

Biological and Environmental Research

BER Advisory Committee (BERAC) Spring Meeting April 25-26, 2019

> Sharlene Weatherwax Associate Director

BER Staff Changes

Dorothy Koch Departed for NOAA

Boris Wawrick Program Manager for Environmental Genomics

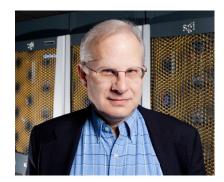
David Lesmes Departed for USGS

Corrine Hartin Detailee from PNNL Earth System Modeling

Departing BERAC members

Gary Stacey University of Missouri

> James Ehleringer University of Utah


Andrzej Joachimiak Argonne National Laboratory

Karen Schlauch Desert Research Institute

New BERAC Members

Leo Donner NOAA Geophysical Fluid Dynamics Laboratory

Maureen McCann Purdue University

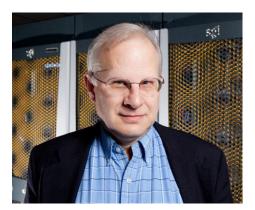
Robert Fischetti Argonne National Laboratory

New BERAC Members (cont'd)

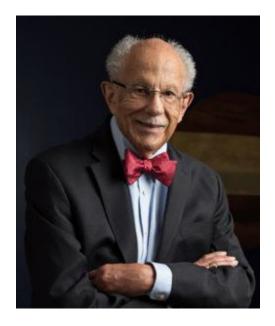
Ann Fridlind NASA Goddard Institute for Space Studies

Welcome!

Jeremy Schmutz HudsonAlpha Institute for Biotechnology


Himadri Pakrasi Washington University at St. Louis

BERAC Members Recognized


Bruce Hungate Northern Arizona University 2019 Fellow – Ecological Society of America

Leo Donner NOAA Geophysical Fluid Dynamics Laboratory 2019 Fellow – American Meteorological Society

BER Researchers Recognized

Dr. Warren M. Washington National Center for Atmospheric Research 2019 Tyler Prize Laureate

for Environmental Achievement

BER Researchers Recognized

Jizhong Zhou University of Oklahoma 2019 Award for Environmental Research – American Society for Microbiology

Paul Durack

Lawrence Livermore National Laboratory 2018 Data Prize -World Climate Research Programme

BER Researchers Recognized

2018 AAAS Fellows

2019 Royal Society Fellow

Inez Fung University of California, Berkeley

2019 ESA Fellows

Scott Saleska University of Arizona

Federica Brandizzi Michigan State University

Manvendra Krishna Dubey Los Alamos National Laboratory

Susannah G. Tringe Joint Genome Institute, Lawrence Berkeley National Laboratory

Kristala L.J. Prather Massachusetts Institute of Technology

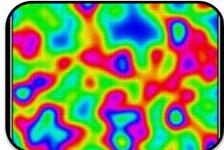
Ashley Shade Michigan State University (Early Career Fellow)

Office of Science at a Glance

FY 2020 Request: \$5.55B

Largest Supporter of Physical Sciences in the U.S.

Funding at >300 Institutions, including 17 DOE Labs


Over 22,000 Researchers Supported

Over 32,000 Users of 27 SC Scientific Facilities

~40% of Research to Universities

Research: 40.6%, \$2.25B

Facility Operations: 39.9%, \$2.21B

Projects/Other: 19.5%, \$1.09B

Major Programmatic Responsibilities

Support of Fundamental Research

SC funds programs in physics, chemistry, materials science, biology, environmental science, applied mathematics, computer science and computational science, and is the Federal steward for several disciplines within these fields such as: high energy physics and nuclear physics; fusion sciences; high performance computing science and technology; and accelerator and detector science and technology. SC is also the largest Federal supporter of fundamental research relevant to future solutions for clean energy.

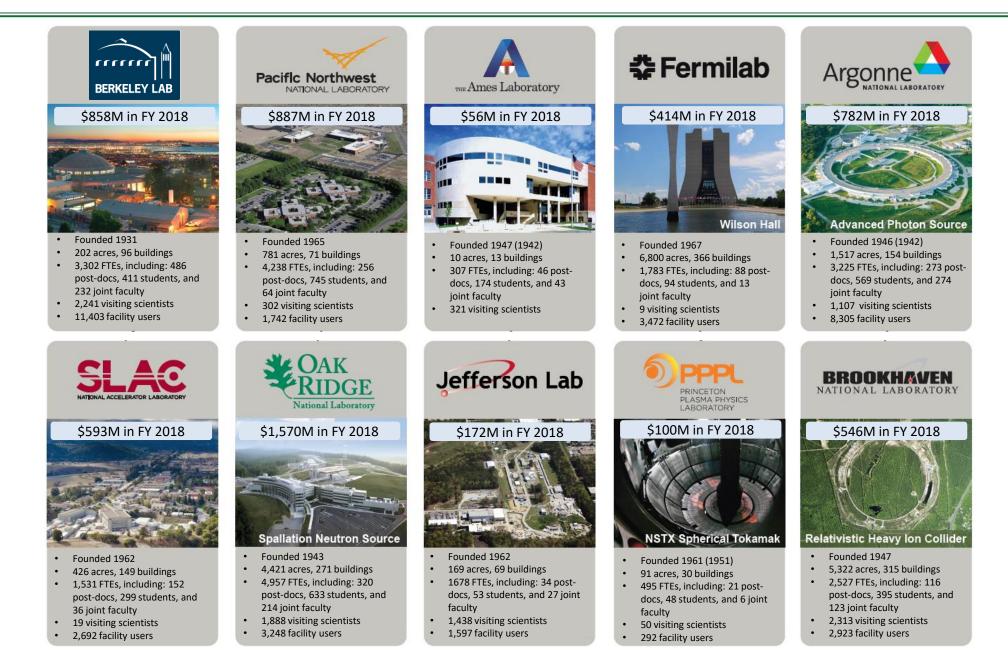
Support of 21st Century Tools for Science

SC supports the planning, design, construction, and operation of state-of-the-art scientific user facilities considered the most advanced tools of modern science. **Over 32,000** investigators perform research at these openaccess facilities each year. Large facilities can have costs in excess of \$1B and can be in design and construction for a decade. Most of our facilities are at DOE labs, but increasingly we engage in international cooperation due to the cost of some of the facilities.

Oversight of 10 DOE Laboratories

SC oversees the operation of 10 DOE national laboratories. It also conducts a formal laboratory strategic planning process annually with its labs to understand future directions, immediate and long-range challenges, and resource needs. As part of it's oversight of the laboratories, SC conducts an annual evaluation of the scientific, technological, managerial, and operational performance of the Management & Operating (M&O) contractors of its labs. In addition, SC funds mission-ready infrastructure and investments that foster safe and environmentally responsible operations at the labs.

R&D coordination and integration


SC coordinates its activities with the DOE technology offices, the National Nuclear Security Administration, and other federal agencies. This occurs through multi-program teams led by the DOE Under Secretary for Science (S4), SC and DOE program manager-driven informal working groups, and interagency working groups. New areas have focused on advanced materials, exascale computing, cybersecurity, subsurface technology R&D, and quantum information science. On-going coordination occurs in areas such as biofuels, solar energy utilization, superconductivity for grid applications, and vehicle technologies.

The Office of Science Research Portfolio

Advanced Scientific Computing Research	 Delivering world leading computational and networking capabilities to extend the frontiers of science and technology
Basic Energy Sciences	 Understanding, predicting, and ultimately controlling matter and energy flow at the electronic, atomic, and molecular levels
Biological and Environmental Research	 Understanding complex biological, earth, and environmental systems
Fusion Energy Sciences	 Building the scientific foundations for a fusion energy source
High Energy Physics	 Understanding how the universe works at its most fundamental level
Nuclear Physics	 Discovering, exploring, and understanding all forms of nuclear matter

The DOE/SC Labs Today

FY 2020 President's Budget Priorities

FY 2018 Enacted: \$6.260B FY 2019 Enacted: \$6.585B FY 2020 President's Request: \$5.546B

Priorities:

- Continue operations of all the national laboratories
- Focus on the development of foundational Artificial Intelligence (AI) and Machine Learning (ML) capabilities
- Continue exascale computing research for delivery in FY 2021
- Expand quantum computing and quantum information science efforts
- Focus on cutting edge, early stage research and development
- Ensure a sustained pipeline for the science, technology, engineering, and mathematics (STEM) workforce

FY 2020 SC President's Budget Request

(Dollars in Thousands)

	FY 2	018	FY 2019	F	FY 2020 Request	
	Enacted	Current	Enacted	President's	Request	VS.
	Approp.	Approp.	Approp.	Request	FY 2019 Ena	acted
Advanced Scientific Computing Research	810,000	788,224	935,500	920,888	-14,612	-1.6%
Basic Energy Sciences	2.090.000	2.028.719	2.166.000	1.858.285	-307.715	-14.2%
Biological and Environmental Research	673,000	648,600	705,000	494,434	-210,566	-29.9%
Fusion Energy Sciences	532,111	518,824	564,000	402,750	-161,250	-28.6%
High Energy Physics	908,000	883,573	980,000	768,038	-211,962	-21.6%
Nuclear Physics	684,000	664,694	690,000	624,854	-65,146	-9.4%
Workforce Development for Teachers and Scientists	19,500	19,500	22,500	19,500	-3,000	-13.3%
Science Laboratories Infrastructure	257,292	257,292	232,890	163,600	-69,290	-29.8%
Safeguards and Security	103,000	103,000	106,110	110,623	+4,513	+4.3%
Program Direction	183,000	183,000	183,000	183,000		
SBIR/STTR (SC)		164,477				
Subtotal, Office of Science	6,259,903	6,259,903	6,585,000	5,545,972	-1,039,028	-15.8%
SBIR/STTR (DOE)		116,972				
Total, Office of Science	6,259,903	6,376,875	6,585,000	5,545,972	-1,039,028	-15.8%

BER FY 2020 President's Request

(Dollars in thousands)

	FY 2	018	FY 2019	F	FY 2020 Request	
	Enacted	Current	Enacted	President's	t's Request vs.	
	Approp.	Approp.	Approp.	Request	FY 2019 Enacted	
Biological Systems Science						
Genomic Science	239,199	239,247	249 <i>,</i> 695	230,000	-19,695	-7.9%
Bioenergy Research Centers (non-add)	(90,000)	(90,000)	(100,000)	(100,000)	()	()
Biomolecular Characterization and Imaging Science ^a	30,000	29,952	34,908	24,908	-10,000	-28.6%
Biological Systems Facilities and Infrastructure	69,401	69,401	70,000	60,000	-10,000	-14.3%
SBIR/STTR	12,789		13,194	11,892	-1,302	-9.9%
Total, Biological Systems Science	351,389	338,600	367,797	326,800	-40,997	-11.1%
Earth and Environmental System Sciences						
Atmospheric System Research	28,000	27,989	28,000	12,000	-16,000	-57.1%
Environmental System Science	67,000	67,150	62,143	19,000	-43,143	-69.4%
Earth and Environmental Systems Modeling ^b	92,000	91,861	97,000	37,643	-59,357	-61.2%
Earth and Environmental Systems Sciences Facilities and Infrastructure	123,000	123,000	138,500	93,000	-45,500	-32.9%
SBIR/STTR	11,611		11,560	5,991	-5,569	-48.2%
Total, Earth and Environmental Systems Sciences	321,611	310,000	337,203	167,634	-169,569	-50.3%
Total Biological and Environmental Research	673,000	648,600	705,000	494,434	-210,566	-29.9%

^{*a*} Biomolecular Characterization and Imaging Science contains previous Mesoscale to Molecules, and Structural Biology Infrastructure.

^b Earth and Environmental Systems Modeling reflects all previous Modeling activities (Regional and Global Model Analysis, Earth System Modeling, and Integrated Assessment).

Biological and Environmental Research

Understanding complex biological, earth, and environmental systems

- Genomic sciences supports the third year of full performance for the four Bioenergy Research Centers (BRCs), environmental genomics and microbiomes, and efforts in secure biosystems design for bioenergy and renewable bioproducts.
- Biomolecular Characterization and Imaging Science research supports the development of enabling technology to visualize key structural biomolecules and metabolic processes in plant and microbial cells, including new efforts to explore imaging, characterization and/or sensor techniques that take advantage of quantum information science (QIS)-enabled science concepts in environmental sensors in field environments.
- Atmospheric System Research supports research to advance the understanding of cloud-aerosol-precipitation interactions, and their influence on the earth's energy balance.
- Earth and Environmental Systems Modeling supports quantifying and reducing uncertainties in Earth System models based on more advanced process representations of Earth system observations and modeling components. The Energy Exascale Earth System Model will prioritize incorporation of studies of the water cycle.
- Environmental System Science prioritizes research on the ecology, biogeochemistry, and the water cycle, emphasizing Arctic regimes. Data
 analysis from the pilot terrestrial-aquatic interface projects continues, while modeling and experimental research involving subsurface fate
 and transport of radionuclides is terminated.
- User facilities: Atmospheric Radiation Measurement (ARM) prioritizes measurements at two fixed sites: North Slope, Alaska and Southern Great Plains, Oklahoma; funds support full deployment of one mobile facility to Norway and one mobile facility seasonal deployment at Oliktok, Alaska. Joint Genome Institute (JGI) provides genome sequence data, synthesis, and analysis. Environmental Molecular Sciences Laboratory (EMSL) focuses on molecular scale analysis for biological and environmental samples.

Biological Systems Science Research for FY2020

Foundational Genomics Research

- Biosystems design techniques to modify microbes and plants for bioenergy and bioproducts
- Genome-modification techniques to identify and predict biosecurity implications

Environmental Genomics

- Sustainable plant and microbial community interactions
- Plant and microbial physiology for bioenergy and ecosystems

Computational Bioscience

 Produce on open source, integrated computational platform for microbiome and bioenergy-related research

Bioenergy Research Centers

 Begin third year of operations to develop bioenergy crops with favorable physiological traits for environmental conditions

Biomolecular Characterization and Imaging Science

 New multi-modal imaging, visualization and structural characterization of biomolecular processes in plants and microbes; explore imaging that utilizes QIS concepts

Joint Genome Institute

- Serve as a central source for genome sequence production capabilities for plants, microbes and microbial communities
- Request includes reduction associated with moving the facility to the LBNL campus, during which JGI will reduce sequencing and analysis capabilities intermittently

Earth and Environmental Systems Sciences Research for FY2020

Atmospheric Sciences Research

- Cloud and aerosol science in regions that exhibit the greatest uncertainty in Earth models
- Analyze emerging data from the Norway field campaign

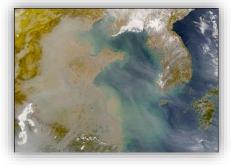
Environmental System Science

- Continue studies on permafrost ecosystems, boreal ecology, watershed hydrobiogeochemistry, and terrestrial-aquatic interfaces
- Terminate research on tropical ecology and fate and transport of radionuclides and mercury

Earth and Environmental Systems Modeling

- Incorporate advanced software for deployment of the Earth system model onto exascale computing architectures.
- Continue research on extreme weather phenomena, biogeochemical cycling and water cycle, and model intercomparisons and diagnostics.

ARM User Facility


- Prioritize observations needed to improve the E3SM model.
- Deploy mobile facility to Norway; new aircraft testing and evaluation

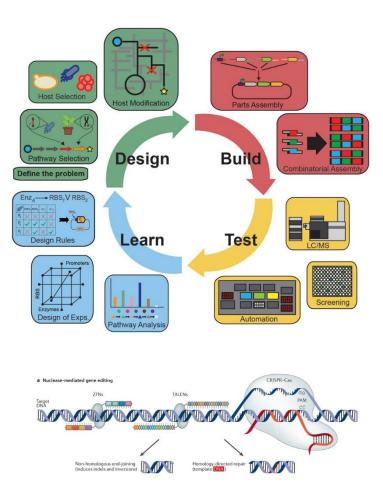
EMSL User Facility

 Prioritize research on environmental biogeochemistry, microbial metabolomics, aerosol chemistry, and early applications of Dynamic Transmission Electron Microscope

FY 2020 Administration Priority Research Initiatives

- Machine Learning/Artificial Intelligence
- Bio (security, materials, manufacturing)
- Quantum Information Science includes quantum sensing, computing, networking, and isotope production
- Exascale Computing
- Microelectronics Innovation
- National Isotopes Strategy
- U.S. Fusion Program Acceleration

FY 2020 Priority #1 Research Initiatives


(Dollars in Thousands)

Research Initiative	ASCR	BES	BER	FES	HEP	NP	Total
Machine Learning / Artificial Intelligence	36,000	10,000	3,000	7,000	15,000		71,000
Biosecurity			20,000				20,000
Quantum Information Science	51,161	52,503	12,000	7,520	38,308	7,000	168,492
Exascale Computing	463,735	26,000	10,000				499,735
Microelectronics		25,000					25,000
Isotope Development and Production for							
Research and Applications						47,500	47,500
U.S. Fusion Program Acceleration				4,000			4,000
Total	550,896	113,503	45,000	18,520	53,308	54,500	835,727

Secure Biosystems Design

- Leverages the significant, historical DOE leadership in genebased research over the last two decades
- Accelerates DOE progress in developing gene-based understanding and manipulation technologies in biological systems relevant to DOE missions by:
 - Systematizing the underlying biological design principles for beneficial redesign and optimization of plant and microbial pathways
 - Expanding systems biology research to a broader range of platform species (plants, microbes)
 - Extending bioenergy research beyond the production of fuels to higher value chemicals and bioproducts
 - Enable development of new secure gene-editing and multi-gene stacking techniques

Thank you!

