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BER-BETO Joint Virtual Workshop
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Both BER and BETO are interested in developing and
applying Al/ML tools to address grand challenges in
bioenergy research.
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Al/ML & Automation for Bioenergy Research

ML BETO (downstream, applied science)
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need bioproduct design biological performance
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0 c Adapted from the 2021 DOE

Workshop Report titled
“Designing for Decarbonization:
Accelerating the U.S. Economy.”
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DOE’s “Al for Science” Initiative

DATA AND MODELS:
A FRAMEWORK FOR ADVANCING Al IN SCIENCE
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Producing and Managing Large
Scientific Data with Artificial
Intelligence and Machine Learning

BASIC RESEARCH NEEDS FOR
Scientific Machine Learning

Core Technologies for Artificial Intelligence
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A BRsARTENTOR Accelerating experimental and computational discovery
EN ERGY through artificial intelligence and machine learning

Artificial Intelligence for Earth System

/ AI4ESP Predictability

A multi-lab initiative working with the Earth and Environmental Systems Science Division (EESSD) of the
Office of Biological and Environmental Research (BER) to develop a new paradigm for Earth system
predictability focused on enabling artificial intelligence across field, lab, modeling, and analysis activities.
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AMBER Workshop

Goal:

“Big picture” for integration and implementation of AI/ML approaches into experimentation to
speed basic sciences discoveries in genome biology and design of new biological systems.

Sessions

1. Workshop Goals and Introduction to Artificial Intelligence/Machine Learning
2. Defining Focus on Applications of AI/ML for Bioenergy Research

3. AI/ML Approaches to Meet Bioenergy Research Needs

4. Data and Compute Infrastructure Needed

5. Community Development Including Outreach, Engagement, and Training

« ~50 participants from academia, industry, and DOE national labs
e 9 position papers

I 14 elevator pitch presentations
-E.NERGY AMBER Workshop




Early Successful Examples
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Physics-based and Al/ML models

to assess design fitness

Structure- and sequence-driven

generative models for iterative design

Starting points

- Crystal structures and
structural models

- Multiple antibody templates

- Databases of purchasable
small molecules
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Designs with probability of:
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- Desired biological effect

- Good physical and safety
parameters

Al/ML Functions can Speed High-Performance Computing. The National Virtual Biotechnology
Laboratory project on molecular therapeutics created an integrated computational and experimental
platform for designing COVID-19 therapeutics. [Courtesy Oak Ridge National Laboratory]
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Early Successful Examples

Initial Design

BioAutomata: a Self-driving biofoundry PPN QRN s
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Al/ML can Enable Closed DBTL Loop. BioAutomata
was used to rapidly optimize the lycopene biosynthesis
pathway in E. coli. [Courtesy CABBI]
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Early Successful Examples

Two Biggest Fundamental Problems in Protein Science

20 natural amino acids, assembled in the cell
according to DNA instructions

Google DeepMind's

Al?phanld .
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Al/ML Needs for Bioenergy Research

Human Centricity
» Structured curriculum and digital training modules
« Community engagement and effective communication among stakeholders
« Energy justice and ethical considerations for proper and equitable use of Al

Knowledgebases
, and Large |
\, Language Models

New Biofuel
Molecules and
| Improved

. . . Yields from Existing |
Go ) - Data standards, ontologies, and assessments S y

: : « Infrastructure and Al to collect, clean, and annotate raw multimodal data from
several sources

« Better user interfaces for lab scientists to capture negative data and metadata

Microbial

"o and Micuione
Al/ML Algorithms Engineering Meta- ! Engineering
« Integration of mechanistic models and prior empirical knowledge Complex genomics
£33 & « Application of heterogeneous and causal graphs Biological and
L « Experiment recommender systems Systems in pystenc

OUTCOMES

Biology

« Allearning on limited scientific data the Bioenergy Studies

Research
Paradigm

Microbe-Plant
Interaction
Predictions
in Changing

Environments

Laboratory Automation
« Novel sensors and imaging modalities for real-time predictive data
+ Autonomous self-driving laboratories with microfluidics

« Digital twins for large-scale reactors
« High-throughput plant cell facilities at scale

Accelerated

Timelines and
Distributed

Biomanufacturing

Transferability
Predictive Scale-Up
and Autonomous
Manufacturing

« Test models implemented in real-world scenarios
.« Transferability of learnings and insights among scales and systems

b U.S. DEPARTMENT OF « Clarity on inherited biases for re-use of models
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AMBER Workshop Takeaways

1. Numerous Al/ML and automated experimentation applications exist for a variety of DOE
mission needs in energy and the environment. Exemplary research grand challenges for which
Al/ML could provide solutions include:

Pathway and host
optimization
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building microbes and microbial developing closed-loop autonomous advancing scale-up and
communities to specifications design and control for biosystems automation for biomanufacturing
design
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AMBER Workshop Takeaways

2. Lack of sufficient high-quality, annotated data hinders the development of
Al/ML applications.

data exchange standardization: Integrating heterogeneous software, data,
and automation across vendors and developers is difficult, partly due to a lack
of standardized metadata formats, vocabularies, and syntaxes.

data quality: A key challenge is the need for very large, high-quality datasets
suitable for the research questions at hand.

data privacy: How to build models on top of a foundation of private (e.g.,
company-owned) primary data and make the trained models available to the

public without revealing the primary data and creating issues with intellectual
property or copyrights.

AMBER Workshop



AMBER Workshop Takeaways

3. New and improved Al/ML tools are needed, particularly those meeting the
specific needs of the BER/BSSD and BETO research communities. For example,
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AMBER Workshop Takeaways

3. New and improved Al/ML tools are needed, particularly those meeting the
specific needs of the BER/BSSD and BETO research communities. For example,
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AMBER Workshop Takeaways

3. New and improved Al/ML tools are needed, particularly those meeting the
specific needs of the BER/BSSD and BETO research communities.

» matching Al/ML models to problems of interest,

» merging Al/ML predictive capabilities with mechanistic insight,
» overcoming the limited data problem,

» integrating data from various resources,

» quantifying the predictive capacity of Al/ML models,

» developing generally applicable large language models/foundation models.
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Flowchart Summarizing How to Select a ML Model
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Reprinted with permission from Greener, G.,
et al. “A Guide to Machine Learning for
Biologists,” Nature Reviews Molecular Cell
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Large Language Models/Foundation Models
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AMBER Workshop Takeaways

4. Trade-offs in performance, cost, and reliability exist between deploying commercially available
versus building custom-developed instrumentation and software for automated or autonomous
experimentation; translation of manual to automated or autonomous methods is often a nontrivial
endeavor.

« Capture expert knowledge to drive autonomous experiments and laboratories.

« Establish environmentally hardy technology for field-scale autonomous experiments and
laboratories.

« Address increased complexity due to scale for autonomous experiments and production

» Facilitate training of AI/ML models for bioenergy scenarios:
- Data archives
- Computing resources
- New AIl/ML training infrastructure
- Integrative technology test labs
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AMBER Workshop Takeaways

5. Training a new generation of young scientists who can develop and apply Al/ML tools is needed

to solve long-standing scientific challenges in bioenergy research.

L)t T =

Workforce development Diversity & inclusion Outreach Social responsibility and ethics
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A New Bioenergy Research Paradigm

Al Enabled _ _

Design Workflows ‘ Biofuels, bioproducts, enzymes,
(what to make) organisms, microbiomes, plants,
Al Enabled

Experimental Workflows ‘ Self-driving labs
(how to make it)

Al Enabled . c_latasets n Cleaned
. e : - literature Updated .
Smenpflc Comprehension ‘ . science “news” I — Annotated —> INsight?
(what it means) . strategy Aggregated
- Interpreted

e ENERGY Adapted from a slide by Rick Stevens AMBER Workshop




A New Bioenergy Research Paradigm:
Autonomous Experimentation

Zero-shot designed
initial library

T
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Automated robotics
platform

Navigate fitness
landscape

Yu et al. Cell Systems in press.

- Optimal variant
LT
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Towards a Carbon-negative Sustainable Bioeconomy
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