Bioenergy and Sustainability

A Biogeochemical Perspective

Phil Robertson W.K. Kellogg Biological Station and Great Lakes Bioenergy Research Center Michigan State University

robertson@kbs.msu.edu

Legislated Biofuel Goals

- U.S. Energy Independence and Security Act of 2007 (EISA) 22% of transportation fuel mix in 2022
 - 36 billion gallons ethanol
 - 15 billion gallons of grain-based ethanol
 - 21 billion gallons of advanced ethanol (>16 cellulosic...)
- European Union
 - 20% renewable energy by 2020
 - 10% of transport fuels by 2020

Current U.S. Ethanol Production Status

Source: USDA 2009; DOE 2009; RFA 2010

¹ World total 17.3 (Brazil 6.4) * US FISA 2007

Legislated Biofuel Goals

- U.S. Energy Policy Act of 2007 22% of transportation fuel mix in 2022
 - 36 billion gallons ethanol
 - 15 billion gallons of grain-based ethanol
 - 21 billion gallons of advanced biofuels (>16 cellulosic)

Source: Energy Independence & Security Act of 2007

DOE; http://genomics.energy.gov

How much ethanol do we need?

Source: DOE 2009; www.eia.doe.gov/emeu/aer/

How much ethanol do we need?

EPA & Natural Resources Defense Council (NRDC) 2050 Projection

Reduced Gasoline Demand through Biofuels, Efficiency, and Smart Growth

How much biomass is needed?

Feedstock	Conversion Factor	To make 1 gal ethanol
Corn grain	0.39 L / kg grain	9.6 kg corn
Cellulosic biomass (expected)	0.4 L / kg biomass	9.8 kg straw

Grain:

Time period	EtOH	Grain required
Today's needs (2009)	9.0 bgal	3.5 b bushels
Tomorrow's needs (2015)*	15 bgal*	5.8 b bushels
Future needs (2050)	107 bgal	42 b bushels

* EISA 2007 mandate

Compare to 13 x10⁹ bu total US corn crop in 2007

DOE Bioenergy Research Centers

How much cellulosic biomass is needed?

Time period	EtOH	Biomass required
Today's needs (2007)	0 bgal	-
Tomorrow's needs (2022)*	21 bgal*	205 MMT
Future needs (2050)	92 bgal	902 MMT

* EISA mandate

Existing Amount	Source ¹
109 MMT	Forest Products 41 MMT Logging residues (50-65%) 60 MMT Forest thinnings (15-20%) 8 MMT mill residues (5%)
90 MMT	Municipal Solid Waste (64%)
55 MMT	Corn Stover 110 MMT (55%; no till; erosion protection; Graham et al. 2007) 76 MMT (39%; no till; some C protection; NRC 2009) 25 MMT (13%; no till; C protection; Wilhelm et al. 2007)
254 MMT	Total - Leaving ~650 MMT to be grown

¹ Perlack et al. 2005; NRC 2009

How much land?

- Land Requirements for 650 x 10⁶ MT biomass
 - Switchgrass today¹ at 7.5 (6-9) MT/ha = 86 x 10⁶ ha
- Compare to
 - 178 x 10⁶ ha cropland
 - 240 x 10⁶ ha range, grasslands
 - 15 x 10⁶ ha CRP

Major Elements of Biofuel Sustainability

- Environmental
 - ✓Carbon negative (climate stabilizing)
 - ✓ Nutrient, water conservative
 - ✓ Biodiversity benefits

Social

✓ Food, energy security✓ Rural community health

A Coupled Human-Natural Systems Framework

A Socio-Ecological Framework for Biofuel Systems

Robertson et al., in prep; After S Collins et al. 2007

A Sustainability Research Roadmap

What we know now about biofuels sustainability

- 1. Grain-based fuel comes with environmental costs not different from conventional food crops:
 - a. Not much effect on climate stabilization
 - b. Greater intensification of existing farmscapes with associated
 - a. erosion
 - b. nitrate, phosphorus loss
 - c. pesticide loading
 - d. biodiversity loss

What we know now about biofuels sustainability (2).....

- 2. Best-performance practices can mitigate many effects:
 - a. More complex rotations provide landscape diversity
 - b. Cover crops
 - c. Conservation tillage
 - d. Better fertilizer technology
 - e. Biocontrol practices

But require incentives not now sufficient.....

What we know about biofuels sustainability (3).....

- 3. Cellulosic crops could provide major contrast:
 - Perennial herbaceous and woody crops a.
 - Landscape diversity (feedstock diversity) b.
 - No carbon debt (if grown right places) С.
 - **Ecosystem Services** d.
 - **Biodiversity**
 - **Biogeochemical**

Clean water

Wildlife

Biocontrol

Biogeochemical Responses

Carbon Impacts - Life Cycle Analysis

Considers the greenhouse gas cost of producing biofuels

Agronomic CO₂ Costs

- Equipment fuel use
- Fertilizer, pesticide production
- Soil carbon change
- Other greenhouse gases (N₂O)

Biorefinery CO₂ Costs

- Fuel for transporting grain
- Energy to heat dryers & boilers

Land-use Conversion Costs

- Conversion of natural ecosystems releases carbon in soil, trees to atmosphere as CO₂
- Other greenhouse gases (N₂O)

RFS2- Lifecycle GHG Thresholds Specified in EISA

Feedstock	Percent Reduction from 2005 Baseline for Gasoline/Diesel
Renewable Fuel	20%
Advanced Biofuel	50%
Biomass-based Diesel	50%
Cellulosic Biofuel	60%

Indirect Land Use Effects

Displaced food production creates carbon debt

www.nature.org

Strategies to Stabilize Atmospheric CO, Agriculture's Role

Adapted from C. Rice

Contemporary Global CO₂ Budget

Source/Sink (Pg C / y)	1990- 1999	2000- 2006
Sources	Pg	Cy ¹
Emissions from fossil fuels Emissions from deforestation Total Sources	6.3 <u>1.6</u> 7.9	7.6 <u>1.5</u> 9.1
Sinks Atmospheric increase Oceanic uptake Terrestrial Uptake Total Sinks	3.3 2.3 <u>2.3</u> 7.9	4.1 2.2 <u>2.8</u> 9.1

Pg C = 10^{15} g C = GT C = 1000 MMT C Source IPCC (2002); Canadell et al. 2007 *PNAS*

A Portfolio of Potential CO₂ Stabilization Options

	Rapidly Deployable	Not Rapidly Deployable
Minor Contributors <0.2 PgC/y	 Biomass co-fire electric generation Cogeneration (small scale) Hydropower Natural Gas Combined cycle Niche options (geothermal, small scale solar) 	 Integrated photovoltaics Forest management (fire suppression) Ocean fertilization
Major Contributors >0.2 PgC/y	 Carbon sequestration in agricultural soils Improved appliance efficiency Improved buildings Improved vehicle efficiency Non-CO₂ gas abatement from industry Non-CO₂ gas abatement from agriculture Reforestation Stratospheric sulfates 	 Biomass to hydrogen Biomass to fuel Cessation of deforestation Energy-efficient urban and transportation systems Fossil-fuel C separation with geologic or ocean storage High efficiency coal technology Large-scale solar Next generation nuclear fission Wind with H2 storage Speculative technologies (space solar, nuclear fusion, etc.)

Caldeira, Morgan, Baldocchi, Brewer, Chen, Nabuurs, Nakicenovic, & Robertson. 2004. A portfolio of carbon management options, p. 103-130, *In* C. B. Field and M. R. Raupach, eds. The Global Carbon Cycle. Island Press, Washington, DC.

Historical Soil Carbon Loss from Cropping Systems

 Iocally 40-60% of original C lost after 40-60 years of cultivation in North America

• globally 54 Pg C from an original 222 Pg C (about 25%)

- Increasing C inputs (crop residues, cover crops)
- Slowing decomposition (no-till)

DOE Bioenergy Research Centers

BIOENERC

100 -

Have, KS

△ Colby, KS

Biogeochemical Pieces – Soil Carbon

How to Restore Soil Carbon?

- 1. Increase C inputs to soil
 - Cover crops
 - Rotations
 - Residue quantity

- 2. Decrease C loss from soil (slow decomposition)
 - Tillage reduction
 - Residue quality

KBS Long-Term Ecological Research (LTER) Site

Biogeochemical Pieces – Soil Carbon

Soil Carbon Change in 10 Years of Cropping

KBS System	Carbon				
	%C	kg/m²	g/m²/y*		
Annual Grain Crops (c-s-w)					
Conventional Tillage	1.00	.94	0		
No-Till	1.24	1.24	30		
Organic with cover	1.09	1.02	8		
Perennial Biomass Crops					
Alfalfa	1.30	1.38	44		
Poplar	1.40	1.26	32		
Successional (Unmanaged) Comm	nunities (CRP)				
Early Successional (<10y)	1.63	1.54	60		
Mid-Successional (50 y)	1.61	1.37	<11		
Late Successional	2.93	2.29	0		

* Initial C = 1.0%

Biogeochemical Pieces – Soil Carbon

CO₂ Flux Measurements (Net Ecosystem Productivity)

CO₂ Eddy Flux 10 Hz, 30 min

August 2008

200 m diameter flux tower

Global Sources of Atmospheric Radiative Forcing 1750 - 2006

Source: IPCC (2007)

Biogeochemical Pieces – N₂O, CH₄

Atmospheric concentrations of the biogenic greenhouse gases (CO_2 , methane, and nitrous oxide) from 1000 A.D.

From IPCC (2001)

Global Warming Potential (GWP) Biogenic Gases

	Lifetime	Global Warming Potential				
	yr	20 yr	100 yr	<u>500 y</u> r		
CO ₂	variable	1	1	1		
CH ₄	12	62	23	7		
N ₂ O	114	275	296	156		

DOE Bioenergy Research Centers

Source: IPCC 2002; 2007

Anthropic Sources of Methane and Nitrous Oxide Globally

Total Impact 2.0 Pg C_{equiv}

1.2 Pg C_{equiv}

(compare to fossil fuel CO_2 loading = 4.1 PgC per year)

Source IPCC 2001, 2007; Prinn 2004; Robertson 2004

Measuring Nitrous Oxide Production and Methane Oxidation in the Field

- 1. Chamber covers soil surface
- 2. Headspace samples removed over 1-2 hour period
- 3. Flux = Rate of accumulation or disappearance

4. Eddy correlation not possible

Nitrous Oxide Fluxes at KBS (1992-2007)

Robertson et al. 2000; Grandy et al. 2006 JEQ; and Parr et al. in prep.

Automated chambers provide needed resolution to test models

Rainfall (mm) — F1 (zero N fertilizer) — F5 (101 kg N/ha) — F8 (246 kg N/ha)

Source: Millar et al. in review

Best N_2O flux predictor = Soil N availability

- both among and within systems:

GREAT LAKES

What about Methane? Global CH₄ Budget

Sinks	<u>Tg CH₄/y</u>
Troposphere	490
Stratosphere	40
Upland Soils	30
Atmospheric Increase	<u>37</u>
	597
Sources	
Natural	160
Anthropogenic	<u>375</u>
	535

DOE Bioenergy Research Centers

CH₄ Flux (Oxidation) at KBS (from 1992)

DOE Bioenergy Research Centers

GREAT LAKES BIOENERGY

Net CH₄ Oxidation: Effects of N and Soil Disturbance

Suwanawaree & Robertson (2005)

Methanotroph Diversity and Oxidation Rate

U. Levine, T. Schmidt, et al. in review

Major Potential Sources of Global Warming Impact (CO₂e) in Biofuel Cropping Systems

- Farm Operations
 - Fuel use
 - Fertilizer, pesticides
 - Lime (CaCO₃)
- Soil carbon change
- N₂O flux
- CH₄ oxidation
- Post-harvest transport
- Fuel Production (CO₂ offset)

	Farming	N ₂ O	CH ₄	Soil C Δ	Fuel Offset (farm gate)	Trans- port	Net
Conventional grain/stover	46	56	-1.5	0	-641	13	-527
N_2O is largest source of CO_2e		Soil carbon is at equilibrium (no annual change)		at > e)	Include of corn	s 50% stover	

All values = $g CO_2 m^{-2} y^{-1}$ for 1992-2007

	Farming	N ₂ O	CH ₄	Soil C Δ	Fuel Offset (farm gate)	Trans- port	Net
Conventional grain/stover	46	56	-1.5	0	-641	13	-527
No-till grain/stover	45	60	-1.8	-66	-606	12	-557
No change in N_2O Soil carbon gain; Greater overall mitigation							
All values = g CO ₂ m ⁻² y ⁻¹ for 1992-2007							

	Farming	N ₂ O	CH ₄	Soil C Δ	Fuel Offset (farm gate)	Trans- port	Net
Conventional grain/stover	46	56	-1.5	0	-641	13	-527
No-till grain/stover	45	60	-1.8	-66	-606	12	-557
Alfalfa	31	56	-2.2	-186	-539	11	-618
Lower farming cost (no fertilizer)Greater soil C gainAll values = $g CO_2 m^{-2} y^{-1}$ for 1992-2007							بد و و ا

DOE Bioenergy Research Centers

GREAT LAKES BIOENERGY

	Farming	N ₂ O	CH ₄	Soil C Δ	Fuel Offset (farm gate)	Trans- port	Net			
Conventional grain/stover	46	56	-1.5	0	-641	13	-527			
No-till grain/stover	45	60	-1.8	-66	-606	12	-557			
Alfalfa	31	56	-2.2	-186	-539	11	-618			
Early succession	3	22	-2.2	-339	-300	6	-610			
Little farming cost (harvest only) Large N ₂ O drop Large SOC gain Less biomass										

Global Warming Impact – KBS Field Crops

Missing: Indirect Land Use Costs

Fertilized successional yields are similar to on-farm switchgrass yields

K.L. Gross et al., in prep.

Nitrate Loss 1996-2007

Source: Syswerda, et al. in prep.

Conclusions: What do we know?

- 1. Land requirements are substantial (ca. 80-100 M ha US)
- 2. Outcomes that provide multiple benefits (ecosystem services) are possible
- 3. Best biogeochemical outcomes will depend on
 - Choice of crops (e.g. annual vs. perennial)
 - Management practices (residue return, fertilization rate, harvest intensity and timing, irrigation...)
 - Location prior crop history
- 4. We know what's needed
 - Comprehensive science understanding at systems level, using a framework that includes human interactions
 - Willingness to incentivize environmental performance

