Operando Science Enabled by the Linac Coherent Lightsource (LCLS)

Leora E. Dresselhaus-Marais

Assistant Professor Materials Science & Engineering, Mechanical Engineering (Courtesy) Photon Science (Term)

Stanford University

Precourt Institute for Energy

My Perspective: Science Underlying Sustainable Manufacturing

leoradm@stanford.edu

Manufacturing Science Spans Many Timescales

fs 10 ⁻¹⁵	ps 10 ⁻¹²	ns 10 ⁻⁹	μs 10 ⁻⁶	ms 10 ⁻³	s m 1	nin h 10 ³	d mo 10 ⁶	yr
ultra	afast	"rap	pid ⁿ	"fast"		CU	ımulative	
Nano Phenomena: Electrons, Extreme Dynamics, Photons, Phonons				<u>N</u> cry equilit	<u>Meso-Micro:</u> crystal plasticity, equilibrium processes, diffusion.			
		<u>Mesosca</u> fractu transitio	<u>le Dynamic</u> ıre, phase ns, chemist	ry Primary	A Isolated cavities Secondary	D d cavities Tertiary	<u>Structure</u> Fatigue, Co Embrittle	<u>-Scale:</u> rrosion, ement

Lifetime & Performance of Devices Require Science Connecting All Timescales

Incipient Failure & Transformations for Materials Discovery

leoradm@stanford.edu

<u>leoradm@stanford.edu</u> LCLS's Unique Capabilities enable High-Impact Science & Discovery

Building New Communities for Operando Science

A

Accessing the Scales to Enable Control in Metal 3D Printing

Metal 3D Printing (AM) is transforming manufacturing today.

Affordable Route into Metal "Additive Manufacturing: Aviation AM" 3DPrint.com. and aerospace industry" GE Additive.

Printing layer-by-layer to construct unique components.

"About Additive Manufacturing – Powder Bed Fusion" Loughborough University, AMRG.

For robust metal-AM parts, we need control of the microstructure.

Persistent Fundamental Gaps Inhibit AM Feasibility:

leoradm@stanford.edu

We require robust fundamentals to understand & control the lifetime & performance of printed parts

Accessing the Scales to Enable Control in Metal 3D Printing

C

R. Ye, "3ERP Presents: an Affordable Route into Metal AM" 3DPrint.com.

Metal "Additive Manufacturing: Aviation and aerospace industry" GE Additive.

Printing layer-by-layer to construct unique components.

"About Additive Manufacturing – Powder Bed Fusion" Loughborough University, AMRG.

For robust metal-AM parts, we need control of the microstructure.

Persistent Gaps in Fundamental AM Science:

We require robust fundamental models to understand & control the microstructure

leoradm@stanford.edu

ps-μs: Turbulent Fluid Dynamics Competing Driving Forces in Melt-Pool Cause Spatter, Segregation, Mixing

XFEL Coherence & Ultrafast Science Required for Range of time- & length-scales

Looking Forward: LCLS-II-HE will provide a step-jump in capability

leoradm@stanford.edu

J.

Leaping from 120 Hz to 1 MHz will be transformative: Enabling Access to Multi-Timescale Science representative of Real-World Systems

Developing the Detectors & Accelerator for Operando Needs

leoradm@stanford.edu

5

Team Approach Offers Opportunities to Access Multi-Timescale Processes in Real-World Systems

LCLS-II will transform our understanding of dynamics in real-world systems

How to accelerate chemical reactions

- Correlate catalytic reactivity and structure
- Real-time evolution with chemical specificity and atomic resolution

Dresselhaus-Marais | mesoscale.squarespace.com

Watching biology in action

- Study large scale conformational changes via solution scattering
- Physiological conditions (room temperature, solution phase)
- Dynamics ties structure to function

Understanding material function and failure

leoradm@stanford.edu

- Characterize dynamic systems without longrange order
- Directed design of energy conversion and storage materials

Hydrogen Dynamics in Environmental Ultrafast Electron Diffraction

leoradm@stanford.edu

Measuring Chemistry, Diffusion, Embrittlement at its Native Timescales

Summary: LCLS Opens a Wide Range of Operando Science

Mapping Reaction Landscapes in Real Environments: Pyrometallurgical extraction chemistry (Critical Materials), Geochemistry, Upcycling Plastics, Natural & Artificial Photosynthesis, Green Catalysis

Materials Science & Physics:

Physics Underlying Defect Engineering, Thermal Transport, Electronic Designs, & Advanced Materials Discovery

NanoMaterials: Quantum Information, Architected Materials Dynamics, & Emergent Phenomena

Biological Function & Structural Dynamics

Dynamics in Physiological Environments, Biomass Energy & Waste Management

