disposal in Coalbeds	10 10 12 13 17 17
Geochemical Perspectives on CO2 Sequestration Introduction Aqueous Trapping Mineral Trapping	20 20 22 22
Formation of carbonates by reaction with pore-water solutes Formation of carbonates by reaction with siliciclastic minerals Formation of carbonates by reaction with carbonate minerals Microbial Trapping Role of Coupled Processes and RTM Instability Textural Models and RTM Dynamics Nucleation and Ostwald Processes.	23 23 24 24 25 26 27
Geomechanics Perspective Introduction Reservoir Characterization Faults as Seals or Conduits to Fluid Flow In situ Stress State and Measurement of <i>in situ</i> Stresses Rock Properties Rock Sampling and Scale Effects Joints and Fracture Networks Injection Stress Changes and Boundary Conditions Rock Properties and Geomechanical Models Failure and Discrete Fracture Propagation	29 29 30 30 32 32 35 35 35 37 38 38 40
Long-Term Containment and Monitoring Fluid-Assisted and Time-Dependent Fracturing	41 42
Geophysics Perspective Introduction Rock Properties Characterization Monitoring	

Containment Integrity Of CO ₂	51
Summary and Primary Research Needs	53
References	57

Introduction

National and international concern about the possible effects of greenhouse gases on climate is rising. Currently, the burning of fossil fuels provides about 85% of the world's energy. In the United States, approximately 90% of greenhouse gas emissions are due to energy production, and most of these come from the burning of fossil fuels. Although the development of more efficient and alternative energy systems will lead to a reduction in greenhouse gas emissions, it is inevitable that the burning of fossil fuels will continue to provide a considerable proportion of the nation's energy well into the next century. One strategy for reducing the emission of greenhouse gases to the atmosphere is to capture carbon dioxide from the products of fossil fuel burning and sequester it below the earth's surface, either on land or in the oceans. The period of geological sequestration should be a minimum of 50-100 years and 1000 years would be advantageous.

This report addresses geoscience issues associated with terrestrial sequestration of carbon dioxide. The primary venues being considered for terrestrial sequestration are active or depleted oil and gas reservoirs, deep saline aquifers, and underground coalbeds. Creation of large underground cavities is another possibility, but is thought to be prohibitively expensive. The technology exists for removal of carbon dioxide from flue gases and injection into the earth. In the petroleum industry, CO_2 is regularly injected into reservoirs for enhanced oil recovery and used for hydraulic fracture. In Norway, CO_2 has been injected into saline aquifers for disposal, and natural gas is regularly stored underground.

Although the considerable experience of the oil industry in CO₂ injection and gas storage is relevant, different issues arise in long-term sequestration than issues associated with energy extraction or seasonal storage. For example, did production of hydrocarbon reservoirs degrade the properties that made the reservoirs desirable? How will CO₂ interact chemically and mechanically with fluids present in the reservoirs (brine, oil)? Under what conditions will CO₂ displace the existing fluids? How will CO₂ react with existing rock, and can rock-fluid-CO₂ interactions be assessed at the temperatures and time scales (hundreds to thousands of years) of interest? Other issues are common to both hydrocarbon retrieval and CO₂ sequestration and concern uncertainties about the response of geological reservoirs over long time periods in complicated mechanical, hydrological and chemical environments. For example, what rock types and material properties (permeability, porosity, connectivity, and current level of saturation) make a good reservoir? Can the reservoir properties be identified remotely by geophysical techniques such as seismic, electromagnetic, or others? Can these techniques identify rapid flow pathways that could compromise the integrity of the reservoir or make effective utilization of pore space difficult? Although the oil industry has considerable experience with hydrocarbon reservoirs, much less is known about the geologic, thermal and fluid properties of deep aquifers.

There is little question that terrestrial sequestration of CO_2 is possible. But determining whether it is an effective strategy to reduce greenhouse gases in the atmosphere will

require careful consideration of economic issues, including the costs of removing and collecting gases from fuel byproducts, transportation of the gas to sequestration sites and compression for injection. Furthermore, the efficiency of injection and the safety and integrity of containment will depend largely on the scientific understanding of the hydrological, mechanical and chemical behavior of the reservoir.

This report begins with a brief review of major characteristic reservoir structures and lithologies as a guide to reservoir selection for CO_2 disposal. The remainder of the discussion focuses on existing experience and uncertainties in reservoir characterization, response to CO_2 injection and long-term containment of sequestration sites. The discussions are organized from the disciplinary points-of-view of geochemistry, geomechanics, geohydrology, and geophysics although an effective attack on questions of interest would require interaction among them. Within each disciplinary division, sections address concerns relating to reservoir characterization, changes during injection, and long-term containment and integrity.

Geologic Setting of Reservoirs

Oil and gas reservoirs and aquifers share some common geometric elements. Both are generally tabular bodies in which the fluid flow is constrained by upper and lower less permeable lithologies. Commonly, such barriers are presumed to be formed by shale. Faults may cut both reservoirs and aquifers with variable and often unpredictable effects on fluid flow. Aquifers typically have large lateral extents; hydrocarbon reservoirs tend to be restricted. Lateral, low permeability barriers may be caused by facies changes or by faults that inhibit flow across them. The latter is illustrated by southern boundary of the Anadarko Basin, Oklahoma, where the fault contact places sedimentary against crystalline rocks and acts as a seal to fluid migration (Al-Shaieb *et al.*, 1994). Hydrocarbon reservoirs vary from a few meters to thousands of meters thick and range in aerial extent from a few to over 100 square kilometers. Small reservoirs may contain only one producing well but large fields may contain hundreds.

Although reservoirs can be classified according to whether the fluid trapping mechanism is structural or stratigraphic, they are more commonly distinguished on the basis of dominant lithology: clastics and carbonates. Fractured reservoirs are generally treated as a third class (Nelson, 1985; Roehl and Choquette, 1985; Coalson *et al.*, 1989).

Clastic reservoirs are found in sandstones, siltstones, and shales, often with interlayered sequences of each, such as in the Powder River Basin (Surdam, 1997). The sandstones and siltstones generally have a granular quartz framework that may be poorly consolidated or cemented by quartz, clays or carbonates. Porosities and permeabilities are determined to a large degree by the depositional environment and thus tend to be relatively homogeneous over wide areas, at least compared to other environments. This element of predictability has made them attractive for hydrocarbon production and for water aquifers. Porosity and permeability, however, vary widely from reservoir to reservoir. For example, within the Rocky Mountain region the "J" Sandstone in the Denver Basin has porosities from 8 to 12% and permeabilities from 0.05 to 0.005 md, while the Muddy Sandstone in the Bell Creek Field, Montana has porosities from 6 to 26% and permeabilities form 0.1 to 13,000 md (Coalson *et al.*, 1989).

Carbonate reservoirs include those that are dominantly dolomite such as the Williston and Midland basins, dolomite and limestone such as the Anadarko Basin, chalks such as in the North Sea, and limestone reefs such as the Michigan Basin (Roehl and Choquette, 1985). The properties of carbonate reservoirs, in contrast to clastics, more often reflect facies variations and early diagenetic changes. Because the latter are often spatially and temporally variable, reservoir properties are relatively heterogeneous. Although carbonate reservoirs often have high porosity, the permeability can be low and, even more importantly, is often unpredictable within a given formation. Approximately 60% of the recoverable oil in the world resides in carbonates (Oil and Gas Journal, 1983).

Fractured reservoirs occur in all types of lithologies: limestone in Kirkuk, Iraq (one of the largest fields in the world), schist in the Wilmington Field of California, Devonian shale in a gas-producing reservoir in the Big Sandy Field in Kentucky and West Virginia, sandstones in California, and granite in Kansas (Nelson, 1985). In some fields, fractures enhance the permeability but in others they provide the essential porosity and permeability. For example, in the Big Sandy Field the shales have low to negligible intrinsic porosity and permeability and the fractures provide all transport avenues. On the other hand, in the Sprayberry Field of Texas the reservoir siltstone has an average porosity of 8% and a permeability of 0.29 to 0.50 md but abundant fractures increase the total permeability to 16 md or higher (Hubbert and Willis, 1955). The disadvantage of fractured reservoirs is the low storage capacity of the fracture-bounded blocks and the low recovery of fluids from them. Commonly, fractures cause the flow to be strongly anisotropic either because of their preferred orientation or their response to the *in situ* stress field. Frequently, the presence and importance of fractures to reservoir development are discovered only indirectly by significant discrepancies between the results of pressure decay tests in exploratory wells and predictions by means of single and double porosity theoretical models.

Most reservoirs do not consist of a single complex but are made up of several isolated compartments. The existence of these compartments for millions of years indicates a measure of stability to tectonic and diagenetic processes. Some reservoir compartments retain extreme over- or underpressure. This suggests very low permeability of their bounding seals and a number of pressure-controlling processes, including compaction, volume-increasing organic and inorganic reactions and phase transitions, and thermal expansion. Some compartments are extremely large (basin scale) and therefore represent great holding capacity (Ortoleva, 1994a; Ortoleva *et al.*, 1995; Ortoleva, 1998). Underpressured compartments appear to be particularly attractive for the purposes of CO_2 sequestration. Breaching of their seals would tend to draw in fluids from the environment rather than expel them.

Figure 1(a) The three-dimensional view of the Anadarko Basin is seen from the south showing locations where high quality pressure data are available. Note the high density of data in the deeper zones where compartmentation is generally believed to be most significant (from Ortoleva 1998; data from Al-Shaieb, Puckette and coworkers).

Figure 1(b) Isosurface of 100 kPa overpressure developed from data of frame (a) (from Ortoleva 1998).

Differentiating Characteristics of Coal Reservoirs

Another possible subsurface candidate for the sequestration of CO₂ is underground coal deposits. As in other reservoirs, gas is stored in pores and fractures and is dissolved in formation water. However, in coalbeds, most of the methane, other light hydrocarbons, and carbon dioxide are primarily held in the adsorbed state on the internal surface of the coal micropores (Bell et al., 1986), most probably as a monolayer. These micropores constitute a large surface area (on the order of 1 million sqft/lbm; McElhiney *et al.*, 1989) that enables a much greater amount of methane (or CO_2) to be stored than can be accommodated in the compressed state or dissolved in formation water. For example, Bell et al. (1986) observed that the Mary Lee coal group in the Black Warrior Basin, Alabama, had an average gas content of 400 scf/ton at pressures just less than hydrostatic pressure. The equivalent amount of compressed gas would require a coal porosity of 66%. Therefore, coalbeds can store 3 to 7 times the amount of methane that can be held in conventional reservoirs at conventional depths and pressures (McElhiney et al., 1989). Redistribution, drainage, and recharge of methane in coal are controlled by ubiquitous fracture systems referred to as cleats. The cleats transport properties are determined not only by *in situ* stress states but also by considerable shrinkage of coal following the release of methane.

Research into the adsorption/desorption of methane, CO_2 , and other gases has been performed by several researchers (Anderson *et al.*, 1966; McCulloch *et al.*, 1975; Lee, 1982; Ruppel *et al.*, 1972; Bell *et al.*, 1986; McElhiney *et al.*, 1989). The amount of gas content of a coalbed (which may conversely be the amount of gas that can be readsorbed after dewatering and methane release) will depend on moisture content, thermal maturity (rank), coal quality, and reservoir pressures (Ayers and Kelso, 1989). Kim (1977) showed that the quantity of adsorbed methane and the density of coal increased with increasing coal rank, *i.e.*, from high-volatile-content bituminous to anthracite. Gas content of coals also varies with regional formation pressure (McElhiney *et al.*, 1989), pressure-gradient, inorganic (ash) contents, moisture content (Joubert *et al.*, 1973; Yalcin and Durucan, 1991), temperature, and the wettability of coal (Bell *et al.*, 1986).

Geohydrology Perspective

Franklin M. Orr, Jr. School of Earth Sciences Stanford University Stanford, CA

John L. Wilson Department of Earth and Environmental Science New Mexico Institute of Mining and Technology Socorro, NM

> Laura Pyrak-Nolte Department of Physics Purdue University West Lafayette, IN

Introduction and Experience in CO₂ Enhanced Oil Recovery

Primary aspects of CO_2 sequestration in geologic formations include the geohydrologic characterization, injection behavior, and long-term containment of supercritical CO_2 for storage in aquifers and reservoirs. A supercritical fluid has some of the properties of a liquid (*e.g.*, density) and a gas (*e.g.*, low viscosity), and is not miscible with water. Therefore, the properties of supercritical CO_2 , including density, viscosity and miscibility, have a profound effect on its behavior in candidate aquifers saturated with water and in oil and gas reservoirs containing water as well as other fluids. For example, the supercritical CO_2 phase injected in an aquifer below approximately 800 m will exist as a separate phase that is less dense than water and will rise from an injection point and gravity segregate along the top of the aquifer.

The following deliberations focus on the geohydrologic characterization, injection behavior, and long-term containment of supercritical CO_2 for storage in aquifers and reservoirs. The discussion will emphasize the physics of fluid flow in heterogeneous formations. Important ties of geohydrologic processes to the geochemical (*e.g.*, formation of carbonate minerals) or geomechanical (*e.g.*, fracturing) behavior of the systems will be left to other sections of this report. In addition to process-based research focused on geochemistry, geomechanics, and physics of flow, site-specific data from reservoirs or aquifers will be required to flesh out numerous important issues concerning CO_2 sequestration. Thus, case studies will be an important element of future research.

Early industrial practices for sequestering CO₂ in geological formations are based on many years of proven experience with injecting supercritical CO₂ for enhanced oil recovery (EOR) (Orr and Taber, 1984; Blunt et al., 1993). As of January 1998, about 179,000 barrels/day of oil were being recovered using CO₂ injection in about 66 projects (Moritis and Guntis, 1998). Typically, it takes 4-10 MCF of CO, to recover a barrel of oil (17 MCF = 1 ton of CO_2). Most of the CO_2 is being injected in west Texas, where several large pipelines bring CO₂ from natural occurrences in New Mexico and Colorado to the Permian Basin fields. Current capacity of the major pipelines is about 1.25 BCF/day or about 20,000 tons/day of carbon. That is about 0.6% of 1990 U.S. daily carbon emission due to fossil fuel burning. By replacing existing CO₂ injections, which are essentially all natural CO₂, with CO₂ now being emitted to the atmosphere there would be measurable but modest effect on overall CO₂ emission. Since some production of CO_2 with the oil is inevitable, most projects reinject significant quantities of CO₂ over the project life. The fraction of CO₂ retained in an oil field after the project is complete can vary considerably, but it is certainly a significant portion of the CO₂ purchased for injection.

The efficiency of a CO₂ enhanced oil recovery flood depends strongly on the equilibrium phase behavior of mixtures of CO₂ with the oil (Blunt et al., 1993; Orr et al., 1995). When the CO₂ is dense enough, it is a solvent for some hydrocarbons in the oil. As the injected CO₂ flows through the reservoir rock, components in the oil are extracted into the CO₂ and some of the CO₂ dissolves in the oil and the water that is inevitably present. If the pressure is high enough, the partitioning of hydrocarbons into the CO₂ coupled to the flow at different velocities of CO₂-rich and oil-rich phases can create mixtures that pass close to the critical locus for the CO₃/hydrocarbon mixtures. Mathematical analysis similar to that applied in chromatography theory has proved that essentially 100 percent of the oil present in a one-dimensional porous medium can be displaced (in the absence of dispersive mixing) if the pressure exceeds the so-called "minimum miscibility pressure" (MMP), which depends on the composition of the oil and the temperature (Orr et al., 1993; Wang and Orr, 1998). The MMP is the pressure at which CO, readily dissolves in the oil and the interfacial tension between oil and CO, becomes small. Real displacements always include some dispersion, but even then it is theoretically possible to displace more than 90 percent of the oil in the zone swept by CO₂ if the pressure exceeds the MMP. Efficiencies in the field are significantly lower, especially when a reservoir has strong heterogeneities or is heavily fractured. When paths of high permeability or fractured rock connect injectors and producers, significant channeling and cycling of CO₂ from injection to production wells may occur (Tchelepi and Orr, 1994). This leads to undesirable early breakthrough of injected CO, and large amounts of unwanted CO₂ production.

Injection of CO_2 for enhanced oil recovery is equally applicable in sandstone and carbonate reservoirs. A primary consideration is whether the reservoir is deep enough that the pressure is above the MMP for the oil at the reservoir temperature. (Of course, this is not an issue for CO_2 sequestration). If the pressure has been lowered in the reservoir (*e.g.*, by depletion) it may be possible to raise the pressure again by water injection, for example, as long as there is not a large gas cap or aquifer. CO_2 is

attractive for injection into relatively low permeability reservoirs because the low CO_2 viscosity allows pumping at a greater volumetric rate than water. In order for the use of CO_2 for EOR to be economic, the reservoir must be large enough to justify the cost of pipeline, injection well, and CO_2 separation facilities.

Reservoir Identification and Characterization

Injection of CO_2 for storage in reservoirs or aquifers is not inherently different from water (secondary recovery) or EOR injection in oil reservoirs. Primary flow characterization issues include pre-injection fluid pressure and composition as well as thickness and permeability that determine the rate of injection, pressure buildup at the injection well, and changes in the stress field. Equally important are porosity and reservoir/aquifer volume, permeability heterogeneity affecting what fraction of the aquifer can be reached by injected CO_2 and how far the injected CO_2 propagates, and the location and character of faults and fracture systems. Although existing methods can be used to investigate many of these site characterization questions, the currently achievable resolution appears to be inadequate.

The characterization problem will differ with reservoir and/or aquifer type. Oil and gas reservoirs will be much better characterized than aquifers. Reservoirs have a record of production history, well tests, and seismic and other geophysical data, as well as many existing holes that can be used for additional characterization activities. On the other hand, aquifers can provide significantly more space for storage. A potential optimal solution is a well-characterized reservoir overlying a large aquifer. Characterization information from the reservoir could be projected into the surrounding (underlying) aquifer. Since reservoirs have already demonstrated long-term integrity, the underlying aquifers should also have this property.

One of the most important geohydrologic issues is the identification of candidate subsurface reservoirs and aquifers. What characteristics, especially geological characteristics, define the best candidates for CO_2 storage? Is it depth, lithology, proximity to CO_2 generators, *etc.*? The detailed answer to this question depends on the research outlined in this report, especially in geochemistry and geomechanics, but there are two clear factors: Depth and the nature of the pressure confinement. The deeper the reservoir or aquifer, the higher the pressure, and the larger the mass of CO_2 stored per unit volume (at the cost of the compression of CO_2 , which will generate more CO_2 if fossil fuel is used to drive the compression). Whatever the depth, underpressurized reservoirs and aquifers provide additional incremental storage capacity for injected fluids. Underpressures can be statically maintained by seals (Demming, 1994; Bradley and Powley, 1994; Ortoleva *et al*, 1995; see Geomechanics section), transient dynamic hydrologic processes (Bredehoeft and Hanshaw, 1968; Neuzil, 1995), or simply topographically driven flow systems (Toth, 1962; Neuzil, 1995). Distinguishing among these possibilities will be important for assessing long-term confinement.

Injection

Geohydrologic issues associated with CO_2 injection start at the well-head then move with the injected fluid as it migrates into the aquifer or reservoir until it finds a storage place in the pore space as a separate fluid, dissolved in water, or converted to a mineral. Two fundamental questions must be answered. How far does the CO_2 travel? What happens to it when it gets there, particularly when viewed on the scale of hundreds of years?

Whichever form --fluid, dissolved, or precipitate-- storage will take place in the primary, intergranular porosity, the spaces between the grains. The numerical value of the primary porosity represents the proportion of a volume occupied by this space. It can vary from a few percent in deeply buried and diagenetically altered sandstone to almost 50 percent in shallow, unconsolidated sand. The porosity is determined by the depositional environment (*e.g.*, as it affects sorting), and subsequent diagenesis and compaction as described further in the sections on Geochemistry and Geomechanics. The organization of the space also determines the permeability, which controls the movement of fluids. Primary porosity is usually viewed as a tortuous network of larger pore bodies connected by narrower pore throats. Most of the storage volume is in the pore bodies. Pore throats play the major role in permeability since they determine pore space connectivity.

Diagenetic precipitation or solution of minerals in the pore space has, more or less, a linear effect on storage (*e.g.*, volume of rock dissolved or precipitated equal volume of storage gained or lost, respectively). However, precipitation or solution of minerals in the pore throats results in strongly nonlinear changes of permeability. Both precipitation and solution are possible in the presence of dissolved CO_2 , depending on the chemistry and minerals present.

A major geohydrologic issue is the natural spatial variability or heterogeneity of permeability, porosity and other rock properties (Gelhar, 1993; Dagan and Neuman, 1997). In homogeneous rock (*e.g.*, Berea sandstone) permeability ranges over two orders of magnitude, while seven orders of magnitude is not uncommon in typical heterogeneous sandstones. Carbonates show even more spatial variation of properties, and fractured systems are often even more heterogeneous. Because of the depositional, diagenetic, and/or stress history, natural heterogeneity is almost always geometrically organized, such as in layers, and can be described using geostatistical and/or geological models. With geometrically organized heterogeneities, zones of flow and high permeability create preferential flow paths or channels if the heterogeneities are sufficiently correlated in layers or other structures. As a result, not all portions of an aquifer or reservoir are accessible to injected fluids, diminishing the volume of CO_2 that can be stored.

Permeability and porosity will change with time and space as a consequence of CO_2 injection and storage (or prior oil or gas production), for both geochemical and geomechanical reasons. Usually, the result will be a reduction of permeability and

porosity, making transport and storage of CO_2 more difficult. Because of the presence of different minerals on the pore scale, and larger scale heterogeneities on the aquifer/reservoir scale, precipitation and dissolution may occur simultaneously in adjacent portions of the pore space or aquifer/reservoir.

Injection of CO₂ into reservoirs or aquifers presents several special flow problems, many of which have already been addressed by the community using CO_2 for EOR. Because CO₃ has relatively low viscosity (a few hundredths of a centipoise) no matter what the injection conditions, hydrodynamically unstable displacement will occur. In a homogeneous porous medium, displacement of a viscous fluid by a less viscous one leads to "viscous fingering" in which fingers of low viscosity fluid penetrate the high viscosity fluid rather than displacing it uniformly (Homsy, 1987). It is now known, however, that in many if not most oil reservoirs and aquifers the distribution of permeability dominates the formation of viscous fingers (Tchelepi et al., 1993; Tchelepi and Orr, 1994). The low viscosity CO₂ finds the preferential flow paths easily. In effect, the permeability distribution creates the paths in which fingers develop. This situation is often called channeling. Thus, permeability heterogeneity can reduce substantially the fraction of a reservoir or aquifer that can be swept by the injected CO₂ in a reasonable time. In an EOR application adequate characterization of the spatial distribution of permeability within an oil reservoir is an important part of prediction of CO₂ flood performance or sweep efficiency. CO₂ is usually lighter than oil and always less dense than water, so gravity segregation of the injected CO, also contributes to reduced sweep efficiency (Tchelepi and Orr, 1994).

In a water-filled aquifer, supercritical CO_2 will be displacing an immiscible water phase. Even in the absence of viscosity or gravity effects the displacement will be inefficient because of capillary effects due to the relatively high interfacial tension between CO_2 and water. The water is (usually) more wetting, and the CO_2 displacement will prefer larger pore spaces. This is the same space preferred by singlephase viscous flow and by viscous fingers of CO_2 displacing water. Capillarity amplifies the effects of heterogeneity, with CO_2 bypassing large volumes of tighter rock, further reducing sweep efficiency.

Viscous, gravity and capillary forces act together in a heterogeneous rock to create channels of preferred flow in higher permeability materials with large by-passed zones in between. Since the objective is to sequester CO_2 rather than use it to drive oil, sweep efficiency may not be an important issue: it matters less where the CO_2 goes as long as there is sufficient volume available at reasonable injection pressure and as long as the CO_2 stays in the reservoir or aquifer. If fluid is not being withdrawn from the aquifer (to create volume, for example) then cycling of CO_2 through high permeability flow paths is less important. It only appears to be an issue when chemistry is considered as discussed later, and may even be an advantage delivering large amounts of CO_2 far from the well.

Transport of CO_2 along the preferred flow paths will be relatively quick, especially when the paths are composed of open fractures, with much slower transfer of CO_2 from

these paths to the surrounding by-passed zones. If the material around the preferred flow paths is composed of much finer pores, supercritical CO_2 will have difficulty penetrating the tighter porous rock matrix where storage will take place, especially because capillary forces may limit penetration. If the CO_2 is dissolved in the aqueous phase it will enter the surrounding rock by diffusion if the permeability contrast is not large, and by cross-flow. In any event the time scales for chemical reactions will be completely different in the fast paths and the by-passed zones because different processes will control the supply of reactants in each case. The large-scale kinetics of interaction between the fast paths and by-passed zones will be determined by their contrasting properties, configuration, and relative size and frequency. Only in this sense does it appear that the details of heterogeneity and preferred flow become important. Ideally, the chemistry might be arranged such that precipitation of carbonates occurs in the by-passed zones, while transport is maintained or even enhanced by dissolution along the preferred flow paths.

Fractured porous rock represents a special case of heterogeneity, with an interaction potential between matrix rock and fractures depending on the size distributions of the matrix blocks and fracture apertures, and the fracture connectivity. Storage in the fractures themselves is often negligible. The conceptual view of this process requires the consideration of large rock volumes in order to invoke continuum concepts like porosity. In the standard "double porosity" model of naturally fractured systems, all large-scale flow is assumed to take place in the fracture network, while the matrix blocks provide the storage. Communication between the two is due to local cross flow, caused by pressure gradients between the isolated matrix blocks and the surrounding fractures or, in the case of dissolved CO₂, by diffusion. The next most sophisticated model assumes that there is also some net flow through the matrix blocks. This "double permeability model" is appropriate when the permeability contrast between matrix and fractures is small. These multiple porosity models, however, fail when the number density of fractures drops and the continuum hypothesis is no longer valid. Discrete fracture models are then used in which the geometry of the fracture network is represented explicitly. The difficulty with this approach lies in determining the location, connectivity, and properties of the fractures, which are also characterization issues for geomechanics and geophysics. Natural fracture porosity could move significant amounts of CO₂ from an injection site to storage locations in matrix blocks far away. Understanding of single phase flow in fractured systems is not well understood if alterations of fracture geometry and connectivity by stress or chemistry are considered, and much less is known about multiphase flow in fractures, such as would occur with supercritical CO₂ displacing water.

 CO_2 could also be injected into shallower aquifers and reservoirs. Depending on the salinity significant amounts of CO_2 can be dissolved in water, enough to increase its density by as much as several percent (Bachu *et al.* 1996), but viscosity would effectively be unchanged. One major disadvantage of this option is the much larger volumes of fluid that would need to be injected to store the same amount of CO_2 . Following injection in an aquifer the pore space would continue to be saturated with water. The resulting single fluid phase flow would be determined by the permeability

of the aquifer and the composition, temperature, and pressure of the water as it affects viscosity and density. There would be no viscous fingering. Preferred flow paths and by-passed zones would still be an issue, but would be determined by the permeability heterogeneity with no contributions from viscous fingering or capillarity. Density gradients would continue to be significant and produce a tendency for water to segregate by gravity along the bottom of the aquifer. If the bottom were sloped then a dense plume of CO_2 -saturated water would tend to move deeper into the subsurface. This same principle is used to support one of the ocean disposal options for CO_2 , and in aquifers could limit the need for an overlying seal.

Mathematical modeling of CO_2 injection performance for reservoirs of all kinds (including coal) must consider cross-coupling of geochemistry, geomechanics, flow and transport, in what will be referred to as RTM (reaction, transport, mechanics) modeling in subsequent sections of this report. Over the last thirty years considerable effort has been expended to build and improve flow and transport models of oil recovery CO_2 flood performance at the reservoir scale. Although these models often ignore chemistry and mechanics, many of the issues of these models also apply to the CO_2 storage problem. This experience suggests three essential components for accurate field scale predictions for CO_2 storage in aquifers and reservoirs:

- 1. Accurate representation of capillary pressure behavior and phase equilibrium of CO₂/hydrocarbon/water systems with an equation of state (determines local displacement efficiency).
- 2. Accurate description of the spatial distribution of permeability (influences very strongly the fraction of the reservoir or aquifer swept). Because it is difficult to acquire detailed reservoir description data, this is often the limiting factor in reservoir EOR performance predictions. Careful use of geostatistical descriptions can help, but cannot eliminate problems due to sparse sampling of reservoir properties.
- 3. Flow simulations performed on a computational grid fine enough to resolve heterogeneities and any gravity segregation that occurs. The computational costs associated with very fine grids have induced considerable research in ways to compute average properties that can be used on a coarser grid, with limited success for multiphase flow.

The foregoing components should be part of an RTM modeling approach simulating the movement of CO_2 away from the injection points to storage locations, where mineral trapping might occur. Coupled modeling also creates the opportunity to address related questions: How do the natural aquifer/reservoir heterogeneities influence the location and nature of mineral trapping? Do the mineral trapping reactions plug the preferred flow paths, especially fractures? Or, as plugging occurs, does CO_2 injection drive the formation pressure to the threshold for fracturing?

Long-Term Containment, Monitoring, and Integrity of Seals

Gravity segregation will bring supercritical CO, upward until it meets a seal at the top of the aquifer or reservoir. Not much is known about the long-term integrity of seals, even in oil and gas reservoirs. In general, seals have much lower strength than the rock they overly, and it is not clear how they will react to the changing stress and chemical conditions that follow CO₂ injection (see sections on Geochemistry and Geomechanics). By definition, no seal is perfect. They all leak. It is only a matter of time. Trapped oil and gas reserves prove that the time can be very long indeed, but there are many dry reservoirs that leaked off long before they were drilled to demonstrate that leakage is the rule. Slow leakage of CO, to adjacent, overlying formations may be of no consequence, particularly if those formations are other deep saline aquifers. Slow leakage that returns CO, to the atmosphere is less acceptable, because it defeats the purpose of disposal. Catastrophic leakage is unacceptable. Systematic investigations of what constitutes a good seal ("trap"), on one hand, and seal failure modes, on the other, over the time scales of interest for CO, sequestration are needed. Discussions on Geochemistry and Geomechanics review these issues. One aspect that those sections do not treat is sealing mechanisms. Is it a pressure seal, blocking all pore fluid movements over "substantial intervals of geologic time" (Hunt, 1990; Neuzil, 1994), or a capillary seal, in which a wetting fluid preferentially occupies the fine-grained pore space of the seal (eg, shale), thus preventing the movement of a non-wetting fluid (Revil et al., 1998)? Importantly, methods for the sealing potential of aquifers, for example, significant under- or over- pressures, or anomalous water chemistry are not available. This raises additional characterization issues for aquifers and reiterates the need for site-specific data and case studies.

Monitoring of injection and long-term integrity will involve a combination of monitoring wells completed in the storage reservoir or aquifer and in overlying units. Monitoring will have to rely heavily on geophysical techniques (see appropriate section of this report). In abandoned oil and gas reservoirs other wells can be used to monitor performance, but in aquifers the number of monitoring wells will be limited. Conventional monitoring of injection pressures will be essential, while samples of fluid composition would help track the progress and nature of the displacement. Seals are usually inferred by observing large differences in pressures (Bradley and Powley, 1994) or chemistry across strata. During and after injection additional holes could be drilled, and cores extracted, to track the progress of mineral trapping.

Issues of CO₂ Disposal in Coalbeds

A potentially attractive option for CO_2 sequestration is coal beds. CO_2 would be injected into buried and fractured coal seams, bounded by lower permeability sediments. Coal has a greater affinity for CO_2 than for methane (CH₄). This adsorption is a self-stabilizing (anti-fingering) process and mitigates the effects of preferred flow paths due to heterogeneity and fractures (called cleats in coal), resulting in high sweep efficiencies. Thus CO_2 is stored efficiently within the coal seam, with breakthrough occurring only after filling most of this storage. Since storage is likely to take place at shallower depths than supercritical CO_2 injection, it is important that the probability for release to the surface be low. Therefore, a critical element is the integrity of the confining beds bounding the coal seam.

In spite of some apparent advantages, CO_2 sequestration in coalbeds entails several major uncertainties. These include the fundamentals of the desorption and adsorption processes (CH_4 vs. CO_2), wettability, moisture content, temperature, the geometry and characteristics of the fracture network, the flow through the network, and the effects of changing stress on all of these.

Desorption of the gas from the coal is controlled by the hydrostatic head of the aquifer (McElhiney *et al.*, 1989), but also appears to vary nonlinearly with pressure. By dewatering the coal seams, the pressure is reduced and methane is desorbed from the coal. After desorption, the methane diffuses through the coal into the cleat system and flows to the production well. For example, Bumb and McKee (1988) found that a 70% reduction in external pressures was required before 25% of the absorbed methane was released from Mary Lee coal group in the Warrior Basin, Alabama.

If coal-bed methane reservoirs have been reflooded with water after production, it becomes important to understand the effect of coal wettability to CO_2 and other reservoir fluids on coal seam permeability and relative permeability. Satisfactory history matches for water and gas flow in coal reservoir simulations appear to suggest that it is acceptable to treat coal as water-wet. However, on the field scale, a coal seam is made up of coal interbedded with shale and other impurities that may mask the true wettability properties of the coal. On the laboratory scale, a coal sample will consist of a heterogeneous mixture of organic and inorganic (*i.e.*, mineral matter) components. The organic components of coal are generally expected to be more hydrophobic than the mineral matter components (Nelson, 1989). Additionally, the distribution of minerals in a cleat is important in terms of the wettability of the cleat surfaces. If the flow paths through the cleat cross over the carbonate minerals, these sites in the cleat would be hydrophilic, *i.e.*, water-wet. Coal cleats with some mineralization would probably have a composite wettability implying that some sites on the cleat surface would be hydrophobic and others would be hydrophilic.

By definition, the wetting phase consists of a fluid making a contact angle of less than 90° with a solid and another fluid (Scheidegger, 1974). The organic components of coal include varying amounts of paraffinic, naphthenic, and aromatic hydrocarbons. The contact angle of water on paraffin in air is 112° - 114° (Adams, 1964), *i.e.*, the paraffin is hydrophobic and the water is non-wetting. Measurements of the contact angle of water on coal in air have yielded values ranging from 30° (Arnold and Aplan, 1989) to 132° (Surinova and Polushkin, 1987), and the water ranges from wetting to non-wetting. It is therefore uncertain what inferences can be drawn about the wettability of coal surfaces from measurements of air-water-coal contact angles and whether these wettability data can be extrapolated to reservoir conditions where the coal would not have been altered by aerial oxidation and where the second fluid is

methane rather than air. Aerial oxidation would increase the overall wettability of the coal surface (Nelson, 1989). Given the present state of knowledge, the wide range of contact angle values reported for water on coal in air are caused by variations in: (1) oxygen functionality of the organic component of the coal surface; (2) the mineral matter content of the coal surface; (3) impurities; (4) porosity; and (5) surface roughness (Arnold & Aplan, 1989). Conclusions about the wettability of coal surfaces from air-water-coal contact angle measurements may be misleading unless both the physical and chemical composition of the coal surface and the experimental conditions under which the measurements were made are known.

Critical elements for coalbed sequestration will be the understanding of ubiquitous cleat systems in coal and the integrity of the confining beds bounding the coal seam. Cleats are naturally occurring fractures that provide the permeability necessary for fluid (i.e., gas and water) flow. As in other reservoirs (see geomechanics section), the geometry and distribution of void spaces in the cleat system will control the overall permeability of coal. Complications may arise from changes in reservoir permeability over time as injection of gas occurs and the coal begins to swell (Harpalani and Zhao, 1989). During methane production, the loss of volatiles caused by desorption (Briggs and Sinha, 1933; Moffat and Weale, 1955) results in volumetric shrinkage of the coal matrix and a possible increase in fracture apertures. Conversely, during gas or CO_{2} injection, the net confining pressure within the reservoir system will decrease so as to alter the geometrical properties of the cleat network. Knowledge of the impact that the change in net stress has on cleat permeability is essential for accurate simulations of CO₂ injection potential of coal reservoirs. The role of fractures and the dependence of cleat permeability on stress have been treated more prominently in coalbed analyses than in oil and gas reservoir simulations. Several of these aspects will be discussed in greater detail from the viewpoint of geomechanics.

The importance of cleats suggests the need for research on remote characterization concerning cleats and cleat systems. Pyrak-Nolte *et al.* (1997) used x-ray computerized tomographic (CT) imaging to obtain quantitative aperture data for three-dimensional interconnected fracture networks in coal. This work revealed that the aperture distribution of the networks was spatially anisotropic and dependent on the number and geometry of the individual fractures. Void area in the individual fractures ranged from 45% to 58%, while total volumetric porosity of the samples was on the order of 0.1%. A three-dimensional auto-correlation analysis on the fracture network and a two-dimensional analysis on the individual fractures found that the apertures were correlated over distances of 10 mm to 20 mm in the direction of flow. Further research is needed to determine how the aperture distribution and connectivity of the fracture network (and thus the relative permeability) in coal is affected by gas adsorption which produces swelling in coal, and how laboratory results can be used on the field scale if apertures are only correlated over 10 mm to 20 mm.

Geochemical Perspectives on CO2 Sequestration

Peter J. Ortoleva Laboratory for Computational Geodynamics Indiana University Bloomington, IN

Patricia Dove School of Earth and Atmospheric Sciences Georgia Tech Atlanta. GA

Frank Richter Geophysical Sciences Department University of Chicago Chicago, IL

Introduction

A useful way of identifying key issues in connection with CO_2 sequestration is to begin by considering the simple model problem of injecting CO_2 into a closed mineral/fluid system and ask how well can we predict its subsequent evolution. Initial conditions need to be specified and a minimum characterization at t=0 will involve pressure, temperature, fluid fraction and solute chemistry, and mineral fractions including their spatial distribution. The ability to calculate the state of the system at long times requires thermodynamic data, and for this there exist a number of software packages (*e.g.* EQ3/6 maintained by Lawrence Livermore National Laboratory) that are believed to be quite adequate for present purposes. Even though the final state of the system can in many cases be calculated with reasonable confidence, predicting the path and rate by which the system evolves to this final state is extremely problematic. The main source of uncertainty derives from our inability to realistically specify the kinetics of the various homogeneous and heterogeneous reactions that take place.

Uncertainties in the rates of reactions expected to take place following CO_2 injection severely limit our present ability to predict the ultimate storage capacity and storage integrity of natural reservoirs associated with trapping injected CO_2 by the precipitation of carbonate phases. Several potentially important trapping mechanisms are discussed below, and some indication is given as to whether the key reactions are expected to be fast or slow. However, quantitative statements regarding the effectiveness of any given trapping mechanism requires realistic kinetic information, but such information is not presently available for anything but the very simplest of situations.

Beginning with a simplified approach that focuses on geochemical reactions, we can examine elements of the sequestration problem by following the evolution of CO₂ upon

injection into the subsurface and resulting physical displacement of the existing pore fluids. Figure 2 shows that CO_2 injection initiates a complex network of reactions that involve aqueous solutions and host rock minerals. First, CO_2 transfers across the gaswater interface to become an aqueous ion by the reaction:

$$CO_2(g) + H_2O = H_2CO_3$$
 (slow kinetics). (1)

This is followed by rapid dissociation of carbonic acid:

$$H_2CO_3 = H^+ + HCO_3^-$$
 (very fast kinetics). (2)

The formation of bicarbonate ion, HCO_3^- , and production of acidity by release of H⁺ leads to a series of secondary reactions with complex feedbacks that buffer solution properties and mineral reactivity. These reactions greatly complicate estimates of CO_2 storage volumes as well as the geophysical characteristics of the host rock. However, it is these same reactions that suggest land disposal may have an enormous capacity for the safe, long-term sequestration of CO_2 by the same mechanisms that nature has employed for millennia on a global scale. The following discussion addresses the probable fate of this aqueous CO_2 from the point of view of geochemical thermodynamics and kinetics.

There are at least three ways in which CO_2 can be sequestered in subsurface processes involving chemical reactions.

Figure 2 CO₂ Terrestrial Sequestration-Chemical Processes and Reservoirs

Aqueous Trapping

In the first mechanism, pore fluids can accumulate dissolved CO_2 by Rxn. (1) and (2) through "aqueous trapping." The pressure (P), temperature (T), and salinity (TDS as total dissolved solids) conditions of most subsurface disposal environments limit CO_2 accumulation by thermodynamic constraints that are well understood in comparison with other uncertainties. Although solubilities are maximized in formation waters with low salinities, generally speaking, pore fluids can hold only a few percent of HCO_3^- regardless of TDS or the PCO₂ at injection (Bachu *et al.*, 1996). Thus, the capacity of subsurface fluids to capture CO_2 by aqueous trapping is relatively small.

Mineral Trapping

In a second type of trapping, dissolved CO_2 reacts with divalent cations to form carbonate mineral precipitates. This 'mineral trapping' mechanism offers the greatest potential for increasing CO_2 sequestration capacities while also rendering CO_2 immobile for longer time scales (Perkins and Gunter 1996). Overall reaction stoichiometries for the most common minerals show that carbonate precipitation consumes bicarbonate ion while producing acidity by the reactions:

$$HCO_3^{-} + Ca^{2+} = CaCO_3 + H^+$$
 calcite (fast kinetics) (3a)

$$HCO_3 + Mg^{2+} = MgCO_3 + H^+$$
 magnesite (fast kinetics) (3b)

$$HCO_3 + Fe^{2+} = FeCO_3 + H^+$$
 siderite (fast kinetics). (3c)

Rates of these reactions are known to be relatively fast but have a complex dependence on reactant concentrations, *in situ* pH, temperature and salinity (*e.g.* Morse 1983; Zuddas and Mucci 1998). Dreybrodt *et al.* (1996) and Liu and Dreybrodt (1997) have also shown that an important rate-limiting step for calcite precipitation and dissolution in this kind of system can be Reaction (1). Assuming that the host reservoir is initially poor in carbonate minerals, the HCO₃⁻ concentration is approximately constant and limited by CO₂ solubility; rates of precipitation are primarily constrained by the much larger supply of divalent cations (reactants) and consumption of protons (products). A closer look shows that three general scenarios affect these constraints to control the extent of mineral sequestration: (1) Formation of carbonates by reaction with porewater solutes, (2) formation of carbonates by reaction with siliciclastic minerals, and (3) formation of carbonates by reaction with carbonate minerals.

Formation of carbonates by reaction with pore-water solutes

The reactant cations arise from two sources. First, they can be indigenous to the pore fluids with ratios that are governed by the mineralogy of host formation(s) and concentrations that are approximately covariant with TDS. Zuddas and Mucci (1998) show that precipitation rates increase with solution ionic strengths. However, there is a competing effect where TDS also enhances calcite solubility, particularly at higher temperatures (*e.g.* Holland and Malinin 1979). Second, cations can be released by the H⁺-promoted dissolution of silicate minerals (see below). As shown in Figure 2, reactions that release cations to solution can promote carbonate formation through a

feedback mechanism. Quantifying mineral-solution interactions in this dynamic system to predict the conditions that maximize mineral precipitation requires a thorough understanding of carbonate-electrolyte chemistry and ion pairing models for aqueous complexation.

Formation of carbonates by reaction with siliciclastic minerals

In geologic environments enriched in silicate minerals, the same reactions that Nature uses to recycle CO_2 may be employed by analogous reactions in the subsurface (Siefritz 1990). Biogeochemists have long recognized that CO_2 is returned to the solid Earth by silicate weathering and the subsequent deposition of carbonate minerals (*e.g.* Lasaga 1981; Dunsmore 1992). For example, the acidity produced in Reaction (2) is neutralized by promoting silicate dissolution as illustrated by the reaction

$$CaSiO_{3} + 2H^{+} + H_{2}O = Ca^{2+} + H_{4}SiO_{4}$$
 wollastonite (slow). (4a)

Figure 2 indicates that this release of cations further enhances bicarbonate consumption by promoting Rxn (3a) in a feedback mechanism. Similar mineral-water reactions favor additional formation of magnesium and iron carbonates by the respective reactions:

$$Mg_{2}SiO_{4} + 4H^{+} = 2Mg^{2+} + H_{4}SiO_{4} \text{ forsterite (slow)}$$
(4b)

$$Fe_{2}SiO_{4} + 4H^{+} = 2Fe^{2+}H_{4}SiO_{4} \text{ fayalite (slow)}.$$
(4c)

Gunter *et al.* (1993) concluded that the calcium and magnesium (or other divalent) bearing silicate minerals have the greatest potential for enhancing CO_2 disposal capacities because they also act as enormous proton sinks during dissolution. Building on these simple examples, we can see that dissolution of the aluminosilicates also promotes precipitation of carbonate mineral as well as formation of clay minerals. For example, anorthite dissolution follows the stoichiometry

$$CaAl_{2}Si_{2}O_{8} (anor) + 2H^{+}H_{2}O = Ca^{2+}Al_{2}Si_{2}O_{5} (OH)_{2} (kaol)$$
 (slow). (4d)

More generally, an overall reaction shows that felds par dissolution can lead to CO_2 trapping as a variety of carbonate minerals $Feldspars + Clays + CO_2 = Kaol + Calcite + Siderite + Quartz$

Siefritz (1990) and Fyfe *et al.* (1996a,b) have further noted that the exothermic properties of these mineral reactions also provide an energy bonus of 24 kCal per mole of feldspar dissolved that could potentially be recovered to offset costs.

Formation of carbonates by reaction with carbonate minerals

A third environment that modifies the extent of CO_2 by sequestration is the carbonaterich environment. Mineral trapping in this system is not generally promoted because the decreased pH associated with H+ release by dissociation increases the solubility of carbonate minerals whereupon they quickly dissolve. In some situations, this could be potentially hazardous to the reservoir host or seal integrity. Bergman and Winter (1995) have noted that reaction of acidic fluids with limestone or dolomitic formations can overpressure the formation through rapid CO_2 release. Note that carbonate minerals can, however, be precipitated when other minerals can act as rapid proton sinks to buffer H+ production (Hitchon 1996). The literature suggests considerable uncertainty in our ability to predict the behavior of carbonate-hosted subsurface systems.

Microbial Trapping

Several studies have suggested that 'microbial trapping' may offer a third mechanism for sequestering CO_2 (*e.g.* Fyfe *et al.*, 1996a; Ferris *et al.* 1994). Because most of these studies have focused on promoting biomineralization by mechanisms that depend upon photosynthesis by direct or indirect mechanisms, it is unlikely they can promote CO_2 sequestration by terrestrial disposal. We could also consider microbial conversion of CO_2 to methane via the simplified reaction

$$2H_2 + CO_2 = CH_4 + ?$$
 (6)

may enhance CO_2 capacities. This reaction has been documented in deep sediments (Kieft and Phelps 1997) and deep aquifers of the Columbia River Basalts (Stevens and McKinley 1995). However, the volume increase associated with methane production would decrease reservoir capacity, and recent work by Anderson *et al.* (1998) indicates CO2 consumption by reaction with hydrogen is unlikely. Perhaps more likely is a secondary role of microbes in CO_2 sequestration by promoting feedback on the trapping mechanisms proposed earlier. Metabolic activities can promote silicate dissolution and therefore secondary precipitation of carbonate minerals, particularly siderite (*e.g.* Brown *et al.* 1994). The possibility of harnessing microbes to promote CO_2 sequestration is intriguing.

The foregoing summary suggests that the ideal chemical trapping mechanisms are characterized by their ability to enlarge reservoir capacities and transfer of CO_2 into an unreactive form through fast kinetics. While the long-term capacity of mineral traps is enormous, the kinetics of the reactions required to form these minerals is problematic. Hence, research should focus on the rates and mechanisms of chemical reactions that

(5)

improve our ability to (1) make quantitative model predictions of how a system responds to CO₂ injection; (2) identify the 'bottlenecks' that occur along the path from transferring supercritical CO₂ across the gas-water interface to the final sink as carbonate minerals; (3) investigate means of 'widening' the bottlenecks; and (4) determine the long term capacity of system for sequestering CO_{3} by mineral trapping. Another possible limit on rates of silicate reactions is the precipitation of SiO₂ as a secondary product. The importance of understanding clay mineral formation should not be overlooked. These fine-grained constituents have enormous capacity for buffering mineral-water chemistry as well as affecting hydrodynamic properties by modifying formation permeability. Because CO, injected from a fossil fuel burning facility will likely contain trace gases, research may also be needed to determine the potential for gaseous contaminants to interact with mineral surfaces within the formation. Passivation by surface sorption and isolation of reactant sites from the fluid environment could greatly inhibit rates of mineral dissolution and precipitation. The feasibility of microbial trapping should also be investigated. Microbial processes are intertwined with the systems approach described above, but subsurface microbial studies are only beginning to document these unique ecosystems.

Up to this point we have dealt only with the very oversimplified situation of a spatially uniform (on scales larger than the mineral grains) closed system. But even in this idealized limit, we would argue that the present capability to specify the time evolution of the system is seriously compromised for lack of reaction kinetic information. It is important to keep in mind that the sort of kinetic information we need is in the form of continuum-scale constitutive equations, which especially in cases of heterogeneous reactions can involve complex averages over a variety of atomic scale processes. A full characterization and understanding of the reaction kinetics relevant to CO_2 sequestration in geological environments will require an extensive program of laboratory experimentation along with carefully chosen field measurements to validate the upscaling of the laboratory behavior to the time and length scales of interest.

The next level of complexity that one might consider is that of spatially non-uniform open systems or potentially open systems. A potentially open system is one that is initially enclosed by a "seal" that effectively isolates it from the surroundings, but with time could become open due to mechanical or chemical breaching of the seal. In order to deal with open or potentially open systems a number of additional constitutive equations need to be specified. Of special interest are the relationships of permeability to fluid content and mineral texture, and those relating rheology to fluid content, mineral fractions, and their texture.

Role of Coupled Processes and RTM Instability

As suggested in Figure 3, there are many factors and processes operating naturally or during injection that are strongly coupled. Thus, the simulation of the development of repositories over long times or their response to injection must be based on multi-process models that account for all cross-coupling relations in the network of reaction, transport and mechanical (RTM) processes. Furthermore, these RTM simulators must

be three-dimensional so that all geometric effects are accounted for, *i.e.*, CO_2 waste fluids must be contained in all directions to insure their sequestration from the accessible environment.

An example of the strong effect of coupled processes that cannot be understood in terms of independent ones is flow self-focusing (see Ortoleva, 1994b for a review of this and other geochemical strong-coupling phenomena). As suggested in Figure 3, a slightly leaky region in a seal focuses fluid escape through it. If the fluids retained by the seal dissolve one or more minerals within the seal and thereby increase its permeability, then the escaping fluid will enhance the permeability in the leaky zone. As a consequence, it will concentrate further flow there and an efficient fluid escape pathway develops. This process illustrates the notion of geochemical seal stability: flow self-focusing can make a seal unstable with respect to fluid escape even if the minerals in the seal could not be appreciably affected when these fluids uniformly enter the seal (*i.e.*, in an overall mass balance sense) in contrast to the destabilizing strongly focused flow dynamic. Similarly, a front of injection-induced alteration can become unstable to fingering when that alteration increases permeability. In three spatial dimensions, these flow self-focusing phenomena are enhanced over those in two dimensions. These examples illustrate that reliable simulation of CO₂ repository behavior during injection or long afterwards requires the use of fully coupled, three-dimensional RTM models. Such modeling studies could help in identifying potential instability phenomena. They should also be used to tabulate chemically stable seal and reservoir lithologies as well as to analyze specific demonstration sites. Such three-dimensional, fully coupled RTM models should be developed for use as an integral part of a CO₂ repository.

Models for use in CO_2 repository analysis should be developed that account for effects of wormholing and cavitation. Such phenomena involve the interplay of free flow and Darcy flow zones coupled to geochemical reactions. An attractive approach seems to be the use of Brinkman's equation (Liu *et al.* 1997). This model should be generalized for the multi-phase regime.

Textural Models and RTM Dynamics

 CO_2 -induced clay dewatering could decrease rock strength while CO_2 -induced precipitation could increase it. Even small changes in grain geometry induced by CO_2 could alter the integrity of grain-grain contacts and thereby affect rock strength, sound speed and other properties.

The dynamics of the repository system depend on the distribution of rock mechanical and transport properties as well as mineralogy. In order to predict reservoir response, a complete set of texture geometric variables must be identified and the laws for their evolution must be set forth. The importance of these parameters and the interrelationship between texture parameters, porosity, permeability, capillarity, *etc.* are discussed in further detail in related sections in this report.

Figure 3 Schematic of parameters and complex feedback between coupled reaction, transport, and mechanical *in situ* processes

Figure 4 Schematic view of flow self-focusing leading to a reaction-induced breaching of a seal.

Nucleation and Ostwald Processes

A central theme in the subsurface CO_2 repository strategy is the formation of CO_2 bearing mineralization. Key geochemical processes that are poorly accounted for in most models are nucleation and Ostwald ripening and step rule processes (Ortoleva, 1994b). Models should account for the resulting geometry of the new minerals, the mineral surfaces on which their nucleation is promoted, and the effect of Ostwald ripening. The practical challenge of embedding Ostwald ripening (and hence the particle size distribution) in three-dimensional RTM models should be addressed. The competition between various polymorphs (*i.e.*, Ostwald step rule phenomena) should also be considered (Ortoleva, 1994b).

Geomechanics Perspective

John M. Logan Logan and Associates, Inc. Bandon, OR

John W. Rudnicki Department of Civil Engineering

Northwestern University Evanston, IL

Wolfgang R. Wawersik Geoscience and Environment Center Sandia National Laboratories Albuquerque, NM

Teng-fong Wong

Department of Earth and Space Sciences State University of New York Stony Brook, NY

Introduction

The assessment of reservoir storage capacities and the efficient injection and sequestration of CO_2 are directly linked to the modeling of geologic systems. Credible geomechanical models require the formulation of realistic constitutive models, the site-specific identification and measurement of rock properties, and the determination of boundary conditions. Boundary conditions include not only the *in situ* stress states but also the location and properties of faults bounding the reservoirs or compartments within reservoirs. Uncertainties and the need for research result from the heterogeneity of geologic systems emphasized previously, the presence of fracture networks, and changes in rock properties and stress state with pore pressure, fluid content, and time during and after oil or gas production, and CO_2 injection. It is reiterated that some of these attributes and the extent to which reservoir characteristics change with time ultimately require that geomechanics analyses are integrated into systems analyses to account for the interaction or "coupling" between diverse processes referred to as RTM (reaction, transport, and mechanical) processes.

Figure 5 Geomechanics considerations of CO_2 sequestration from reservoir characterization through long-term containment.

Reservoir Characterization

Faults as Seals or Conduits to Fluid Flow

The effects of faults on fluid flow ranges from prevention (barrier) through little or none to enhancement (conduit). The reasons for these differences are not presently apparent, although research on the structure of fault zones has suggested some relevant factors.

The geometry of individual faults is complex in both strike and dip directions but studies have established a general cross-sectional geometry that appears to characterize many faults. The nominal fault zone width, or that which is often mapped as the "fault", is a damage zone where the fracture density is significantly higher than the surrounding country rock. Within the damage zone is fault rock or gouge, a region of fine-grained material that is much narrower than the damage zone, often only 5-10% of that width. The fault rock has been deformed by a variety of mechanisms depending upon the pressure and temperature regimes. These range from mechanical comminution, and "smearing" of more ductile material such as some shales (Weber *et al.*, 1978) at lower temperature and pressure, through dislocation glide and creep and re-crystallization, to solution transport at higher temperature and pressure. Typically the deformation is not homogeneous but is localized along fractures that evolve with increasing shear strain. The result is a grain-size reduction and heterogeneous porosity and permeability (Logan *et al.*, 1992).

Because fracture porosity and resulting permeability are much higher in the damage zone than in the relatively unfractured country rock adjacent to it, fluid flow parallel to the fault is enhanced in this region. Flow parallel to the fault is also enhanced by the presence of fractures within the fault rock, which tend to align parallel or sub-parallel to the displacement vector of the fault. Transverse to the fault rock, flow is restricted by a decrease in grain size and a corresponding increase in the tortuosity of the migration path. Additionally, few major fractures cut across the fault rock. Consequently, any fault rock is potentially a barrier to fluid flow. This restricted flow may produce significantly higher values of pore pressure within the fault rocks than in the adjacent country rock. There is little evidence, however, that faults are absolute seals to fluid flow. Some leakage is expected (Surdam, 1997), but the rates are largely unknown.

Research is needed to better understand the origin of faults in order to predict their location, structure, extent, recurrence (or periodicity) of motion on them, and hydromechanical properties. Current hypotheses can be grouped into three categories: (1) fault formation along planes of critical shear stress, (2) faulting by cooperative deformation and growth of fracture clusters, and (3) faulting as localized shear that results from material instabilities. The second and third hypotheses offer mechanistic interpretations of rock failure and are supported by field observations and relatively recent laboratory measurements (Thomas and Pollard, 1993; Taylor et al., 1997, Moore and Lockner, 1995; Antonellini et al., 1994; Ord et al., 1991; Rudnicki and Rice, 1975; Olsson, 1998). Application and extension of these theories require an understanding of the development of fracture clusters (Taylor et al., 1997) and of the evolution of the constitutive parameters of rocks (Holcomb, 1992; Olsson, 1998). Research on faulting is especially important in porous rocks, which are typical of reservoirs, and must encompass not only the initial formation of faults but also criteria for extension and the changes in structure and hydromechanical properties. Research into faulting, and its relation to fluid flow, has been hampered by difficulties in characterizing the three-dimensional structure of faults and a shortage of threedimensional (as opposed to planar or axisymmetric) laboratory experiments that would constrain realistic constitutive models.

In situ Stress State and Measurement of in situ Stresses

Rock behavior is determined by the effective *in situ* stress. Often, it is assumed that the total *in situ* stress state is the same as the lithostatic state of stress and the pore pressure is distributed uniformly. Structural geologic evidence and field measurements indicate that reservoir stresses often are far more complicated (Teufel and Farrell, 1990; Warpinski and Teufel, 1991; Lorenz *et al.*, 1995). Lorenz *et al.*, (1995), for example, have documented the dominant influence of basin-margin structures on the *in situ* stress distribution throughout in the Green River Basin, Wyoming. Knowledge of the tectonic history of such areas coupled with the pore fluid and compaction histories of the strata are essential for anticipating sources of stress field perturbations and for interpreting and generalizing local *in situ* stress measurements by means of numerical modeling. Some knowledge of the *in situ* stress history over geologic times also is an indispensable component of characterizing fracture systems.

The importance of *in situ* stresses for reservoir characterization and monitoring mandates further research on methods of measuring *in situ* stresses and stress changes with time (Warpinski *et al.*, 1993; Amadei and Stephansson, 1997), especially at great depth, in anisotropic, fractured and poorly consolidated strata. *In situ* stress states may be particularly complex in depleted reservoirs being considered for CO_2 sequestration because of past anelastic deformations and heterogeneous pore pressure due to patchy distribution of residual fluid.

Rock Properties

Earlier hydrologic discussions focused on the importance of rock porosity and permeability on fluid transport in reservoirs, but reservoir flow was assumed to be largely independent of many other physical rock properties and the influence of *in situ* stress state. The hydrologic perspective in this report also stressed the use of continuum-type simulations coupled with geostatistical approaches to address reservoir heterogeneities. The discussion below encompasses some of the same issues but with added attention to the effects of stress and the coupling of processes. It also identifies difficulties in the complete constitutive characterization of rocks, which include the connection of grain-scale rock attributes and macroscopic response. Subsequent geophysical considerations will return to the topic of rock properties once more within the context of remote geophysical characterization of CO_2 sequestration sites, monitoring of injection processes and fluid distribution, and monitoring long-term site integrity.

Reliable reservoir characterizations require constitutive models, measurements of the associated material properties and a description of the spatial heterogeneity of rock properties, including the properties of matrix rock, fractures, and faults on all scales. Often, predictions are based on an idealization of reservoir rocks as linearly elastic continua with elastic and failure properties determined from laboratory tests. More realistic phenomenological models should incorporate inelastic deformation, dilatancy or compaction, stress-dependent and, in some cases, anisotropic porosity structure and

permeability, *etc*. In addition to phenomenological models, models based on microscale mechanisms have been successful in qualitative and quantitative interpretations of geomechanical rock mass behavior at high homologous temperatures. Insufficient field data and computational limitations have, however, left much uncertainty about the level of detail needed for adequate reservoir descriptions, for example, the need to include inelastic behavior and the properties of natural fractures in analyses.

In the majority of reservoir studies, analyses are restricted to two-dimensional idealizations. Recent simulations of a diatomite reservoir (Fredrich *et al.*, 1998) may be the first large-scale example to show important differences in rock and well bore response between two- and three-dimensional calculations. Another example using a relatively complex elastic-plastic material model resulted in subsidence predictions above a diatomite oil field that underpredicted the magnitudes of vertical and horizontal surface displacement by some 25% (deRouffignac *et al.*, 1995). The discrepancy between measurements and calculations was tentatively attributed to the omission of time-dependent material behavior (creep).

The foregoing discussion implies that constitutive modeling, the determination of rock properties, and numerical or analytical solution of boundary value problems are inextricably linked. Consequently, a full understanding of rock behavior and the identification of dominant parameters require parallel research in all three of these areas. In particular, research is needed on (1) rock properties under fully three-dimensional stress states, (2) the influence of stress path on inelastic properties such as pore collapse as well as directional permeability, (3) the validity of the effective stress principle under large pore pressure changes, (4) physical and hydromechanical properties of shales and the influence of clays, (5) microscopic and macroscopic processes governing rock behavior and the evolution of the constitutive properties, and (6) the connection between static and dynamic rock properties.

Existing experimental and computational evidence (Blair *et al.*, 1993; Winkler, 1983; Dvorkin et al., 1991; Bruno, 1994; Zang and Wong, 1995) provide details about how macroscopic rock behavior and changes in rock response are directly related to grainscale properties (including elastic properties of grains and intergranular cements, grain anisotropy, grain size, and grain strength) and to the fine-structure of the rock fabric (including pore and crack porosity, pore shape in terms of aspect ratio, and intergranular distribution of cementing materials). It is logical to assume that the storage capacity, transport properties, and reactivity of reservoirs will be affected by the local distribution of matrix rock permeability which, in turn, is a function of the shape, distribution, connectivity, and surface area of pore spaces and how these attributes change with stress and rock-fluid interactions. Grain shape, grain size distribution, and surface roughness (surface area) will likely influence the local reactivity both within individual pores and in the connection between pore spaces. Experiments and computations have demonstrated that aperture distribution in discrete, rough-walled fractures (Brown, 1987) can lead to flow channeling and it is possible that heterogeneity in grain, cement, and porosity fine structure could result in channel

flow in matrix rock as well. At a minimum, anisotropy in the fine structure due to stress or deposition is expected to alter both the local and the macroscopic permeability of reservoir rocks (Bruno, 1994).

Promising recent work concerning the grain-scale properties and fine structure of matrix rock should be expanded using a number of observational tools some of which combine high resolution with the possibility of real-time measurements (e.g., Wood's metal impregnation, electron microscopy, laser scanning confocal microscopy, nuclear magnetic resonance, synchrotron radiation, and acoustic and x-ray tomography; Schlueter et al., 1991, 1994; Fredrich et al., 1995, and others). In principle, advanced algorithms for defining and representing pore geometries and large computers make it feasible to implement the observational results in numerical simulations (O'Connor, 1996, 1998; Fredrich et al., 1995, 1998; Lindquist et al., 1996, 1998). Mathematical algorithm development must, however, be complemented by new experiments to measure local material properties, e.g., along grain contacts, or to derive local properties from the bulk behavior of small or large particle assemblages. Recent fluid flow models at the pore scale take advantage of lattice Boltzman simulations. These and other approaches can extend and complement continuum damage models that relate bulk nonlinear rock behavior and pressure dependence to the growth and interaction of preexisting microcracks in elastic continua (Costin, 1983; Kemeny and Cook, 1991; Lockner and Madden, 1992; Rudnicki and Chau, 1996; Rudnicki et al., 1997). New approaches based on grain-scale properties and matrix fine structure (texture) also promise to expand the results obtained from contact analyses using highly idealized grain shapes and cement distributions (Digby, 1981; Dvorkin et al., 1991, 1994; Bruno, 1994; Zang and Wong, 1995) to infer grain- and sub-grain-scale micromechanical and transport processes including preferentially aligned cement-grain bond failures, intragranular microfracturing, massive grain disaggregation, and pore collapse. Individual research elements in these developments should address the influence of clays and the need to develop criteria for microfracture initiation and growth below the continuum scale (20 grain diameters?), which are influenced by local stress heterogeneity, crystal anisotropy, and local contrasts in thermomechanical material properties.

Although there are uncertainties in the properties of polymineralic rocks such as clay or calcite-cemented sandstones or even dolomitic limestones as reservoir materials, shales are a major area of ignorance. Except for some specialized facies, such as oil shales, little systematic research has been done on properties because of the sampling and preparation problems. Shales are particularly important because they frequently form the reservoir boundaries or the boundaries of high-pressure compartments within reservoirs. These shales are usually of Mesozoic age or younger and commonly contain about 45-65% quartz and feldspars, and 40-45% phyllosilicates. The few extant laboratory studies show extremes in mechanical behavior depending upon the ratio of clay species to quartz and feldspar. With increasing amounts of quartz and feldspar, the material becomes progressively more brittle and stronger. In a dry state, the behavior of shales is similar to limestones and some sandstones. Studies on the frictional resistance to sliding have shown that a decrease in frictional strength begins only when the amount of clay approaches 25-30% of the rock volume. The frictional strength then decreases monotonically until the percentage of clay reaches 70-75%, after which little change occurs (Logan and Rauenzahn, 1987). A second parameter is the nature of the phyllosilicate species. Illite and kaolinite alter the strength of rocks much less than do species containing interlayer water such as smectites. This is a major factor in reservoirs deeper than the smectite to illite transition, which occurs at about 125•C. In the Gulf of Mexico this corresponds to a depth of about 3.2 km. The largest volume of the shales in the world, occurs, however, in the lower Paleozoic and is composed of 85-90% quartz, which dominates their mechanical properties. These rocks typically contain the fractured reservoirs mentioned earlier. The extremely brittle behavior and relatively high strength of these quartz-rich shales sustains relatively large fracture apertures in contrast to the behavior of the younger shales.

Rock Sampling and Scale Effects

Rock sampling and the understanding of scale effects are critical to linking the geomechanical and geophysical rock properties and for interpreting of geophysical measurements in situ. Sampling and generalizing rock property measurements to inaccessible areas is major concern in reservoir characterization. This problem is dominated by the heterogeneity intrinsic to all reservoirs, but it is exacerbated by an absence of proven scaling rules for property measurements made on core material. Further difficulties arise within the time frame of sequestration because almost all laboratory measurements on core material done today do not consider time effects. The present state of knowledge of all rock types is even more limited considering potentially chemically active pore fluids such as CO_2 . For the latter, the issues are not just possible mineral deposition in pores or along fractures, but their potential effect on mechanical properties of resident minerals.

Sampling strategies and data extrapolations suffer from poor understanding about the differences between static and dynamic data on elastic properties. Most data on reservoirs come from down-hole or dynamic values derived from laboratory acoustic measurements. Conversely, because most modeling assumes static behavior, some static values of elastic properties are selectively made from core material. These static data are, however, sporadic and seldom sample overlying sequences. In principle it should be possible to determine static properties from dynamic measurements. But in practice dynamic and static values usually differ, sometimes by large factors, and often in an unpredictable fashion (e.g., Jaeger and Cook, 1979; Yale et al., 1995). Studies on a variety of rock types show static values of Young's modulus are often lower than dynamic determinations for sedimentary rocks but have been found to be higher for crystalline material. Quasi-static values of Poisson's ratio are frequently higher (Schatz et al., 1993; Yale et al., 1995). Unfortunately, the differences are neither systematic nor consistent with rock or investigator. This is an especially critical issue if old and abandoned reservoirs are to be considered for storage.

Down-hole logging offers an abundance of information on the reservoir and surrounding rocks but is unable to identify inelastic properties. Given lithologic

characteristics such as composition, mineral distribution, grain size, porosity distribution, and fracture frequency, it is desirable to make reliable predictions of strength and failure properties. To better constrain the inelastic properties needed for mechanical modeling of reservoirs has been an unrealized goal of petroleum companies.

Difficulties in translating down-hole logging data into laboratory data and vice versa exemplify the chronic problem of trying to characterize field properties, both elastic and inelastic, based upon laboratory measurements. This problem relates partly to the issue of laboratory sample size, i.e., scaling issues beyond the considerations of differences between the sub-grain and multigrain scales. Generally laboratory samples range up to 5 cm in diameter and 15 cm long with most laboratories using half that size for work at elevated pressures and temperatures. In selecting samples, macroscopic fractures are generally avoided; consequently, the numbers and effects of fractures are not assessed. The usual assumption, which is qualitatively supported by a few studies, is that elastic properties and rock strength decrease with increasing rock volume due to the presence of fractures, reaching asymptotic, but unknown values. The magnitude of decrease depends, however, upon the specific circumstances. A number of theoretical models (e.g., Cuisiat and Haimson, 1992) try to deal with the difficulty, but these models are largely untested.

Field measurements of igneous rocks have shown Young's modulus decreases about 30% from laboratory values in one granite but remain the same in another; Poisson's ratio was generally unchanged (Pratt et al., 1972). In an investigation of sandstones and shales from the Mesaverde Formation in the United States, decreases in Young's modulus ranged from about 5 to 30%, but little change was found for Poisson's ratio (Lin and Heuze, 1987). Theoretical modeling combined with laboratory and field data suggests, however, decreases up to one order of magnitude in Young's modulus and possible increases in Poisson's ratio (Schatz, 1995).

Joints and Fracture Networks

Joints, fracture networks consisting of sometimes regular but frequently complex overlapping joints sets, fracture clusters, and deformation bands (Friedman and Logan, 1973; Pollard and Aydin, 1988; Lorenz and Laubach, 1994; NAS/NRC, 1996; Antonellini and Pollard, 1996; Mollema and Antonellini, 1996) may fundamentally alter the behavior of reservoir rocks including strength, deformability, permeability, and geophysical properties. Because rocks *in situ* are hardly ever free from natural fractures, greater attention should be paid to documented effects of preexisting fracture networks on reservoir performance than may be indicated by history matching and reservoir simulations, without regard to fractures.

Joints and the development of fractures in CO_2 sequestration are important in evaluating not only reservoir properties but also long-term site integrity and the possibility of breaching seals, traps, or cap rocks. Primary research issues fall into three broad groups: (1) Research concerning the evolution of joint systems and fracture

networks including joint lengths, spacings, joint interactions with one another and with other rock mass heterogeneities such as lenses, bedding planes, and faults (Lorenz and Laubach, 1994; NAS/NRC, 1996); (2) the need to understand joint connectivity in fracture networks; and (3) research on the interaction of the mechanical behavior of joints and joint systems, fluid flow, and geochemical activity including the development and distribution of fracture fillings over time.

In situ principal stress directions and principal stress ratios probably are the most important parameters affecting joint orientation and the paths of growing fractures (Wu and Pollard, 1991). Great uncertainty exists concerning, for example, fracture spacings (Wu and Pollard, 1991). The influence of lithology and 3-D fracture-fracture (Germanovich *et al.*, 1994) and fracture-interface interactions need clarification, especially in high porosity and weakly consolidated rocks. Fracture interactions resulting in fracture clusters are of particular interest as major flow channels and potential precursors to faulting (Taylor *et al.*, 1997). Additional study concerning fracture development in high porosity, weakly consolidated formations is important for hydraulic fracture design and hydraulic fracture response to fluid injection. Although joints are extensional features, generally it is unclear which and when one of several fracture growth hypotheses predominated: lithostatic stress changes, tectonic stresses, changes in pore pressure and effective stress, thermal stresses, or stresses arising from material heterogeneities that are dominated by differences in material properties across bedding planes.

The importance of fracture connectivity and the interdependence between fluid flow and geochemistry were subjects of earlier sections. The evaluation of fracture connectivity partly hinges on the ability to describe the geometries of fracture systems. For dense fracture systems and modest differences in fracture conductivity, some success has been achieved in statistical descriptions of fracture patterns (Long and Hestir, 1990; NAS/NRC, 1996) without regard to fracture origin and fracture interactions, and fractal rules have proven useful in the spatial extrapolation of locally observed fracture patterns (Barton and LaPointe, 1995). This approach is bound to be less successful under conditions when fluid moves through only a few channels.

Although much work is needed to characterize both the geometry and the conductivity of fracture networks, important research needs to be continued concerning fluid flow and fluid-rock interactions in discrete fractures. The hydrological literature appears to rely primarily on the so-called cubic flow law to describe the relationship between fluid flux and mean fracture aperture. Substantial deviations have been noted between this model and experimental measurements of aperture at high stresses normal to the fracture plane (Brown, 1989), and no systematic studies appear to exist concerning fluid flow behavior at fracture intersections. Research needs include the effect of shear deformation on joint normal deformation and fracture permeability.

Injection

Injection of any fluid (such as CO_2) into a reservoir under pressure will alter the effective stress state. In addition, chemical reactions may result in spatial and temporal changes in the physical rock properties. To ensure the integrity and safety of the injection, it is necessary to evaluate whether alterations of stress will cause failure (seismic or otherwise) within the reservoir, along boundary faults, or in adjacent regions outside the reservoir. Furthermore, the alteration of stress may affect the storage capacity and hydrologic properties of the reservoir. For example, an increase in effective normal stress could substantially restrict flow along fractures that provide critical fluid pathways.

To predict the response of the reservoir to these alterations, it is necessary to adopt an appropriate theoretical framework, boundary conditions, and constitutive model, determine the relevant material properties, and implement them in efficient and robust numerical algorithms.

Stress Changes and Boundary Conditions

Adequate characterizations of reservoir stresses must combine local, often sparse *in situ* stress measurements with numerical reservoir simulations. A recent analysis by Rudnicki (1999) demonstrates how fluid mass alterations in an idealized reservoir change the entire stress state, not simply, the pore pressure as is sometimes assumed. The analysis indicates how the stress changes depend on the geometry of the reservoir and the mismatch of elastic constants between the reservoir material and the surrounding formation. In the limit of a vanishingly thin, planar reservoir the strain state approaches uniaxial but the rate of approach depends on the mismatch of elastic constant. Rhett and Teufel (1992) demonstrate how the combination of measurements and analysis can explain and generalize puzzling observations about changes of the effective stresses with pore pressure drawdown in several oil reservoirs. Even highly idealized calculations prove the important connection between virgin *in situ* stress state, reservoir shape, and pore pressure distribution partly defined by well pattern and production rate. The influence of fluid withdrawal and withdrawal rate in oil and gas production is analogous to CO, injection and injection rate. In order to conduct complete site-specific analyses, careful consideration may have to be given to the added influence of adjacent geologic structures and how pore pressure distribution is affected by the presence of natural fractures, fracture clusters, and fluid flow along major preferred channels.

Rock Properties and Geomechanical Models

Poroelasticity (or poro-thermo-elasticity, if temperature changes are important) provides a minimal framework for assessing the effects of injection. Even for this idealized model, there is, however, uncertainty in the appropriate values of the poroand thermo-elastic constitutive parameters. Determination from laboratory measurements is difficult because it involves small differences in measured quantities (Warpinski and Teufel, 1992). In addition, as discussed above, issues of scaling and the effects of larger fractures make the relation of laboratory-measured values to *in situ* conditions uncertain. More generally, accurate evaluation of stress changes in reservoirs is hampered by an inadequate understanding of the coupling of deformation with fluid flow and chemical reactions, referred to as RTM processes in the discussion of research areas in geochemistry. Because of the complexity of the problem, current approaches have tended to focus on one aspect, *e.g.*, idealizing the flow as occurring through a non-deforming matrix (neglecting deformation), or computing deformation but neglecting coupling with flow and chemistry.

Although further progress can be made using poroelastic models, field and laboratory observations suggest that relatively small effective stress changes can alter flow properties and inelastic volume changes, coupled with fluid flow and chemical alteration, can play a role in reservoir response. Dilation (inelastic volume increase) can be caused by shearing, and compaction (inelastic volume decrease) can be caused by shearing and/or increases in mean effective compressive stress.

According to earlier discussions on geohydrology, many current simulations of fluid flow in fractured reservoirs appear to rely on the application of dual porosity and dual permeability models. These models contain two separate (possibly anisotropic) overlapping porous media, one for a permeable matrix and one for fractures in an impermeable medium, and incorporate fluid exchange between the two. These models admit spatial and temporal variations in the properties of the two components. They have, however, at least two fundamental shortcomings:

- (1) Fracture networks are idealized as orthogonal sets of infinitely long, perfectly smooth discontinuities whose fluid flow properties meet the conditions of the cubic flow law.
- (2) The fracture apertures and, therefore, fracture conductivities are assumed to be independent of (effective) stress state.

The importance of coupled simulations was demonstrated recently by a model of fluid flow through a fracture network in the Frontier formation, Wyoming (Brown and Bruhn, 1997). The elastic compliance and permeability properties of fractured rock are related to fracture geometry through tensors (*e.g.*, Oda *et al.*, 1987) and the tensors for each physical property are derived by taking a volume average of the effect of each fracture population. The volume average contains functions of the fracture orientation, (finite) fracture length, and aperture in such a way that long or wide fractures contribute relatively more than small fractures. Elasticity is implicitly coupled to fluid flow through relationships between stress state, fracture aperture distribution, and normal and shear deformation across fractures. One important result demonstrates that frictional sliding on favorably oriented fractures may cause extreme changes in the permeability tensor of the rock mass, including both magnitude changes and rotations of the principal stress axes (Brown and Bruhn, 1997). In one case, the maximum permeability direction was determined to lie at a 45° angle rather than parallel to the maximum principal stress direction.

Failure and Discrete Fracture Propagation

An issue of importance is whether injection will cause failure in any of a number of senses including faulting as discussed previously. Experience at Rangely (Raleigh *et al.*, 1976) and elsewhere has demonstrated that fluid injection can cause seismic failure. Seismic events could damage pipelines, drill stems and other structures associated with injection. Slip on faults, even if not seismic, could alter the properties of faults, whether barriers or conduits, and, consequently, the hydrological properties of the reservoir. Increases in pore pressure accompanying injection may cause (hydraulic) extension of fractures. In some instances, this may be desirable, but in others, fracture extension may breach seals or provide a rapid channel for fluid flow that prevents effective use of the reservoir volume for storage. Failure by shear localization, compaction, or disaggregation may have undesirable effects on the ability of the reservoir to store and contain CO_2 .

The last decade has seen great progress in the mechanics of earthquakes by using a constitutive relation for frictional slip in which the traction on the slip plane depends on the rate of slip and its past history, as reflected in the current state of the sliding surface. The parameters of this relation, including a critical sliding distance, can be inferred from laboratory tests. Unfortunately, however, this critical length may be much larger *in situ* than measured in the laboratory, and, at present, there is no good means of determining values in the field (Scholz, 1990).

In practice, the possibility of seismic slip is most frequently assessed using the simple Mohr-Coulomb condition. As noted above, injection changes the entire stress state, not simply the pore pressure and these changes must be considered in evaluating failure. The idealized analysis of Rudnicki (1999) can be used to determine whether injection causes the stress state to move toward or away from failure. (Knowledge of the absolute *in situ* stress is needed to determine how far the stress state is from failure.) For example, if the reservoir strain state is uniaxial (a good approximation for a thin tabular reservoir) and failure is assumed to be governed by a Mohr-Coulomb condition with friction angle φ , then injection at isothermal conditions will cause the stress state to move away from the failure condition if the following inequality is satisfied:

$$\zeta > \frac{2(1-\upsilon)\sin\varphi}{(1-2\upsilon)(1+\sin\varphi)}$$

Here υ is the drained Poisson's ratio and ς is a porous media constant, equal to $1-K/K'_s$, where *K* is the drained bulk modulus of the porous material, and K'_s can, in certain idealized cases, be identified with the bulk modulus of the solid constituents. Application of even this simple condition is impeded by uncertainties about the appropriate value of the porous media constant ς and the friction angle. Furthermore, temperature changes of only a few degrees can alter the conditions for stability. Segall (1989) has used an analogous approach, based on poroelasticity, to determine stress changes outside the reservoir and the Mohr-Coulomb criterion to evaluate the potential for inducing failure (seismic slip) in regions adjacent to the reservoir. Neither

approach takes account of the effect of stress alterations on boundary faults. At issue is not only whether stress alterations could cause either aseismic or seismic motions on these faults but also whether stress alterations inducing slip could compromise the sealing ability of these faults. Despite the wide use of the Mohr-Coulomb condition, it has a number of short-comings. It does not distinguish between rapid (seismic) and slow slip; it implicitly assumes homogeneous stress conditions and takes no account of the alteration of stress accompanying slip, and it includes no means of predicting the size of an event.

The Mohr-Coulomb condition is also used to predict shear localization (fault formation) but it has inadequacies in this application as well. Laboratory experiments demonstrate a clear dependence on deviatoric stress state (*e.g.*, axisymmetric extension versus axisymmetric compression) that is absent from the criterion (Olsson and Rudnicki, 1998). Furthermore, the parameters of the relation (friction angle and cohesion) are purely phenomenological and bear little or no relation to constitutive parameters. For example, it is likely that fault formation differs in materials that compact versus those that dilate, but the Mohr-Coulomb prediction would be the same if the cohesion and friction angle were the same.

Understanding of discrete fracture is a prerequisite for understanding the interaction and link-up of fractures and their behavior at lithologic boundaries. Of particular importance for injection and containment of CO_2 are the growth and extension of fractures to form hydrological networks. Further work is needed on three-dimensional effects and on the effects of inelasticity and damage associated with fracture including, for example, an apparent influence of pressure and fluid diffusion in the crack tip region.

The mechanics of discrete fracture propagation can be largely understood in terms of two dimensional models but three dimensional effects are critical to fracture interactions and fluid flow (Germanovich *et al.*, 1994; Martel, 1998). In particular, for a fracture with a smoothly turning edge in a linear-elastic material the asymptotic near-tip field decomposes exactly into separate plane and anti-plane two-dimensional problems. But in a two-dimensional model, an asperity will completely block flow whereas in three dimensions, flow can simply go around this obstacle.

The most prevalent models of fracture are those which treat the crack-tip as a singularity of stress in an otherwise linear elastic body or cohesive zone models in which the inelasticity is confined to a line ahead of the crack. Although these models are often adequate, the inelasticity and damage in the vicinity of the crack-tip may dramatically alter the out-of-plane growth and interaction of cracks.

Long-Term Containment and Monitoring

It was stated earlier that analyses of geologic systems must be built on an understanding of the interdependence of processes and coupled RTM (reaction, transport, and mechanical) simulations. This requirement is especially important for predicting the long-term containment of CO_2 and monitoring of sequestration sites. CO_2 -induced geochemical processes may weaken rock strength within a reservoir compartment leading to the potential for porosity collapse, buildup of fluid pressure, and seal failure. Associated changes in rock properties and fluid distributions are likely to affect the geophysical rock properties such as p- and s-velocities, seismic attenuation, and electrical resistivity. While credible long-term predictions require an integrated approach, they also mandate targeted research in geomechanics.

Fluid-Assisted and Time-Dependent Fracturing

Surface-chemical effects of water on crack growth may be a significant factor in the long-term containment of CO₃. (See Kirby and Scholz, 1984, for a special issue of the Journal of Geophysical Research on chemical effects of water and on the deformation and strengths of rocks.) Many experiments (Atkinson and Meredith, 1987) have shown that the presence of water or other pore fluids can enhance crack growth in brittle rocks. In particular, the presence of pore fluid allows slow growth of cracks at stress intensity factors below the critical value corresponding to rapid (dynamic) crack growth. Das and Scholz (1981) have attributed a variety of time-dependent earthquake phenomena to this mechanism and there is evidence (Dieterich and Conrad, 1984; Dove, 1995) that the micromechanical mechanism of rate and state dependent friction is related to surface-chemical effects of pore fluid. Information from laboratory experiments on environmentally assisted crack growth has been incorporated into constitutive relations and these have achieved reasonable success at describing the time-dependent deformation of bulk specimens (Costin and Mechlosky, 1983; Costin, 1987). Segall (1984) has applied a model based on relations derived from laboratory experiments to rate-dependent extensional deformation in rocks.

Despite this progress, the coupling of chemical effects of pore fluid with strength and deformation remains poorly understood and may be a significant impediment to predictions about the long-time containment of CO₂. Few, if any, observations exist on crack growth in CO₂ contaminated environments. Laboratory experiments have, for the most part, considered the time-dependent growth of macrocracks under tensile loadings and assumed that the crack-tip fields can be characterized in terms of the elastic singular field. Surface chemical effects may, however, be strongly related to inelastic processes near the crack-tip. Furthermore, long-term time dependent behavior of rock may be due primarily to growth of microcracks in stress fields that are locally tensile, but overall compressive. For microcracks under overall compressive loads, growth is complicated by branching and turning, different responses of various constituents to pore fluid, and interface effects. Laboratory experiments of crack growth rates of less than say, 10(-10) m/s are impractically long, yet this rate corresponds to about 3 mm/year, which is relatively rapid over the 50 - 100 year intended life-time of sequestration. Thus, sound extrapolations to time scales of interest require a thorough understanding of the underlying physical mechanisms.

Subcritical crack growth is important for the long-term constitutive description of sequestration sites, for evaluating the potential of macroscopic fracture development

and seal degradation, and for incorporating changes in (geophysical) rock properties in the interpretation of geophysical measurements. Important changes may also result from inter- and intra-granular creep. Creep may lead to significant, possibly anisotropic, changes in rock porosity, permeability, and local rock strength all of which could have profound consequences for pore pressure distribution and fluid flow as mentioned earlier. Although studies of creep mechanisms are most readily controlled in laboratory experiments, it must be borne in mind that extrapolations of laboratory data to *in situ* conditions again may entail leaps in temperature, stress, and time (strain) with attendant but unrecognized changes in the rate-controlling physical or chemical processes.

Geophysics Perspective

Jerry Harris

Department of Geophysics Stanford University Stanford, CA

Laura Pyrak-Nolte

Department of Physics Purdue University West Lafayette, In

Norman R. Warpinski Geophysical Technology Department Sandia National Laboratory Albuquerque, NM

Introduction

Successful CO₂ sequestration in active or depleted oil/gas reservoirs or aquifers requires an accurate map of the hydraulic and mechanical integrity of a site. Subsurface reservoirs consist of solid, liquid, and gaseous phases that produce heterogeneity on multiple length scales and that may vary temporally and spatially because of various geochemical interactions and variations in stress, pressure and temperature. The ability to detect these changes in the reservoirs over time requires an understanding of the relationship among rock properties, spatial resolution and time resolution. The rock properties most important for site selection, injection, and monitoring will dictate spatial and temporal resolution and, thus, the geophysical techniques used. The inversion of geophysical data maps to maps of reservoir properties will depend on the spatial and temporal resolution achieved as well as an understanding of the relationship between geophysical information and rock properties.

With any geophysical method there is a tradeoff between the volume of rock sampled and the ability to image heterogeneity. For example, a 3D seismic survey (50 Hz) can easily sample the entire volume of a 3000 m deep reservoir. However, the reservoir is sampled with a resolution of only a few tens of meters. Figure 4 shows the tradeoff between volume sampled and the resolution length scale for a variety of seismic methods. Laboratory measurements on cores can resolve sub-millimeter to millimeter features, but can only sample a small fraction of the entire core volume. On the field scale, the type of seismic method used will also determine which portions of the reservoir are sampled. For example, sonic logs (10 kHz) sample the region immediately adjacent to the borehole with a sub-meter resolution, whereas cross-well seismic profiles (1000 Hz) sample the limited volume between wells with meter-scale resolution.

Geophysical methods have the potential to be a quantitative diagnostic tool for monitoring CO_2 sequestration, but progress is hindered by incomplete understanding of the effect of rock properties (especially porosity, permeability, saturations, geochemical alteration, natural fractures), reservoir conditions (stress, pressure, temperature), heterogeneities, and scaling on quantitative remote imaging. Active monitoring techniques need to be refined to quantify the changes.

Figure 6 Schematic of seismic resolution versus coverage as a function of seismic method

Rock Properties

Some of the key concerns for geophysical monitoring and interpretation involve gaps in the knowledge of the interrelationships among geophysical rock properties and geochemical, geomechanical and flow-induced alterations. As discussed in the geomechanics section, these gaps can be filled through an intensive program of theoretical, laboratory, field, and computational investigations at a variety of length and time scales using a combination of techniques. The geophysical characteristics of a reservoir or rock mass are strongly dependent upon the porosity and permeability characteristics of the formation. In addition, the micro-scale (pore and grain distributions, grain contacts, cracks) and macro-scale (fractures, stratification, laminae, and other physical structures) heterogeneity in a reservoir modify the seismic, electromagnetic, and deformation responses.

Micro-scale sources of heterogeneity affect the macroscopic behavior of seismic waves propagated through rock by delaying and attenuating a wave as well as altering the frequency content of a signal. The micro-scale phenomena can be viewed in terms of discontinuity and interface phenomena, such as fractures, grain-to-grain contacts, fluidsolid interaction, and liquid-gas interaction within the pores or fractures. Nihei (1992) identified the micromechanical behavior of the grain contacts in rock as the primary source of attenuation in dry and fluid-saturated rocks. From laboratory measurements (Saurez-Rivera, 1992), a 5-micron thick coating of clay in a fracture caused significant attenuation although the scale of the heterogeneity (clay) was 0.001 of a wavelength. The effect of non-aqueous phase liquids (NAPLs) on compressional wave propagation through soils (Geller & Myer, 1995) showed that compressional wave velocities were sensitive to increased NAPL saturation in the soil cores. However, no research has been performed to determine if the fluid-fluid interface (or front) can be resolved from seismic measurements. The ability to resolve correlated pore/grain distributions or fluid phase distribution from seismic data is not well established.

The development of velocity and attenuation relationships from seismic and electromagnetic data is required to interpret near-surface seismic data acquired through continuous on-line seismic monitoring and to detect and identify the alteration of a rock matrix from interaction with CO_2 and other pore fluids. Fluid flow through a porous or fractured medium depends on the size and spatial distribution of the pore space and the interconnectivity of the pore space. Fundamental physio-chemical changes can occur in the transport of particles or fluid chemicals through a porous medium (Imdakm & Sahimi, 1991; Fryar & Schwartz, 1994; Bertrand *et al.*, 1994; Lappan *et al.*, 1997). The change in pore structure occurs from either chemical interaction between the fluid and rock matrix resulting in dissolution of the solid, or from various forces which results in physical adsorption of a particle onto the rock matrix surface (*i.e.* precipitation).

As stated in the three previous sections, the presence of CO_2 may lead to significant changes in mineralogy through a complex series of reactions. Dissolution of the rock matrix may occur, increasing the size of the pores and the connectivity of the pore space. Dissolution can occur in regions with high surface energies such as grain contacts that are under high stress. Dissolution at a grain contact reduces the mechanical stiffness of the contact by reducing the surface energy (Murphy *et al.*, 1984). A reduction in contact stiffness increases attenuation of transmitted acoustic waves (Nihei, 1992).

Precipitation or fines migration can block pore space and reduce the permeability of the rock (Gash *et al.*, 1992; Narayan *et al.*, 1997). It can also form cement at grain

contacts and alter the grain contact stiffness (Li, 1997; Li and Pyrak-Nolte, 1998). Dvorkin (1994) found theoretically that the stiffness and amount of cement at the grain contacts controlled the elastic properties of the rock and thus the seismic properties.

The only laboratory investigation of the effect of sediment-pore water interaction on acoustic wave propagation was performed by Li (1997) and Li and Pyrak-Nolte (1998) on fully saturated synthetic sediments. The acoustic wave amplitude increased and decreased relative to the exchange of ions between the pore water and the sediment as indicated by electrical conductivity measurements. The lowest transmitted amplitude occurred when the ionic strength reached a minimum. Over a four-month period, the sediment sample underwent diagenesis and formed synthetic sandstone. The acoustic attenuation was observed to be sensitive to the ion exchange between the pore fluid and the sediment. However, the wave velocity was insensitive to the ion exchange but was sensitive to compaction and cementation at the grain contacts. Microscopic investigation determined that precipitation had welded the grain contacts and reduced the porosity of the sample from 35% to 15-30%. Thus, if the geochemistry analyses demonstrate that the CO_2 -related processes produce sufficient amounts of acids to significantly alter grain-to-grain contacts or fracture geometry, seismic methods have the potential to track chemically-induced time-dependent changes.

To obtain the best geophysically derived maps of reservoir properties, it is important to understand how rock properties determined on the laboratory scale relate to field scale measurements. The ability to resolve multi-scale heterogeneity depends on the type of heterogeneity present such as fractures, pore/grain distributions, multiphase fluid distributions, *etc.* Mukerji *et al.*, (1995) investigated scale-dependent velocity by comparing seismic velocities on the laboratory scale (wavelength ~ 0.01 cm) with the well log scale (wavelength ~ 0.1 m - 0.1 m), and with the surface seismic scale (wavelength ~ 10 m). The observed scale dependence of the seismic velocity occurs because the length scale of the heterogeneity present may vary with the size of the volume of rock sampled. The seismic velocity was found to depend on spatial statistics of the petrophysical properties of the rock, the seismic wavelength, and the path length. Seismic waves would find "fast" paths of high velocity material to propagate through the material.

Measurements of the seismic response of fractures in the laboratory may not be representative of the seismic response of all of the fractures observed in the field, *i.e.*, on the laboratory scale fractures will tend to have smaller apertures and possibly more contact area resulting in larger values of fracture specific stiffness (the ratio between the stress and the magnitude of the displacement discontinuity produced by the stress). Therefore, fractures in the laboratory may exhibit less attenuation and produce less delay in a transmitted signal than in larger fractures in the field. However, the displacement discontinuity description (Pyrak-Nolte *et al.*, 1987 & 1990a) of seismic wave propagation across a fracture contains a built-in scaling parameter in terms of a normalized frequency. Normalized frequency is the product of the frequency of the incident signal with the seismic impedance (product of density and phase velocity) of the rock divided by the fracture specific stiffness. This ratio indicates (1) which

fractures can be located in the field for a given source frequency based on the specific stiffness of the fracture and (2) whether amplitude data or velocity data will contain more information on the presence of a fracture based on the source frequency. This theory allows laboratory results to be scaled to field frequencies.

Based on modeling fractures as non-welded contacts, the limit of the ability to resolve fractures with field frequencies depends on the frequency of the source signal and the fracture specific stiffness (Pyrak-Nolte, 1990). Fracture specific stiffness is a function of the size and distribution of contact between the two fracture surfaces. For the laboratory range of fracture specific stiffness ($\kappa > 10^{11}$ Pa/m), the displacement discontinuity theory predicts that an incident wave with a frequency of 1.0 MHz will show a large increase in transmitted wave amplitude as the stiffness of the fracture increases but will show very little change in seismic velocity. The theory also suggests that, on the laboratory scale, seismic amplitudes will yield more information on the presence of fractures and changes in fracture stiffness than seismic velocities. On the other hand, at field frequencies, e.g. at 10 Hz, a fracture with stiffness greater than 10^{11} Pa/m cannot be detected with either velocities or amplitudes. However, a fracture with a specific stiffness in the range of $10^5 < \kappa < 10^{11}$ Pa/m can be detected, and changes in contact stiffness could also be monitored. Other complications such as the effect of time-dependent geochemistry changes on the fractures (*e.g.*, dissolution or rehealing) will need to be evaluated.

Characterization

Geophysical site characterization involves three tasks that range from qualitative reconnaissance through assessment to quantitative site description. The reconnaissance phase is needed to delineate the boundaries of the site, which include storage capacity, faults, *etc.* An assessment is also needed to determine the hydraulic integrity of the site that may be compromised by old wells, tunnels, seeps, *etc.* A quantitative description must set bounds on parameters such as saturation, porosity, and heterogeneity. These three characterization tasks are essential for establishing the baseline for subsequent monitoring and guidelines for site management. A variety of standard and state-of-the-art integrated geophysical techniques including borehole and surface seismic, logs, core, potential fields, and electromagnetics can be used with new technologies yet to be identified to perform these tasks.

The technologies for acquiring, processing and interpreting seismic data are mature, but continue to evolve in their capability to image smaller and smaller features over larger and larger volumes. Notable improvements are occurring in the acquisition of higher frequencies and in pre-stack imaging (stacking is the process of adding repetitive source shots to improve signal-to-noise ratios). These improved images are subsequently combined with rock physics and used as weak constraints in reservoir modeling schemes, such as geostatistics. Moreover, there is considerable research within the petroleum industry, government labs, and industry in translating these geophysical images (*e.g.*, amplitude attributes) into more quantitative estimates of

reservoir storage and flow properties, in addition to their well-established uses for structural imaging. The critical need is the development of capabilities (acquisition, processing and interpretation) to resolve sufficient detail to assure site integrity and efficient injection of CO₂.

To improve our ability to delineate and quantify porosity and permeability in potential CO_2 sequestration reservoirs, it is necessary to understand the effect on the mechanicalseismic response caused by (1) heterogeneity within a fracture, *i.e.* void space distribution, asperity heights, variation in stiffness, fluid saturation, *etc.*; (2) heterogeneity from multiple fractures and fracture networks, *i.e.* fracture orientation, number of fractures, geometrical properties of intersections, fluid saturation, *etc.*; and (3) other heterogeneity in porous media such as the grain contacts, fluid-grain contacts, fluid saturation, correlated grain/pore distributions, *etc.*

Will partial saturation of a reservoir with CO_2 be visible to geophysical techniques? If a CO_2 sequestration reservoir had a slow leak into a water or oil saturated fracture, when the water is displaced from the void space within a fracture by a gas, the stiffness of the fracture is reduced. The reduction in fracture stiffness delays and attenuates a wave transmitted across the fracture and enhances the reflected energy from the fracture. Seismic waves propagated along a fracture with reduced stiffness give rise to fracture interface waves, which depend on fracture-specific stiffness (Pyrak-Nolte & Cook, 1987; Pyrak-Nolte *et al.*, 1992). Thus, if during the injection process CO_2 displaces a liquid phase in a fracture, the seismic signal will be dramatically altered. This has been observed on the field scale (Majer *et al.*, 1997; Myer, 1998) in highfrequency (1 kHz-10 kHz) cross-well seismic data taken during gas injection into a water-filled fracture in limestone. Specifically, interface waves were recoded as the gas displaced the water in the fracture. Further investigation is needed to determine the minimum gas saturation that can be detected seismically.

The integrity of the site and efficiency of the injection process requires identification of heterogeneities such as fractures and thin high-permeability layers that may lead to problems or failures discussed above. An issue is the ability to resolve such features using geophysical techniques. For example, fractures in rock extend over tens of meters but the "thickness" or aperture of the fracture can be as small as microns to millimeters which is much smaller than a wavelength. However, the small scale micro-mechanics of the system strongly perturbs the wave front by partitioning energy into body waves, interface waves and other guided modes. Majer *et al.* (1997) have shown using high-frequency (1 kHz - 10 kHz) cross well and single well survey methods that air-filled fractures with a thickness of 1 mm could be resolved using wavelengths of 0.5 m to 1 meter (0.001 of a wavelength) for a well separation of 50-100 meters over a 20 meter depth. Another research issue is the detection of fracture orientation, fracture connectivity, and other rapid flow paths.

Monitoring

Monitoring during the injection process is important to identify the location and saturation of the gas, the potential for breech, and the overall reservoir dynamics including changes in stress states referred to earlier. These tasks require a variety of geophysical techniques: tiltmeters, seismic, electromagnetic and various geophysical logs. Necessary research involves determining the optimum techniques for repeatability at desirable resolutions. Methodologies for quantitative comparisons of time-lapse images must be developed. Monitoring will be useful for identifying changes rather than defining static properties of fluids or flow. For example, seismic velocity is usually sensitive to the type and saturation of fluids in the pore space, and to the differential pressure (pore pressure minus confining pressure), but also varies with lithology and cementation. Therefore, estimating relative changes in saturation from time-lapse changes in seismic velocity is a better-posed problem than the direct inversion of velocity for absolute fluid saturation. Many good examples (Wang and Nur, 1989) of seismic monitoring come from thermal recovery processes, e.g., steam floods, where the change in seismic velocity due to steam can be as large as 30%. Despite the excellent time-lapse images showing the changes from thermal recovery processes, interpreting the images to determine saturation levels is difficult because uncertainties persist in quantifying the combined effects of steam, hot water, and oil on the rock properties.

Recently, crosswell tomography was used to identify simultaneous *in situ* changes of saturation and pressure caused by CO_2 injection in a carbonate reservoir (Harris, *et al.*, 1996a, 1996b). More work is needed to separate these two effects in the actual time-lapse images. Shear waves are not significantly affected by fluid changes, therefore time-lapse S-wave images should provide a pressure map, whereas time-lapse P-wave images sense the combined changes of pressure and saturation. Laboratory results and rock physics modeling need to calibrate and support these field observations. Moreover, laboratory data show that the magnitude of the seismic changes (2% to 20% in seismic velocity) associated with the typical west-Texas CO_2 injection process varies depending on the porosity and permeability of the formations. Through monitoring, it should become possible to identify high permeability zones by quantitatively interpreting the magnitudes of the seismic changes. On the basis of these crosswell results, large-scale 3-D, time-lapse seismic experiments are recommended.

Geomechanics discussions alluded to the fact that injection of high-pressure fluids (or conversely, withdrawal of reservoir fluids) will significantly alter the stress state in reservoirs and the surrounding rocks (Warpinski and Branagan, 1989; Warpinski and Teufel, 1991; Wright *et al.*, 1995). Hydraulic fracturing and waterflooding usually result in both fracturing of the rocks and leakoff of high-pressure fluids into the reservoir. Large stress changes can occur, both locally around the injection/production well and throughout the reservoir. The magnitude of these stress changes is usually a significant fraction of the change in reservoir pressure, which typically is 10-50 MPa. These changes can be measured and modeled (although with some difficulty) by means of standard micro-acoustic stress testing equipment and other reservoir information.

Assuming that CO_2 injection will be similar to waterflooding, gas re-injection, and CO_2 flooding, the layout of the injection wells will result in a highly heterogeneous pressure surface within the reservoir, changing CO_2 solubility and fluid permeability throughout.

Monitoring the consequences of CO_2 injection would be similar to the problems of monitoring fracturing, waterflooding, subsidence, drill-cutting injections or gas storage. Various technologies are applicable here, including microseismic monitoring of pressure-induced shear slippages in the disposal reservoir (*e.g.*, Warpinski *et al.*, 1997), and surface and downhole tiltmeters (Wright, 1998) for detecting reservoir deformation. Tiltmeters measurements are important diagnostic tools because they yield reservoir strains (poro-thermo-elastically induced, in this case). Tiltmeters also aid in identifying fracturing, subsidence, and *in situ* stress changes. It is emphasized, however, that the foregoing diagnostic techniques have been used primarily during hydraulic fracturing and EOR operations, but have never been applied to long-term monitoring that may require new procedures and processing techniques.

Containment Integrity Of CO₂

The most important consideration for ensuring the integrity of the site over extended periods of time is the frequency of the measurements. The frequency of the monitoring measurements will depend on the required temporal and spatial resolution, the ability to use automatic sensing equipment, and the ability to maintain and interpret a large data set. Through time-lapse monitoring, geophysical imaging may be used to characterize the reservoir, to assess both vertical and horizontal changes, and to monitor the long-term integrity of containment. The permanent placement of geophysical sources and receivers can provide the means necessary for cost-effective monitoring and differentiating injection-related changes from background changes. There are, nevertheless, several issues to be investigated: the magnitude of the seismic changes associated with CO_2 injection; the dependence of the geophysical changes on lithology, pore structure, pressure, temperature, *etc.*; the reservoir-specific issues, depth, heterogeneity, *etc.*; the repeatability of the geophysical experiment; the resolution required; and the experience to be gained from studying existing natural gas storage sites.

Research issues in containment related to the use of geophysical techniques include (1) quantitative definition of fast-flow paths and (2) identification of fracture formation caused by geochemical alteration or changes in local stress. Seismic methods have the potential for identifying fracture paths along which CO_2 may leak from the reservoir. Here again, the experimental, theoretical, and numerical investigations of seismic response of a fracture and fracture specific stiffness are relevant (Pyrak-Nolte *et al.*, 1990a&b, Pyrak-Nolte and Cook, 1987; Gu *et al.*, 1996a and b). To identify fast paths in a network of fractures, the fracture stiffness for each fracture within the network could be mapped seismically. The hydraulic property of each fracture within the network could then be inferred from fracture-specific stiffnesses if the interrelationships among fracture properties are fully understood.

Fractures in rock often are highly conductive, rapid flow paths that can connect otherwise hydraulically isolated rock formations. Laboratory data show that the fracture-specific stiffness and volumetric flow rate of a fracture are linked (Pyrak-Nolte, 1996) through the size and spatial distribution of the apertures and contact area of the fracture. This interrelationship between fracture specific stiffness and fracture flow has been observed over three orders of magnitude of specific stiffness and nine orders of magnitude in flow rates for laboratory samples of granite ranging in size from 0.052 m to 0.29 m (Pyrak-Nolte, 1998). However, there were two classes of behavior for the interrelationship: flow data fell on a universal curve or the flow data were independent of stiffness. Several questions remain, such as, will rocks from the same tectonic setting fall on the same fracture-specific stiffness-fluid flow curve, or will there be different universality classes based on rock type or stress history? Will repeated stress cycling alter the relationship? Will the relationship be scalable to the field scale? These questions cannot be addressed without more experimental results or without experimental validation of numerical codes to simulate fluid flow and fracture deformation.

Detection of crack formation can be performed using microseismic techniques or specialized active monitoring techniques. When a fracture forms through the linkage of micro-cracks, this zone of material undergoes a reduction in mechanical strength and change in volume. The reduction in mechanical strength is confined to a region that is much smaller than a typical seismic wavelength. Therefore, it is suggested that the weakened zone can be represented as a non-welded contact with a defined stiffness. As the stiffness of the zone decreases with increased microcrack linkage, seismic waves propagated along this zone will form guided wave modes that are a function of the stiffness of this zone and are dispersive. Pyrak-Nolte et al. (1996) found that shear waves are especially sensitive to crack formation when the wave particle motion is perpendicular to the fracture plane, because these shear waves couple into interface waves propagating along a fracture. Long before catastrophic failure, when a macroscopic fracture is formed, the energy in shear wave signals shows a dramatic frequency shift. This frequency shift is a signature of the partitioning of energy out of a bulk wave and into interface waves. Because this signature is observed prior to failure, it suggests the presence of an incipient interface wave that is supported by the network of oriented but disconnected micro-cracks. The change in the amplitude, velocity, and frequency content of the signals with time can indicate that failure is imminent and CO₂ leakage may occur.

If the formation of a macroscopic fracture produces a damaged zone immediately adjacent to the fracture, the thickness or extent of this zone will have altered the seismic properties relative to the undamaged portions of the rocks and possibly the fracture itself. This is an area that needs further research to determine if the damaged zone would support guided-shear modes similar to Love waves (Nihei *et al.*, 1994) as opposed to the fracture interface waves (Pyrak-Nolte and Cook, 1987; Gu *et al.*, 1996). The distinction between these two types of guided modes would be the polarization of the shear-wave particle motion. The ability to resolve the damaged zone from the fracture may not be possible or will depend on the spatial resolution of the probe.

Summary and Primary Research Needs

This report explores the state of knowledge and uncertainties of terrestrial sequestration of CO_2 in active hydrocarbon reservoirs, depleted reservoirs, deep saline aquifers, and (to lesser extent) coalbeds. Deliberations started from the premise that CO_2 disposal in geological formation is technically feasible based on (1) applicable industrial experience in hydraulic fracturing and in the use of CO_2 for enhanced oil recovery, and (2) more recent experience in CO_2 disposal in saline aquifers in Norway and hydrocarbon producing regions in the Far East. It also became evident that studies of CO_2 sequestration could draw on current geoscience research in several areas such as: the influence and quantification of reservoir heterogeneities on a variety of scales, lowtemperature geochemistry, micromechanical processes, the evolution of fracture systems and faults, coupled processes and their numerical treatments, and geophysical measurements of rock properties and reservoir conditions.

Fundamental differences, however, exist concerning the resolution needed in reservoir characterization for oil and gas production versus long-term CO_2 disposal, reservoir response to CO_2 injection with associated hydrological, geochemical, and mechanical interactions with the host rock and its natural fluids, and long-term containment potential of the reservoir and its seals. For example, it is not possible at this time to specify the kinetics of the various homogeneous and heterogeneous reactions following CO_2 injection. Differences also were identified between oil/gas reservoirs, aquifers, and coal. Oil and gas reservoirs will be better characterized than aquifers, with recorded production histories, and more existing drillholes that can be used for additional characterization activities. CO_2 injection, distribution, and containment in coalbeds will be controlled by methane desorption and adsorption processes not found in oil and gas production.

Further questions concerning terrestrial CO_2 sequestration arise in predicting the total storage capacities. Storage and containment evaluations are dominated by porosity and permeability distributions but also depend on the presence and contributions of natural fractures, fluid saturation, and residual fluid distribution. Additional uncertainties exist concerning the pressure limits and requirements for defined seals in saline aquifers, and the origins of fracture systems in hydrocarbon reservoir rocks and coal whose contributions to fast transport and reservoir boundaries may well become important to predict the fate of CO_2 over hundreds of years.

Special issues germane to CO_2 disposal arise in the assessment of depleted reservoirs whose properties are known to have changed during single or repeated pore pressure drawdown and fluid redistribution. Data about the potential effects of these changes on the integrity of the surrounding reservoir seals appear to be sparse. Other questions specific to CO_2 sequestration relate to the influence of chemical processes on reservoir flow properties and rock strength, approaches to verifying the long-term containment potential of reservoirs, and the potential need for monitoring small changes in reservoir characteristics with time, e.g., caused by slow CO₂ leakage.

To identify uncertainties and research needs for the terrestrial sequestration of CO_2 , this study was organized around reviews from four different general perspectives: geohydrology (and reservoir engineering), geochemistry, geomechanics, and geophysics. Accordingly, some specific fundamental research areas, unique to CO_2 sequestration or common with hydrocarbon reservoir characterization and development include the following:

- Understanding of fault formation and fault sealing properties as a function of lithology, stress state, temperature, and fluid chemistry.
- Further research concerning the evolution of joint systems and fracture networks including joint lengths, spacings, and fracture interactions with one another and with other rock mass heterogeneities.
- Characterization of matrix rock porosity and permeability and their effect on single and multiphase fluid flow. This research includes the definition of spatial organization of porosity in terms of depositional environment and diagenetic processes.
- Research on the effect of porosity heterogeneity and fractures on viscous fingering and fluid channeling on all scales (grain scale to field).
- Understanding the connectivity of fracture networks and determining differences in conductivity between individual fractures and fracture sets causing permeability anisotropy and fluid flow along a few major channels. Research in this area must be cognizant of the effect of total stress and pores pressure on the opening and closure of fractures, hence aperture distribution.
- Research on CO₂ trapping mechanisms starting with the three simplest mechanisms for predicting CO₂ migration and reservoir storage volume: aqueous, mineral, and microbial trapping.
- Research on the kinetics of the various homogeneous and heterogeneous geochemical reactions to predict the paths and rates of rock-fluid interactions in the presence of CO₂.
- Development of models of heterogeneous reactions involving complex averages over a variety of atomic-scale processes for use in chemical and fully coupled constitutive equations.
- Geochemical studies combined with studies of the history of fracture networks to understand the development of infillings on fluid flow and fracture healing. Fluid flow, aperture distribution, and channeling may be similarly affected by dissolution.

- A better understanding is needed of fluid flow and geochemical fluid-rock interactions along fracture intersections.
- Understanding CO₂ effects on clay minerals and shales.
- Research on the (mechanical) constitutive behavior of porous media and discrete natural fractures with emphasis on identifying fine structure and grain scale processes as well as scaling from grain-scale processes to bulk behavior.
- Test and extension of the concept of effective stress to large changes in pore pressure and associated inelastic changes in porosity and damage development
- Research into the evolution of matrix rock permeability as a function of stress state, stress path, and damage.
- Measurement and analyses of the influence of lithology and geologic structure on virgin *in situ* stress states and the evolution of *in situ* stresses with changes in pore pressure and rock mass deformation.
- Additional study concerning fracture development in high porosity, weakly consolidated formations with impact on reservoir response to injection and hydraulic fracture design.
- Relationship between rock texture, mechanical rock properties, geophysical properties, and stress state for translation of seismic images into maps of reservoir properties. Desired outcomes are, for example, the delineation of pore pressure distribution and location of over- and underpressurized reservoir compartments.
- Research on permissible aquifer pressures associated with CO₂ injection.
- Research related to CO₂ sequestration in coalbeds, including the fundamentals of coal wettability, methane desorption and CO₂ adsorption processes, and a thorough understanding of complex fracture (cleat) networks and attendant consequences for fluid flow.
- Coalbed sequestration will require research concerning the sealing properties of the bounding lithologies and associated structural features.
- Research on the capabilities of different geophysical techniques (*e.g.*, seismic or electromagnetic) to monitor time-dependent changes caused by dissolution or precipitation associated with changes of rock textures and fracture infillings.
- Determination of the seismic "visibility" of partial saturation of CO₂ for monitoring CO₂ migrations in different lithologies and at different pressures and temperatures.

- Seismic research on the relationship between the hydraulic, mechanical, and seismic properties of fractures and thin layers to assess and predict CO₂ leaks.
- Resolution of advanced-monitoring techniques such as microseismic receiver arrays, surface/downhole tiltmeters, or appropriately applied surface or crosswell geophysical surveys to detect fast leak paths and ensure site integrity.
- Development of new methods for differential seismic imaging using phase, amplitude, and frequency information for improved spatial resolution from the current range of 10-1000 m to a spatial resolution as high as 0.1 m.
- Geophysical research on fault and fracture detection by wave trapping and interface wave measurements and analyses, including such variables as the effects of scale, stiffness, void structure, fluid saturation, fracture spacing, and cyclic injection.
- Extensive laboratory experimentation along with carefully chosen field measurements to validate the upscaling of laboratory behaviors to the time and length scales of interest ranging from injection to long-term containment.
- Advances are needed in mathematical algorithms and their numerical implementations, for example, for representing complex grain shapes and pore structures. Such developments are essential for understanding, simulating, interpreting, and generalizing grain-scale observations as well as measurements on reservoir systems.
- Integration of constitutive models into coupled analyses with emphasis on identifying system instabilities.
- Coupling of fundamental research with studies and interpretations of natural analogues and case histories.

References

- Adam, N. K., 1964, in Contact Angle Wettability and Adhesion, Advances in Chemistry Series, No. 43, R.F. Gould, ed., Am. Chem. Soc., Washington, D.C., 52-56.
- Anderson, R. B., Bayer, J. and L.J.E. Hofar, 1966, Equilibrium sorption studies of methane on Pittsburgh seam and Pocahontas No. 3 seam coal, Paper No. 24, Coal Science, pp324, Adv. in Chem. Ser. No 55., Am. Chem. Soc.
- Anderson, R.T, Chapelle, F.H., and Lovley, D.R., 1998, Evidence against hydrogenbased microbial ecosystems in basalt aquifers, *Science*, 281, 976-977.
- Antonellini, M.A., A. Aydin, and D.D. Pollard, 1994, Microstructure of deformation bands in porous sandstones at Arches National Park, Utah, J. Struct. Geol, 16, 7, 941-959.
- Antonellini, M.A., and D.D. Pollard, 1995. Distinct element modeling of deformation bands in sandstone, *J. Struct. Geol*, 17, 8, 1165-1182.
- Amadei, B., and O. Stephansson, 1997. Rock Stress and Its Measurement, *Chapman & Hall*, 512p.
- Arnold, B.J., and F.F. Aplan, 1989, The hydrophobicity of coal macerals, *Fuel*, 68, 651-658.
- Atkinson, B. K., and P.G. Meredith, 1987. The theory of subcritical crack growth with applications to minerals and rocks, *Fract. Mech. of Rock*, B. K. Atkinson, ed., Academic Press, London, 161 162.
- Ayers, W. B. and B. S. Kelso, 1989, Knowledge of methane potential for coalbed resources grows, but needs more study, *Oil & Gas Journal*, Oct 23, 64-67.
- Al-Shaieb, Z., J. Puckette, A. Abdalla, and P. Ely, 1994. Three levels of compartmentation within the overpressured interval of the Anadarko Basin. *Basin compartments and seals*, P. Ortoleva, ed., *AAPG Mem.*, 61, 69-84.
- Bachu, S., W. D. Gunter, and E. H. Perkins, 1996. Carbon dioxide disposal. Aquifer disposal of carbon dioxide, hydrodynamic and mineral trapping - Proof of concept, B. Hitchon, ed., Sherwood Park, Alberta, Canada: Geoscience Publishing Ltd, 11-22.
- Barton, C.C., and P.R. LaPointe, 1995. *Fractals in Petroleum Geology and Earth Processes*, Plenum Press.
- Bell, G. J. and K. C. Rakop, 1986, Hysteresis of methane/coal sorption isotherms, 61st Annual Technical COnference and Exhibition of the Society of Petroleum Engineers, New Orleans, LA, Oct. 5-8, 1986, SPE 15454.
- Bergman, P. D., and E. M. Winter, 1995. Disposal of carbon dioxide in aquifers in the U.S. *Energy Convers. Mgmt.* 36, 6-9, 523-526.
- Bertrand, C., B. Fritz, and J. F. 1994. Sureau, Hydrothermal experiments and thermo-

kinetic modeling of water-sandstone interactions, *Chemical Geology*, 116, 189-202.

- Blair, S.C., N.G.W. Cook, and S.A. Daveler, 1993. A zeroth order statistical model for fracture in rock in compression, *Int. J. Rock Mech.* Min. Sci. & Geomech. Abstr, 30, 7, 1619-1622.
- Blunt, M., Fayers, F.J., and Orr, F.M., Jr., 1993. Carbon dioxide in enhanced oil recovery. *Energy Convers. Mgmt.* 334(9-11), 1197-1204.
- Bradley, J. S., 1975. Abnormal formation pressure. AAPG Bulletin 59:957-973.
- Bradley, J.S. and Powley, D.E., 1994, Pressure compartments in sedimentary basins: a review, in *Basin Compartments and Seals*, P. Ortoleva, ed., AAPG Mem. 61, 3-26.
- Bredehoeft, J.D., and Hanshaw, R.B., 1968. On the maintenance of anomalous fluid pressures: I. Thick sedimentary sequences, *GSA Bul.*, 79, 1097-1106.
- Briggs, H. and R.P. Sinha, 1933, Expansion and contraction of coal caused respectively by the sorption and discharge of gas, *Proc. Roy. Soc. of Edinburgh*, 53, 48-53.
- Brown, D. A., D.C., Kamineni, J.A., Sawicki, and T.J., Beveridge, 1994. Minerals associated with biofilms occurring on exposed rock in a granitic underground research laboratory. *Appl. and Envir. Microbiology*, 3182-3191.
- Brown, S.R., 1987. Fluid flow through rock joints: the effect of surface roughness, *J. Geophys. Res.*, 92, 1337-1347.
- Brown, S.R., 1989. Transport of fluid and electrical current through a single fracture, *J. Geopys. Res.*, 94, 9429-9438.
- Brown, S.R., and R.L. Bruhn, 1997. Fluid permeability of deformable fracture networks, Report SAND97-0159, Sandia National Laboratories, Albuquerque, NM.
- Bruno, M.S., 1994. Micromechanics of stress-induced permeability anisotorpy and damage in sedimentary rock, *Mech. Mater.*, 18, 31-48.
- Bumb, A.C. and C. R. McKee, 1988, Gas-well testing in the presence of desoprtion for coalbed methane and devonian shale, *SPE Formation Evaulation*, March 1988, 179-185.
- Coalson, E. B, S.S. Kaplan, C.W. Keighin, C.A. Olgesby, and J.W. Robinson, eds., 1989. Petrogenesis and petrophysics of selected sandstone reservoirs of the Rocky Mountain region, *Rocky Mtn. Assoc. of Geol.*, Denver, 347 p.
- Costin, L.S., 1983. A microcrack model for the deformation and failure of brittle rock, *J. Geophys. Res.*, 88, B11, 9485-9482.
- Costin, L. S., 1987. Time-dependent deformation and failure, *Fract.Mech. of Rock,* B. K. Atkinson ed., Academic Press, London. pp.167 216.
- Costin, L. S. and J.J. Mecholsky, 1983. Time-dependent crack growth and failure in brittle rock, *Proc. 24th U. S. Symp. Rock Mech.*, pp. 385-394, Texas A&M University, College Station, Texas.
- Cuisiat, F. D., and B.C. Haimson, 1992. Scale effects in rock mass stress measurements, *Int. J. Rock Mech. Min. Sci. & Geomech. Abstr.*, v. 29, 99-117.

- Dagan, G. and Neuman, S.P., eds., 1997. *Subsurface Flow and Transport: A Stochastic Approach*, Int'l Hydro. Ser., Cambridge Univ. Press
- Das, S. and C.H. Scholz, 1981. Theory of time-dependent rupture in the earth, J. *Geophys. Res.*, 86, 6039 6051.
- Demming, D., 1994. Factors necessary to define a pressure seal. AAPG Bul., 78, 1005-1009.
- DeRouffnignac E., J.M. Karanakis, P.L. Bodnor, and S.K. Hara, 1995, Subsidence and well failure in the sourgh Beldgridge diatomite field, *Soc. Petr. Engrs.*, paper SPE 29626, SPE Western Regional Mtg., Bakersfield, CA, March 8-10.
- Dieterich, J. H. and G. Conrad, 1984. Effect of humidity on time and velocity dependent friction in rocks, *J. Geophys. Res.*, 89, 4196-4202.
- Digby, P.J., 1981. The effective elastic moduli of porous granular rocks, *J. Appl. Mech.*, 48, 803-808.
- Dove, P.M., 1995, Geochemical controls on the kinetics of quartz fracture at subcritical tensile stresses, *J. Geophys. Res.*, 100, 22349-22359.
- Dreybrodt, W., J. Lauckner, L.Zaihua, U. Svensson, and D. Buhmann, 1996. The kinetics of the reaction $CO_2 + H_2O \longrightarrow H^+ + HCO_3^-$ as one of the rate limiting steps for the dissolution of calcite in the system H₂O-CO₂-CaCO₃, *Geochimica et Cosmochimica Acta* 60(18):3375-3381.
- Dunsmore, H.E., 1992. A geological perspective on global warming and the possibility of carbon dioxide removal as calcium carbonate mineral. *Energy Convers. Mgmt* 33(5-8):565-572.
- Dvorkin, J., G. Mavko, and A. Nur, 1991. The effect of cementation on the elastic properties of granular materials, *Mech. Mater.*, 12, 207-217.
- Dvorkin, J, A. Nur, and H. Yin, 1994. Effective properties of cemented granular materials, *Mech. Matr.*, 18, 351-366.
- Ferris, F.G., R.G. Wiese, and W.S. Fyfe, 1994. Precipitation of carbonate minerals by microorganisms: implications for silicate weathering and the global carbon dioxide budget. *Geomicrobiology Journal* 12:1-13.
- Fredrich, J.T., B. Menendez, and T.F. Wong, 1995. Imaging the pore structure of geomaterials, *Science*, 268, 276-279.
- Fredrich, J.T, G.L. Deitrick, J.G. Arguello, and E.P. DeRouffignac, 1998. Reservoir compaction, surface subsidence, and casing damage: a geomechanics approach to mitigation and reservoir management, *Soc. Petr. Engrs.* SPE Paper No. 47284,
- Fredrich, J.T., 1998. 3D imaging if porous media and applications to microscale modeling of transport properties, *Annales Geophysicae* (European Geophys. Soc.), Suppl. to Vol. 16, C254 (Abstr.).
- Fryar, A. E. and F.W. Schwartz, 1994. Modeling the removal of metals from groundwater by a reactive barrier: Experimental results, *Water Resources Res.*, 30(12) 3455-3469.

- Fyfe, W.S., R. Leveille, W. Zang, and Y. Chen, 1996. Is CO₂ disposal possible? Capture, utilization and disposal of CO₂,41(4), *Amer. Chem. Soc.*, Div. Fuel Chem., 1433-1435.
- Fyfe, W.S., W. Zang, Y. Chen, and R. Leveille, 1996. Is CO₂ disposal possible? *Chem. & Engin. News* 5.
- Gash, B., R.F. Volz, P. Gary, and J. M. Corgan, 1992. The effect of cleat orientation and confining pressure on cleat porosity, permeability and relative permeability in coal, 1992 SCA Conference Paper No. 9224, June, 1992, Tulsa, Oklahoma.
- Gelhar, L.W., 1993, Stochastic Subsurface Hydrology, Prentice Hall, New York.
- Geller J. T. and, L.R. Myer, Ultrasonic imaging of organic liquid contaminants in unconsolidated porous media, *J. Contaminant Hydrology*, v19, n2, p85.
- Germanovich, L.N., R.L. Salganik, A.V. Dysin, and K.K. Lee, 1994. Mechanisms of brittle fracture of rock with pre-existing cracks in compression, *Pageophy.*, 43, 1/2/3, 117-149.
- Gu, B., K. Nihei, L.R. Myer, and L.J. Pyrak-Nolte, 1996a. Fracture interface waves. *J. of Geophys. Res.*, 101,1, 827.
- Gu, B., R. Suarez-Rivera, K. Nihei, and L.R. Myer, 1996b. Incidence of a plane waves upon a fracture, *J. of Geophys. Res.*, 101,11, 25337-25346.
- Gunter, W.D., E. H. Perkins, and T.J. McCann, 1993. Aquifer disposal of CO₂ -rich gases: Reaction design for added capacity. *Energy Convers. Mgmt* 34(9-11):941-948.
- Harpalani, S. and X. Zhao, 1989, The unusual response of coal permeability to varying gas pressure and effective stress, *Rock Mechanics as a Guide for Efficient Utilization of Natural Resources*, Khair (ed.), Balkema, Rotterdam, 65-72.
- Harris, J. M. *et al.*, 1996a. Experimental verification of seismic monitoring of CO₂ injection in carbonate reservoirs, Expanded Abstracts of the 66th SEG Annual Meeting, pp. 1870-1872.
- Harris, J.M., F. Yin, and Y. Quan, 1996b. Enhanced oil recovery monitoring using Pwave attenuation, Expanded Abstracts of the 66th SEG Annual Meeting, pp. 1882-1885.
- Hitchon, B., ed. 1996. Aquifer disposal of carbon dioxide, hydrodynamic and mineral trapping Proof of concept. Sherwood Park, Alberta, Canada: Geoscience Publishing Ltd.
- Holcomb, D.J., 1992, Localization studies under triaxial conditions, *Proc. 33rd U.S. Symp. Rock Mech.*, J.R. Tillerson and W.R. Wawersik, eds., Balkema, Rotterdam.
- Holland, H.D., and S.D. Malinin, 1979. The solubility and occurrence of non-ore minerals. *Geochemistry of Hydrothermal Ore Deposits*, 2d ed., H. L. Barnes, ed., New York: John Wiley & Sons, 461-508.
- Homsy, G.M., 1987, Viscous fingering in porous media, *Annual Reviews of Fluid Mechanics*, 19, 271.
- Hubbert, M. K., and D.G. Willis, 1955. Important fractured reservoirs in the United

States, 45th World Pet. Cong. Proc. Sec. 1.A-1, 58-81.

- Imdakm, A. O. and M. Sahimi, 1991. Computer simulation of particle transport processes in flow through porous media, *Chem. Engr. Science*, 46(8), 1977-1993.
- Jaeger, J.C., and Cook, NGW, 1979, *Fundamentals of Rock Mechanics*, Chapman and Hall, London, 592p.
- Joubert, J. I., Grein, C. T. and D. Bienstock, 1973, Sorption of methane in moist coal, *Fuel*, vol. 52, no. 3, p181.
- Kemeny, J.M. and N.G.W. Cook, 1991. Micromechanics of deformation in rocks, in *Toughening Mechanisms in Quasi-Brittle Materials*, S.P. Shaw, ed., Klewer Academic, The Netherlands, 155-188.
- Kieft, T. L., and T.J. Phelps, 1997. Life in the slow lane: activities of microorganisms in the subsurface. *The Microbiology of the Terrestrial Deep Subsurface*. Amy, P. S. and D.L. Haldeman, eds., Boca Raton: CRC Press LLC, 137-163.
- Kim, A. G., 1977, Estimating methane conent of bituminous coalbeds from adsorption data, *US Bureau of Mines*, RI8245.
- Kirby, S. H. and C.H. Scholz, eds., 1984. Chemical effects of water on the strength and deformation of crustal rocks, *J. Geophys. Res.*, 89.
- Lappan, R.E., A. N. Hrymak, and R. Pelton, 1997. Dependence of *in situ* precipitate deposition on flow characteristics in multi-permeability porous media, *Chem. Engineer. Science*, 52, 17, 2963-2975.
- Lasaga, A.C. 1981. Dynamic treatment of geochemical cycles: Global kinetics. Kinetics of geochemical processes, *Rev. in Min.*, Vol. 8, A. C. Lasaga and R. J. Kirkpatrick, eds., Min. Soc. of Amer., Washington, D.C., 69-110.
- .Lee, Y.H., 1982, Methane Recovery from Coalbeds: Effects of Monolayer Capacity and Pore Structure on Gas Content, M.S. Ch.E. Thesis, Univ. of NM, Albuquerque.
- Li, X, 1997. Acoustic Monitoring of Sediment Water Interaction, MS Thesis, University of Notre Dame, Notre Dame, Indiana.
- Lin, W. and F.E. Heuze, 1987. Comparison of *in situ* dynamic moduli and laboratory moduli of Mesaverde rocks, *Int. J. Rock Mech. Min Sci. & Geomech. Abstr.*, 24, 257-263.
- Lindquist, W.B., S.M. Lee, D.A. Coker, K.W. Jones, and P. Spanne, 1996. Medial axis analysis void structure in three-dimensional tomographic images of porous media, *J. Geophys. Res.*, 101, 8297-8310.
- Lindquist, W.B., 1998. Investigating three dimensional geometry of porous media from high resolution images, *Annales Geophysicae* (European Geophys. Soc.), Suppl. to Vol. 16, C255 (Abstr.).
- Liu, X., A. Ormond, K. Bartko, Y. Li, and P. Ortoleva, 1997. Matrix acidizing analysis and design using a geochemical reaction-transport simulator. *J. of Petrol. Sci. and Engin.* 17, 181-196.

- Liu, Z., and W. Dreybrodt, 1997. Dissolution kinetics of calcium carbonate minerals in H₂O-CO₂ solutions in turbulent flow: The role of the diffusion boundary layer and the slow reaction $H_{2}O + CO_{2} \longrightarrow H^{+} + HCO_{3}^{-}$. *Geochimica et Cosmochimica Acta* 61, 14, 2879-2889.
- Lockner, D.A., and T.R. Madden, 1991. A multiple-crack model of brittle fracture, *J. Geophys. Res.*, 96, B12, 19623-19642.
- Logan, J.M, and Rauenzahn, K.A., 1987, Velocity-dependent behavior of mixed quartz-montmorillonite gouge, in *Mechanics of Faulting*, R. Wessen, ed., Tectonophysics, 144, 87-108.
- Logan, J. M., C.A. Dengo, N.G. Higgs, and Z.Z. Wang, 1992. Fabrics of experimental fault zones, their development and relationship to mechanical behavior, *Fault Mechanics and Transport Properties in Rocks*, B. Evans and T.F. Wong, eds., Academic Press, London, 32-67.
- Long, J.C.S., and K. Hestir, 1990. Permeability of random two-dimensional fracture networks, *J. Geophys. Res.*, 95, B13, 21,256.
- Lorenz, J.C., and S.E. Laubach, 1994. Description and interpretation of natural fracture patterns in sandstones in the Frontier Formation along Hogsback, Southwestern Wyoming, Topical Report to GRI, GRI-94/0020.
- Lorenz, J.C., J.G. Arguello, C.M. Stone, H. Harstad, L.W. Teufel, and S.R. Brown, 1995. Predictions of fracture and stress orientations: subsurface Frontier Formation, Green River Basin, Topical Report to GRI, GRI-95/0151.
- Majer, E. L., J.E. Peterson, T. Daly, B. Kaelin, L.R. Myer, J. Queen, P. D'Onfro, P. and W. Rizer, 1997. Fracture detection using crosswell and single well surveys, *Geophysics*, 62, 2, 495-504.
- Mason, J. W. 1968. Hugoton Panhandle Field, Kansas, Oklahoma, and Texas. *Nat. Gases of North America*, Vol. 2, Beebe, B.W. ed., AAPG Mem. No. 9. Tulsa, Oklahoma.
- McCulloch, C. M., Levine, J.R., Kissell, F. N. and M. Duel, 1975, Measuring the methane content of bituminous coalbed, US Dept. of the Interior, RI8043, pages 1-21.
- McElhiney, J. E., Koenig, R. A., and R. A. Schraufnagel, 1989, Evaluation of coalbedmethane reserves involves different techniques, *Oil & Gas Journal*, Oct 30, 63-72.
- Moffat, D. H. and K. E. Weale, 1955, Sorption by coal of methane at high pressures, *Fuel*, v. 34, pp449-462.
- Mollema, P.N., and M.A. Antonellini, 1996. Compaction bands: a structural analog for anti-mode I cracks in aeolian sandstone, *Tectonophysics* 267, 209-228.
- Moore, D.E., and D.A. Lockner, 1995. The role of microcracking in shear-fracture propagation in granite, *J. Struct. Geol*, 17, 1, 95-114.
- Moritis and Guntis, 1998. 1998 Worldwide EOR survey. *Oil and Gas J.*, April 20, 49-77.

- Morse, J. W. 1983. The kinetics of calcium carbonate dissolution and precipitation, Carbonates: Mineralogy and chemistry, *Rev. in Min.*, Vol. 11, R. J. Reeder, ed., Min. Soc. of Amer., Washington, D.C., 227-264
- Mukerji, T., G. Mavko, D. Mujica, and N. Lucet, 1995. Scale-dependent seismic velocity in heterogeneous media, *Geophysics*, 60, 4, 1222-1233.
- Murphy III, W. F., K. W. Winkler, and R.L. Kleinberg, 1984. Frame modulus reduction in sedimentary rocks: the effect of adsorption on grain contacts, *Geophys. Res. Let.*, 1, 805-808.
- Myer, L. R., 1998. Seismic wave propagation in fractured rock, *Mechanics of Jointed and Faulted Rock - 3rd International Symposium*, Rossmanith (ed), Vienna Technical University, Vienna, Austria, April 6-9th, 1998, p29-38.
- Narayan, R., J. R. Coury, J.H. Masliyah, and M.R.Gray, 1997. Particle capture and plugging in packed-bed reactors, *Ind. Eng. Chem. Res.*, 36, 4620-4627.
- National Academy/National Research Council, 1996. *Rock Fractures and Fluid Flow Contemporary Understanding and Applications*, National Academy Press, Washington, D.C.
- Nelson, C. R., 1989, Chemistry of Coal Weathering, Elsevier, New York.
- Nelson, R. A., 1985, Geologic Analysis of Naturally fractured Reservoirs, Gulf Publishing Co., Houston, 320 p.
- Neuzil, C.E., 1995. Abnormal pressures as hydrodynamic phenomena, *Am. J. Sci.*, 295, 742-786.
- Nihei, K. T., 1992. Micromechanics of Seismic Wave Propagation in Granular Rocks, Ph.D. Thesis, University of California, Berkeley.
- Nihei, K. T, L.R. Myer, N.G.W. Cook, and W. Yi, 1994. Effects of non-welded interfaces on guided Sh-waves, *Geophys. Res. Let.*, 21, 9, 745-748.
- O'Connor, R.M., 1996. A distributed discrete element modeling environment algorithms, implementation and applications, Ph.D. Thesis, Dept. Civil & Environmental Engineering, MIT.
- O'Connor, R.M., J.T. Fredrich, and H.W. Stockman, Microscale flow modeling in geologic materials, *Annales Geophysicae* (European Geophys. Soc.), Suppl. to Vol. 16, C255 (Abstr.).
- Oda, M., Y. Hatsuyama, and Y. Onishi, 1987. Numerical experiments on permeability tensor and its application to jointed grnaite at Stripa Mine, Sweden, *J.Geophys. Res*, 92, 9037-8048.
- Olsson, W.A, 1998. Theoretical and experimental investigation of compaction bands in porous rock, *J. Geophys. Res.* (in press).
- Olsson, W.W., and Rudnicki, J.W., 1998, Reexamination of fault angles predicted by shear localization theory, *Int. J. Rock Mechanics and Mining Sciences*, Vol. 35, June/July, 512-513 (extended abstract, full paper on CD_Rom).
- Ord, A., I. Vardoulakis, and R. Kajewski, 1991. Shear band formation in Gosford

sandstone, Int. J. Rock Mech. Min. Sci., 28,2, 397-409.

- Orr, F.M., Jr., Dindoruk, B., and Johns, R.T., 1995. Theory of multicomponent gas/oil displacements. *Ind. Eng. Chem. Res.*, 34, 2661-2669.
- Orr, F.M., Jr. and Taber, J.J., 1984. The use of CO2 in enhanced oil recovery, *Science* 224, 563-569.
- Ortoleva, P., ed. 1994a. *Basin compartments and seals, AAPG Mem.* No. 61, AAPG, Tulsa, Oklahoma.
- Ortoleva, P. 1994b. Geochemical self-organization. New York: Oxford University Press.
- Ortoleva, P. 1998. *Basin Compartments*. New York: Oxford University Press. Forthcoming.
- Ortoleva, P., Z. Al-Shaieb, and J. Puckette, 1995. Genesis and dynamics of basin compartments and seals. *Amer. J. Sci.*, 295, 345-427.
- Perkins, E. H., and W.D. Gunter, 1996. Mineral traps for carbon dioxide. Aquifer Disposal of carbon dioxide, hydrodynamic and mineral trapping - Proof of concept, B. Hitchon, ed., Sherwood Park, Alberta, Canada: Geoscience Publishing Ltd., 93-113.
- Pollard, D.D., and A. Aydin, 1988. Progress in understanding jointing over the past century, *Geol. Soc. Am. Bul.*, 100, 1181-1204.
- Pratt, H. R., H.S. Swolfs, W.F. Brace, A.D. Black, and J.W. Handin, 1972. Elastic and transport properties of an *in situ* jointed granite, *Int. J. Rock Mech. Min Sci. & Geomech. Abstr.*, 14, 35-45.
- Puckette, J. 1996. Evaluation of underpressured reservoirs as potential repositories for liquid waste. Unpublished Ph.D. dissertation, Oklahoma State University.
- Pyrak-Nolte, L.J. and N.G.W. Cook, 1987. Elastic Interface Waves along a Fracture, *Geophys. Res. Let.*, 14, 11, 1107-1110.
- Pyrak-Nolte, L.J., L.R. Myer, and N.G.W. Cook, 1987, Seismic Visibility of Fractures, Rock Mechanics: *Proceedings of the 28th U.S. Symposium*, I.W. Farmer and J.J.K. Daemen, eds.
- Pyrak-Nolte, L.J., L.R. Myer, and N.G.W. Cook, 1990a. Transmission of Seismic Waves across Natural Fractures, *J of Geophys. Res.*, 95, B6, 8617-8638.
- Pyrak-Nolte, L.J., L.R. Myer, and N.G.W. Cook, 1990b. Anisotropy in Seismic Velolocties and Amplitudes from Multiple Parallel Fractures, J. of Geophys. Res., 95, B7, 11345-11358.
- Pyrak-Nolte, L.J., J. Xu, and G.M. Haley, 1992. Elastic Interface Waves Propagating in a Fracture, *Phys. Rev. Let.*, 68, 24, 3650-3653.
- Pyrak-Nolte, L. J., 1996. The seismic response of fractures and the interrelationships among fracture properties, *Inter. J. of Rock Mech. Mining Sci. & Geomechanics Abstr.*, 33, 8, 785-802.
- Pyrak-Nolte, L. J., S.Roy, and C. Neumann, 1996. Incipient interface waves used to

monitor rock failure in Rock Mechanics Tools and Techniques, Proceedings of the *2nd North Amer. Rock Mech. Symp.*, Montreal, Quebec, Canada, June 19-21, 1996, M. Aubertin, F. Hassani, and H. Mitri, eds., Vol. 2, 1169-1175.

- Pyrak-Nolte, L. J., 1998. Fractures: Fluid Flow and Geometry, *Mechanics of Jointed and Faulted Rock, 3rd Inter. Symp.*, Rossmanith (ed), Vienna Technical University, Vienna, Austria, April 6-9th, 11-19.
- Revil, A., Cathles, L.M., Shosa, J.D., Pezard, P.A., de Larouziere, F.D., 1998.
 Capillary sealing of sedimentary basins: a clear field example, Geophys. Res. Lett., 25, 389-392
- Rhett, D., and L.W. Teufel, 1992. Stress path dependence of matrix permeability of North Sea sandstone reservoir rock, *Proc.* 33rd U.S. Rock Mech. Symp., Balkema, 345-353.
- Roehl, P. O., and P.W. Choquette, eds., 1985. Carbonate Petroleum Reservoirs, 314 p.
- Rudnicki, J. W., 1999, Alteration of regional stress by reservoirs and other inhomogeneities: stabilizing or destabilizing?, Proc. 1999 Int. Cong. of Int. Soc. Rock Mechanics, August 25-28 (accepted).
- Rudnicki, R.W., and J.R. Rice, 1975, Conditions for localization of deformation in pressure-sensitive dilatant materials, *J. Mech. Phys. Solids*, 23, 371-394.
- Rudnicki, J. W., and K.T. Chau, 1996. Multiaxial response of a microcrack Constitutive model for brittle rock, in Tools and Techniques in Rock Mechanics, *Proc. 2nd North Am. Rock Mech. Symp.*, ISRM Regional Conf., M. Aubertin, F. Hassani and H. Mitri, eds., A.A. Balkema, Rotterdam, 1707-1714.
- Rudnicki, J. W., W.R. Wawersik, and D.J. Holcomb, 1996. Microcrack damage model for brittle rock, Proc. Symp. on Inelasticity and Damage in Solids Subject to Microstructural Change (Lazar M. Kachanov Symp.), I. J. Jordaan, R. Seshadri, and I. L. Meglis, eds., Memorial University of Newfoundland, 301-310.
- Ruppel, T. C., Grein, C. T. and D. Bienstock, 1974, Adsorption of methane on dry coal at elevated pressure, *Fuel*, 53, 152.
- Schatz J. F., A.J. Olszewski, and R.A Schraufnagel, 1993. Scale dependence of mechanical properties: application to the oil and gas industry, SPE 25904, *Proc.*, *SPE Rocky Mountain Region Meeting*, in Low Permeability Reservoirs Symposium, 615-624.
- Schatz, J. F., 1995. Scale dependence of formation mechanical properties, Annual Report, Gas Research Inst., March, B-1--B-13.
- Scheidegger, A.E., 1974, The Physics of Flow through Porous Media, Third edition, University of Toronto Press, Buffalo, 42.
- Schlueter, E,M., N.G.W. Cook, R. Zimmerman, and P.A. Witherspoon, 1991. Predicting permeability and electrical conductivity of sedimentary rocks from microgeometry, *Proc.* 32nd Symp. Rock. Mech., Univ. of Oklahoma, 344-364.
- Schlueter, E. M., R.W. Zimmerman, Myer, N.G.W. Cook, and P.A.Witherspoon, 1994. Predicting the capillary pressure function of Berea sandstone, *Computer Methods*

and Advances in Geomechanics (Siriwardane, Zaman, eds.), Proc. 8th International Conference on Computer Methods and Advances in Geomechanics, 1257-1262.

- Scholz, C. H., 1990. *The Mechanics of Earthquakes and Faulting*, Cambridge University Press, New York.
- Segall, P, 1984. Rate-dependent extensional deformation resulting from crack growth in rock, *J. Geophys. Res.*, 89, 4185-4195.
- Segall, P., 1989. Earthquakes triggered by fluid extraction, Geology, 17, 942-946.
- Siefritz, W. 1990. CO₂ disposal by means of silicates, Nature, 345-486.
- Stevens, T.O., and J.P. McKinley, 1995. Lithoautotrophic microbial ecosystems in deep basalt aquifers. *Science* 270:450-454.
- Suarez-Rivera, R., 1992. The Influence of Thin Clay Layers containing Liquids on the Propagation of Shear Waves, Ph.D. Thesis, University of California, Berkeley.
- Surdam, R. C. ed., 1997. Seals, Traps, And The Petroleum System, *AAPG Mem* 67, 317 p.
- Surinova, S. I. and A. N. Polushkin, 1987, The role of the wettability of coal in the production of carbonaceous adsorbents, *Solid Fuel Chemistry*, 21, 4, 166-120.
- Taylor, L., R.E. Myers, and A. Aydin, 1997. Geology of the Valley of Fire State Park, southeastern Nevada, *Proc. Stanford Rock Fracture Project*, Vol.7, Dept. Geol. and Environm. Engr., Stanford University.
- Tchelepi, H.A., Orr, F.M., Jr., Rakotomalala, N., Salin, D., and Woumeni, R., 1993, Dispersion, permeability heterogeneity and viscous fingering: acoustic experimental observations and particle-tracking simulations, *Phys. Fluids A.*, 5, 7, 1558-1574.
- Tchelepi, H.A. and Orr, F.M., Jr., 1994. Interaction of viscous fingering, permeability heterogeneity, and gravity segregation in three dimensions. Soc. Pet. Eng. Res. Eng. 9(4), 266-271.
- Teufel, L.W., and H.E. Farrell, 1990. *In situ* stress and natural fracture distribution in the Ekofisk Field, North Sea, *Proc. 3rd North Sea Chalk Symp.*, Copenhagen, Denmark.
- Thomas, A., and D. Pollard, 1993. The geometry of an echelon fractures in rock: implications from laboratory and numerical experiments, *J. Struct. Geol.*, 14, 3-5, 232-334.
- Toth, J.A., 1962. A theory of ground-water motion in small drainage basins in central Alberta, Canada. J. Geophys. Res., 67, 4375-4387.
- Wang, Z. and A.M. Nur, 1989. Effects of CO₂ Flooding on Wave Velocities in Rocks with Hydrocarbons," *SPE Reservoir Engr.*, 4, 4.
- Wang, Y. and Orr, F.M., Jr., 1998. Calculation of minimum miscibility pressure, SPE39683, presented at SPE/DOE Eleventh Symposium on Enhanced Oil Recovery, Tulsa, 1998.
- Warpinski, N.R. and P.T. Branagan, 1989. Altered-Stress Fracturing, J. of Petrol. Tech., 990.

- Warpinski, N.R. and L.W. Teufel, 1992. Determination of the Effective Stress Law for Permeability and Deformation in Low Permeability Rocks, SPE Formation Evaluation, 123.
- Warpinski, N.R., P.T. Branagan, R.E. Peterson, J.E. Fix, J.E. Uhl, B.P. Engler, and R. Wilmer, 1997. Microseismic and Deformation Imaging of Hydraulic Fracture Growth and Geometry in the C Sand Interval, GRI/DOE M-Site Project, SPE 38573, 1997 SPE Annual Technical Conference and Exhibition, San Antonio, Texas, October 5-8.
- Warpinski, N.R., L.W. Teufel, J.C. Lorenz, and D.J. Holcomb, 1993. Core based stress measurements: a guide to their application, Topical Report, Gas Research Institute, GRI-93/0270.
- Warpinski, N.W., and L.W. Teufel, 1991. *In situ* stress measurements at Rainier Mesa, Nevada Test Site – influence of topography and lothology on the stress state in tuff, *Int. J. Rock Mech. Min. Sci.* 28, 2/3, 143-161.
- Weber, K. J., G. Mandl, W. F. Pilaar, F. Lehner, and R. G. Precious, 1978. The role of faults in hydrocarbon migration and trapping in Nigerian growth fault structures. *10th Annual Offshore Tech. Conf. Proc.*, 4, 2643-2653.
- Winkler, K.W., 1983. Contact stiffness in granular porous materials: comparison between theory and experiment, *Geophys. Res. Ltrs.*, 10, 11, 1073-1076.
- Wright, C.A, R.A. Conant, G.M. Golich, P.L. Bondor, A.S. Murer, and C.A. Dobie, 1995. Hydraulic Fracture Orientation and Production/Injection Induced Reservoir Stress Changes in Diatomite Waterfloods, SPE 29625, SPE Western Regional Meeting, Bakersfield, California, March 8-10, 1995.
- Wright, C.A., 1998. Tiltmeter Fracture Mapping: From the Surface And Now Downhole, *Hart's Petrol. Eng. Inter.*, p 50, January 1998.
- Wu, H., and D.D. Pollard, 1991. Fracture spacing, density and distribution in layered rock mass: results from a new experimental technique, *Proc.* 32nd Symp. Rock. *Mech.*, Univ. of Oklahoma, 1175-1184.
- Yalcin, E. and S. Durucan, 1991, Methane capacities of Zonguldak coals and the factors affecting methane adsorption, Mining Science and Technology, 13, 215-222.
- Yale, D. P., J.A. Nieto, and S.P. Austin, 1995. The effect of cementation of the static and dynamic mechanical properties of the Rotliegendes sandstone, in Rock Mechanics, *Proceedings of the 35th U. S. Symposium*, J. J. K. Daemen, R. A. Schultz, Balkema, Rotterdam, eds., 169-175.
- Zang, A., and T.F. Wong, 1995. Elastic stiffness and stress concentration in cemented granular material, *Int. J. Rock Mech. Min. Sci & Geomech. Abstr.*, 32, 6,563-574.
- Zuddas, P., and A. Mucci, 1998. Kinetics of calcite precipitation from seawater, II: The influence of the ionic strength. *Geochimica et Cosmochimica Acta* 62,5, 757-766.