Impacts of dynamic soil redox on tropical soil microbiomes and biogeochemical transformations

Jennifer Pett-Ridge

BERAC Meeting October 25, 2019

Paradigms

- Upland soils...dominated by aerobic processes
- Redox stratification... 'a wetland thing'
- Microbes... obligate anaerobes, obligate aerobes
- Methanogens... oxygen = toxic
- Aerobic respiration...leads to high CO₂ fluxes
- Carbon accumulates...when its anoxic
- Well controlled experiments...avoid oscillation

REDOX: Oxidation (loss of e-) & Reduction (gain of e-)

"it is probably not unscientific to suggest the somewhere or other some organism exists which can, under suitable conditions, oxidize any substance which is theoretically capable of being oxidized" -E.F. Gale 1952

Terminal electron acceptors

Thermodynamics tells us microbes should use terminal electron acceptors sequentially, according to the 'redox ladder'...

Redox patterns are dynamic in space

- In deep soils
- In surface soil microsites (Sexstone et al. 1985)
- In the rhizosphere (Keiluweit et al. 2015; Richter et al 2007)

Keiluweit et al. (2018)

Redox patterns are also dynamic in time & space

Electron donors

Energy storage in organic compounds

"NOSC"

LaRowe and Van Cappellen (2011)

The organization of global microbial communities is linked to substrate & redox traits

The diversity and biogeography of soil bacterial communities

Noah Fierer*[†] and Robert B. Jackson*[‡]

Redox traits characterize the organization of global microbial communities

Salvador Ramírez-Flandes, Bernardo González, and Osvaldo Ulloa

PNAS February 26, 2019 116 (9) 3630-3635; first published February 11, 2019 https://doi.org/10.1073 /pnas.1817554116

> Network of oxidoreductase and taxonomic genes from 247 microbial metagenomes. Nodes=metagenomes, colored by biome.

Metagenomes of uncultured microbes—illustrate taxa who 'break the rules'

 'Strict' anaerobes methanogens
BUT...Candidatus Methanothrix paradoxum

BUT... Nitrososphaera 7.2 and Nitrosotalea 1.1

Pett-Ridge et al. (2013)

The micro-ecological dimension of redox fluctuation

 Unlike T, H₂O, pH, or mineralogy... soil O₂/pE is one of the few environmental drivers that oscillates on a timestep faster than microbial populations can respond (via growth)

IF
$$\tau_{Ox}$$
 or $\tau_{red} \ll T$ (turnover time)

THEN populations must adapt via:

- Avoidance (refugia)
- Tolerance (superoxide dismutase, polyphosphate storage)
- Flexible metabolism (alternative e- acceptors)

Knowledge Gap

Need to improve understanding of <u>dynamic</u> soil redox conditions as a driver of Fe, C, nutrient transformations

Objectives

Measure how shifts in soil oxygen/pE patterns affect

- Fe-oxide mineral crystallinity
- composition of metabolic products
- fate of complex C substrates
- soil respiration
- microbial community structure

Luquillo Critical Zone Observatory, Puerto Rico

Climate changes are already altering the predominant redox regime of soils in the Luquillo CZO

4-month drought

- Redox fluctuations in these upland tropical forest soils are <u>spatially</u> and temporally heterogeneous
- Redox oscillations affect Fe-C-P-N cycles

Tropical soils have diverse microbial functional capacity

(Dubinsky et al. unpublished)

Soil manipulation experiment—effects of redox patterns on microbial communities and their functionality

The 'Great Redox Experiment'

Oxic and oscillating redox communities are barely distinguishable; anoxic soils develop a unique cohort

N.B. vast majority of OTUs were not impacted by redox

Campbell et al. (in prep)¹⁵

¹³C stable isotope probing (SIP): fluctuating soil OTUs have higher ¹³C incorporation

DOXIC

¹³C SIP metagenomes, many novel viral sequences

- 326 medium/high quality bins (MAGs) from ¹³C enriched DNA fractions
- largest changes in the static anoxic vs static oxic
- strong response in the Fe reducer community
- found 460 viral OTUs, ¼ were unique to the active fraction ⁽¹³C)[.]
- Viral richness was highest in oxic samples, decreased with O₂ availability (oxic>low frequency>high frequency>anoxic)

Metabolic subsystems from genomes of ¹³C enriched organisms

Iron acquisition and metabolism

Stress Response, Defense, Virulence

Microbial strategies to 'cope' with soil redox status

OTUs change with time, primarily due to metabolic toleranceNOT plasticity

Soil manipulation experiment—effects of redox patterns on soil biogeochemistry

The 'Great Redox Experiment'

Expectations...(based on the literature)

Gross et al., *Soil Systems* 2018 ²¹

Rapid changes in Fe(II), amorphous Fe and DOC were observed when redox conditions switched

Bhattacharyya et al., ES&T 2018; Lin et al. JGR Biogeosciences 2018 22

Anoxia constrains carbon use efficiency and microbial capacity for P uptake

Mean C:P ratios of microbial biomass in LEF soils incubated with oxic or anoxic conditions (10 d) and then amended with glucose and potassium phosphate at different C:P ratios.

Gross, Lin et al. Ecology (in press)

¹³C enriched organic matter is associated with iron oxide surfaces

Bhattacharyya et al. (in prep)

5µm

Aromatic components are 'left behind' in anoxic soils

- Composition of C remaining from added ¹³C litter differs in oxic vs. anoxic soils
- Anoxic soils show an accumulation of aromatic components
- O-alkyl residues were more common in oxic soils

Redox impacts on soil metabolites—most transformation observed for flux/oxic treatments

FTICR-MS (EMSL)

LC-MS-MS (JGI)

Fresh litter enables rapid anoxic respiration; decomposition of pre-existing SOM is limited by [O₂] availability

- Ratio of fresh litter/native OM soil CO₂ fluxes.
- Relatively more 'fresh' litter was metabolized and respired under anoxic conditions, whereas more (pre-existing) soil-derived C was respired in oxic conditions.

Bhattacharyya et al. in prep; Lin et al. in prep.

27

Messages to take away

In upland soils, rapid redox depletion is driven by precipitation-borne influxes of labile C, which drive O_2 consumption, CO_2 and H_2 production.

In Fe oxide rich tropical soils, oscillation between crystalline and amorphous forms provides brief pulses of DOC, which are rapidly consumed.

Oscillation promotes rapid microbial use of fresh C. Average soil O_2 is a poor predictor of BGC fluxes. Multi-day shifts in soil redox status do not dramatically restructure the bacterial communities. Instead, taxa appear tolerant of redox changes, which play different 'chords' on a background microbial 'keyboard^{'*.}

Next Steps...

Their next steps...

Project scientist Lawrence Berkeley Lab

assistant professor University of Florida

Postdoc, Brazil

Lecturer Ben-Gurion University of the Negev

Staff scientist Lawrence Livermore Lab

Acknowledgements

Daniel Nilson Steve Blazewicz Shalini Mabery Karis McFarlane Sasha Reed Allison Campbell Ben Bowen Karol Molina Vargas (MS, Ecuador)

Jessica Wollard Elizabeth Green Gary Trub Kate Heckman **Alaine Plan** Malak Tfaily **Marissa Lafler**

Whendee Silver **Erin Nuccio Aaron Thompson Tana Wood Peter Nico Katherine Louie** Ivan F. Souza (GSR, Brazil)

LBNL Advanced Light Source **Joint Genome Institute Stanford Synchrotron Radiation Light Source Pacific Northwest National Laboratory, EMSL** Funding: DOE OBER Genomic Sciences Early Career Research Program award SCW1478

Composition of iron cycling microbes is impacted by soil redox—stronger response in the reducer community

PCoA of Iron Oxidizing Microbes

Sphaerotilus spp. Rhodomicrobium spp. Pseudomonas spp. Dechloromonas spp. Chromobacterium spp.

