Building Microbial Chemical Factories

Kristala L. J. Prather

Arthur D. Little Professor Department of Chemical Engineering Microbiology Graduate Program Massachusetts Institute of Technology

April 22, 2022

*The presenter declares competing financial interests.

Microbial Chemical Synthesis

Microbial Chemical Synthesis

3-Hydroxybutyrolactone (3-HBL)

- Key Intermediate in Chiral Synthesis of Solvents (e.g. Furan Derivatives) and Pharmaceuticals (e.g. Statins)
- Wholesale Cost ~ \$450/kg (\$20-50/gram for lab-scale quantities)
- No Known Biological Routes towards DHBA or 3-HBL.

mr 00 70 90

Synthesis of Chiral 3-Hydroxycarboxylic Acids

Martin et al, 2013. Nat. Commun. 4:1414.

Accessing new molecules through Biology: 4-Methylpentanol

Final pathway employed **10 genes**

Max selectivity of ~80% for 4MP

Sheppard, et al, 2014.

Nat. Commun. 5:5031.

from 8 different organisms

alcohol

Mimicking n-butanol (CoA-dependent) biosynthesis Theoretical maximum

energy yield of 94.6%

Protein Engineering for Increased Selectivity

 Rational protein design (in collaboration with Bruce Tidor, MIT-BioE)

4-5x fold improvement in selectivity over wild-type enzyme

Bonk et al, 2018. Biotechnol. Bioeng. 115:2167–2182

Designer Polymers for Biodegradation

Inspiration from branched-chain amino acid catabolism

A Platform Pathway to α-Substituted 3HAs

3H2MB Synthesis from Tiglic Acid

PhaJ from Aeromonas caviae enables product synthesis

Microbial Chemical Synthesis

Building Metabolite Valves

- ✓ Achieved tunable, dynamic control of endogenous gene expression → inducible protein degradation*
- ✓ Utilized a pathway-independent (small molecule inducible) mechanism

*Brockman and Prather, 2015. *Metabolic Engineering*, 28:104-113.

Turning to Quorum Sensing

Pantoea stewartii Esa System*

*Shong et al. 2013. ACS Chemical Biology. 8:789–795 (Cynthia Collins, RPI).

Esal Library Characterization

Switching OD (OD₆₀₀)

- Excellent agreement of part performance with prediction
- Only lowest expression levels provide graded response

Glucaric Acid Production in E. coli

- DOE top "value-added" chemical
- Pharma, water treatment, materials

INO1 S. cerevisiae (yeast)MIOX M. musculus (mouse)Udh P. syringae (bacterium)

Moon, T. S., et. al. Appl Environ Microbiol. (2009)

Yoon, S.-H., et al. J. Bacteriol. (2009)

Manipulating Glucose Metabolism

Metabolite Valves Across Scales

m2p-labs BioLector

250-ml shake flasks

Infors 3-L benchtop reactor

An Additional Control Point – MIOX

- MIOX activity is increased when cultured in the presence of *myo*inositol (MI), unstable*
- Product titers are higher when MIOX induction is delayed

- MI-responsive regulator (IpsA) adapted from *C. glutamicum*
- Can be used to control MIOX induction

*Moon, T. S., et. al. Appl Environ Microbiol. (2009)

Metabolite-Driven Production of GA

Layering Both Strategies

- Individual strategies increase 2- to 3-fold
- Layered approach increases titers 10fold
- Highest reported titers to-date in K strains of *E. coli*

Doong et al. 2018. PNAS. 115:2964-2969.

Substrate-Controlled Pathway Regulation

Time (hr)

Ni et al. 2021. Biotechnol. J., 2000433

Orthogonal Sensor Construction for

Mixed-Substrate Feeds*

mCherry (a.u.)

* Motivated by the need to valorization complex wastes such as food, MSW

Mixed Substrate-Single Product Fermentations

Cynthia Ni

Biofuels production using scCO₂-tolerant bacteria

Goal: isolate bacteria capable of robust growth under $scCO_2$, engineer them for biofuel production, and scale up the process

Bacillus megaterium strain SR7 isolated from natural CO₂ reservoir in Colorado

Freedman, A.J.E et al. (2018) Frontiers Microbiol. 9:2152

Improving growth under scCO₂

Inoculate reactors with spores of SR7

Modifications to media and supplements facilitate germination, growth

SR7 Spores

Adam Freedman Thompson lab

Freedman, A.J.E et al. (2018) Frontiers Microbiol. 9:2152

Isobutanol production in SR7 under scCO₂

Production of isobutanol under scCO₂ in high metabolic activity cultures

Boock et al, (2019) Nature Communications. 10:587.

ASPEN model of the energetics of scCO₂ bioprocessing

Boock et al. (2019) Nature Communications. 10:587.

Towards Biosystems Design

Transformation efficiency increased from a few colonies per μ g DNA to levels acceptable for genome-scale engineering

Yoseb Song

Summary

- Biological synthesis is an effective tool for the production of diverse chemical products.
- Pathway optimization benefits from new tools to regulate metabolic flux and biosynthetic pathways.
- Non-model microbes open the door to new modes of bioprocess design that may be preferential for toxic (and useful) products.

Acknowledgments

Current Group K'yal Bannister Kevin Fox Jennifer Kaczmarek Vivienne Mol Cynthia Ni Michael Ream Dr. Yoseb Song Alex Zappi Vincent Zu

Former Members

Jason Boock, Irene Brockman, Himanshu Dhamankar, Stephanie Doong, Apoorv Gupta, Collin Martin, Tae Seok Moon, Micah Sheppard, Chris Reisch, Eric Shiue, Yekaterina Tarasova, Hsien-Chung Tseng, Sang-Hwal Yoon

